
The Kokkos Lectures

Module 7: Kokkos Tools

June 17, 2024

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2020-9031 PE

June 17, 2024 2/77

Welcome to Kokkos

Online Resources:
▶ https://github.com/kokkos:

▶ Primary Kokkos GitHub Organization

▶ https://github.com/kokkos/kokkos-tutorials/wiki/
Kokkos-Lecture-Series:
▶ Slides, recording and Q&A for the Lectures

▶ https://kokkos.github.io/kokkos-core-wiki:
▶ Wiki including API reference

▶ https://github.com/kokkos/kokkos-tools/wiki:
▶ Kokkos Tools Wiki

▶ https://kokkosteam.slack.com:
▶ Slack channel for Kokkos.
▶ Please join: fastest way to get your questions answered.
▶ Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://kokkos.github.io/kokkos-core-wiki
https://github.com/kokkos/kokkos-tools/wiki
https://kokkosteam.slack.com

June 17, 2024 3/77

Lecture Series Outline

▶ 07/17 Module 1: Introduction, Building and Parallel Dispatch

▶ 07/24 Module 2: Views and Spaces

▶ 07/31 Module 3: Data Structures + MultiDimensional Loops

▶ 08/07 Module 4: Hierarchical Parallelism

▶ 08/14 Module 5: Tasking, Streams and SIMD

▶ 08/21 Module 6: Internode: MPI and PGAS

▶ 08/28 Module 7: Tools: Profiling, Tuning and
Debugging

▶ 09/04 Module 8: Kernels: Sparse and Dense Linear Algebra

▶ 09/11 Reserve Day

June 17, 2024 4/77

Module 6 Summary

Simple MPI and Kokkos Interaction is easy!
▶ Simply pass data() of a View to MPI functions plus its size.

▶ But it better be a contiguous View!

▶ Initialize Kokkos after MPI, and finalize it before MPI

Overlapping communication and computation possible

▶ Use Execution Space instances to overlap packing/unpacking
with other computation.

▶ Order operations to maximize overlapping potential.

June 17, 2024 5/77

Module 6 Summary

Fortran Language Compatibility Layer

▶ Initialize Kokkos from Fortran via kokkos initialize and
kokkos finalize

▶ nd array t is a representation of a Kokkos::View

▶ Create nd array t from a Fortran array via to nd array

▶ Allocate Kokkos::DualView in Fortran with
kokkos allocate dualview

The Python Interop

▶ Initialize and Finalize Kokkos from Python

▶ Create Views from Python

▶ Alias Kokkos Views with NumPy arrays

▶ This is in pre-release: ask us for access.

June 17, 2024 6/77

Module 7: Learning objectives

Simple Tools Usage

▶ How to dynamically load a Kokkos Tool.

▶ Simple Profiling and Debugging.

▶ Leveraging the KokkosP instrumentation for third party tools.

Kokkos Tuning

▶ Learn to auto-tune runtime parameters.

Build Your Own Tool
▶ Learn how to build your own tools.

Leveraging Static Analysis

▶ How to use Kokkos’ LLVM tools for static analysis.

June 17, 2024 7/77

Kokkos Tools
Leveraging Kokkos’ built-in instrumentation.

Learning objectives:

▶ The need for Kokkos-aware tools.

▶ How instrumentation helps.

▶ Simple profiling tools.

▶ Simple debugging tools.

June 17, 2024 8/77

Profiling C++ Code

Output from NVIDIA NVProf for Trilinos Tpetra

What are those Kernels doing?

June 17, 2024 8/77

Profiling C++ Code

Output from NVIDIA NVProf for Trilinos Tpetra

What are those Kernels doing?

June 17, 2024 9/77

Why is it so bad?

Generic code obscures what is happening from the tools
Historically a lot of profiling tools are coming from a Fortran and C
world:

▶ Focused on functions and variables
▶ C++ has a lot of other concepts:

▶ Classes with member functions
▶ Inheritance
▶ Template Metaprogramming

▶ Abstraction Models (Generic Programming) obscure things
▶ From a profiler perspective interesting stuff happens in the

abstraction layer (e.g. #pragma omp parallel)
▶ Symbol names get really complex due to deep template layers

June 17, 2024 10/77

Instrumentation to the Rescue

Instrumentation enables context information to reach tools.

Most profiling tools have an instrumentation interface

▶ E.g. nvtx for NVIDIA, ITT for Intel.

▶ Allows to name regions

▶ Sometimes can mark up memory operations.

KokkosP

Kokkos has its own instrumentation interface KokkosP, which can
be used to write tools.

▶ Knows about parallel dispatch

▶ Knows about allocations, deallocations and deep copy

▶ Provides region markers

▶ Leverages naming information (kernels, Views)

June 17, 2024 10/77

Instrumentation to the Rescue

Instrumentation enables context information to reach tools.

Most profiling tools have an instrumentation interface

▶ E.g. nvtx for NVIDIA, ITT for Intel.

▶ Allows to name regions

▶ Sometimes can mark up memory operations.

KokkosP

Kokkos has its own instrumentation interface KokkosP, which can
be used to write tools.

▶ Knows about parallel dispatch

▶ Knows about allocations, deallocations and deep copy

▶ Provides region markers

▶ Leverages naming information (kernels, Views)

June 17, 2024 11/77

The Kokkos Tools

There are two components to Kokkos Tools: the KokkosP
instrumentation interface and the actual Tools.

KokkosP Interface

▶ The internal instrumentation layer of Kokkos.

▶ Always available even in release builds.

▶ Zero overhead if no tool is loaded.

Kokkos Tools

▶ Tools leveraging the KokkosP instrumentation layer.
▶ Are loaded at runtime by Kokkos.

▶ Set KOKKOS TOOLS LIBS environment variable to load a shared
library.

▶ Compile tools into the executable and use the API callback
setting mechanism.

June 17, 2024 12/77

How does it Work
Download tools from
https://github.com/kokkos/kokkos-tools

▶ Tools are largely independent of the Kokkos configuration
▶ May need to use the same C++ standard library.
▶ Use the same tool for CUDA and OpenMP code for example.

▶ We recommend you build the tools with CMake

cd kokkos -tools && cmake -B build

cmake --build build --parallel 4

cmake --install build --prefix /where/to/install/the/tools

Loading Tools:

▶ Set KOKKOS TOOLS LIBS environment variable to the full path
to the shared library of the tool.

▶ Kokkos dynamically loads symbols from the library during
initialize and fills function pointers.

▶ If no tool is loaded the overhead is a function pointer
comparison to nullptr.

https://github.com/kokkos/kokkos-tools

June 17, 2024 13/77

An Example Code

View <double*> a("A",N);

View <double*, HostSpace > h_a = create_mirror_view(a);

Profiling :: pushRegion("Setup");

parallel_for("Init_A",RangePolicy <h_exec_t >(0,N),

KOKKOS_LAMBDA(int i) { h_a(i) = i; });

deep_copy(a,h_a);

Profiling :: popRegion ();

Profiling :: pushRegion("Iterate");

for(int r=0; r<10; r++) {

View <double*> tmp("Tmp",N);

parallel_scan("K_1",RangePolicy <exec_t >(0,N),

KOKKOS_LAMBDA(int i, double& lsum , bool f) {

if(f) tmp(i) = lsum;

lsum += a(i);

});

double sum;

parallel_reduce("K_2",N, KOKKOS_LAMBDA(int i, double& lsum) {

lsum += tmp(i);

},sum);

}

Profiling :: popRegion ();

June 17, 2024 14/77

An Example Code: Nvprof
Output of: nvprof ./test.cuda

Let us make one larger:
_ZN6Kokkos4Impl33cuda_parallel_launch_local_memoryINS0

_14ParallelReduceINS0_18CudaFunctorAdapterIZ4mainEUliRdE

_NS_11RangePolicyIJNS_4CudaEEEEdvEES8_NS_11InvalidTypeES7_EEEEvT_

And demangled:
void Kokkos ::Impl:: cuda_parallel_launch_local_memory

<Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter

<main ::{ lambda(int , double &)#1} , Kokkos :: RangePolicy <Kokkos ::Cuda >,

double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy > >

(Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter <

main ::{ lambda(int , double &)#1}, Kokkos :: RangePolicy <Kokkos ::Cuda >,

double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy >)

June 17, 2024 14/77

An Example Code: Nvprof
Output of: nvprof ./test.cuda

Let us make one larger:
_ZN6Kokkos4Impl33cuda_parallel_launch_local_memoryINS0

_14ParallelReduceINS0_18CudaFunctorAdapterIZ4mainEUliRdE

_NS_11RangePolicyIJNS_4CudaEEEEdvEES8_NS_11InvalidTypeES7_EEEEvT_

And demangled:
void Kokkos ::Impl:: cuda_parallel_launch_local_memory

<Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter

<main ::{ lambda(int , double &)#1} , Kokkos :: RangePolicy <Kokkos ::Cuda >,

double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy > >

(Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter <

main ::{ lambda(int , double &)#1}, Kokkos :: RangePolicy <Kokkos ::Cuda >,

double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy >)

June 17, 2024 15/77

An Example Code

Aaa this is horrifying can’t we do better??

Lets use SimpleKernelTimer from Kokkos Tools:

▶ Simple tool producing a summary similar to nvprof

▶ Good way to get a rough overview of whats going on

▶ Writes a file HOSTNAME-PROCESSID.dat per process

▶ Use the reader accompanying the tool to read the data

Usage:

git clone git@github.com:kokkos/kokkos -tools

cd kokkos -tools/profiling/simple_kernel_timer

make

export KOKKOS_TOOLS_LIBS=${PWD}/ kp_kernel_timer.so
export PATH=${PATH}:${PWD}
cd ${WORKDIR}
./text.cuda

kp_reader *.dat

June 17, 2024 15/77

An Example Code

Aaa this is horrifying can’t we do better??

Lets use SimpleKernelTimer from Kokkos Tools:

▶ Simple tool producing a summary similar to nvprof

▶ Good way to get a rough overview of whats going on

▶ Writes a file HOSTNAME-PROCESSID.dat per process

▶ Use the reader accompanying the tool to read the data

Usage:

git clone git@github.com:kokkos/kokkos -tools

cd kokkos -tools/profiling/simple_kernel_timer

make

export KOKKOS_TOOLS_LIBS=${PWD}/ kp_kernel_timer.so
export PATH=${PATH}:${PWD}
cd ${WORKDIR}
./text.cuda

kp_reader *.dat

June 17, 2024 16/77

An Example Code
Output from SimpleKernelTimer:

Will introduce Regions later.

Kernel Naming

Naming Kernels avoid seeing confusing Profiler output!

June 17, 2024 16/77

An Example Code
Output from SimpleKernelTimer:

Will introduce Regions later.

Kernel Naming

Naming Kernels avoid seeing confusing Profiler output!

June 17, 2024 17/77

Revisiting Tpetra

Lets look at Tpetra again with the Simple Kernel Timer Loaded:

At the top we get Region output:

June 17, 2024 18/77

Revisiting Tpetra

Then we get kernel output:

June 17, 2024 19/77

Memory Utilization

Understanding MemorySpace Utilization is critical

Three simple tools for understanding memory utilization:

▶ MemoryHighWaterMark: just the maximum utilization for
each memory space.

▶ MemoryUsage: Timeline of memory usage.
▶ MemoryEvents: allocation, deallocation and deep copy.

▶ Name, Memory Space, Pointer, Size

June 17, 2024 20/77

Push/Pop Regions

Adding region markers to capture more code structure
Region Markers are helpful to:

▶ Find where time is spent outside of kernels.

▶ Group Kernels which belong together.
▶ Structure code profiles.

▶ For example bracket setup or solve phase.

Simple Push/Pop interface:

Kokkos :: Profiling :: pushRegion("Label");

...

Kokkos :: Profiling :: popRegion ();

June 17, 2024 20/77

Push/Pop Regions

Adding region markers to capture more code structure
Region Markers are helpful to:

▶ Find where time is spent outside of kernels.

▶ Group Kernels which belong together.
▶ Structure code profiles.

▶ For example bracket setup or solve phase.

Simple Push/Pop interface:

Kokkos :: Profiling :: pushRegion("Label");

...

Kokkos :: Profiling :: popRegion ();

June 17, 2024 21/77

Space Time Stack

The simplest tool to leverage regions is the Space Time Stack:

▶ Bottom Up and Top Down data representation

▶ Can do MPI aggregation if compiled with MPI support

▶ Also aggregates memory utilization info.

June 17, 2024 22/77

The Delayed Error Problem

Non-Blocking Dispatch implies asynchronous error reporting!

Profiling :: pushRegion("Iterate");

for(int r=0; r<10; r++) {

parallel_for("K_1" ,2*N, KOKKOS_LAMBDA(int i) {a(i) = i;});

printf("Passed␣point␣A\n");

double sum;

parallel_reduce("K_2",N, KOKKOS_LAMBDA(int i, double& lsum) {

lsum += a(i); },sum);

}

Profiling :: popRegion ();

Output of the run:

./test.cuda

Passed point A

terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaStreamSynchronize(m_stream) error(cudaErrorIllegalAddress):

an illegal memory access was encountered

Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :312

Traceback functionality not available

Aborted (core dumped)

June 17, 2024 23/77

Kernel Logger for Debugging

Debugging with Tools

Kokkos Tools can be used to implement Debugging functionality.

The KernelLogger is a tool to localize errors and check the actual
runtime flow of a code.

▶ As other tools it inserts fences - which check for errors.

▶ Prints out Kokkos operations as they happen.

Output from the above test case with KernelLogger:
KokkosP: Allocate <Cuda > name: A pointer: 0x7f598b800000 size: 8000000

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 0

KokkosP: Kokkos ::View:: initialization [A]

KokkosP: Execution of kernel 0 is completed.

KokkosP: Entering profiling region: Iterate

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 1

KokkosP: Iterate

KokkosP: K_1

terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaDeviceSynchronize () error(cudaErrorIllegalAddress): an illegal memory access was encountered /ascldap/users/crtrott/Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :143

Traceback functionality not available

June 17, 2024 23/77

Kernel Logger for Debugging

Debugging with Tools

Kokkos Tools can be used to implement Debugging functionality.

The KernelLogger is a tool to localize errors and check the actual
runtime flow of a code.

▶ As other tools it inserts fences - which check for errors.

▶ Prints out Kokkos operations as they happen.

Output from the above test case with KernelLogger:
KokkosP: Allocate <Cuda > name: A pointer: 0x7f598b800000 size: 8000000

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 0

KokkosP: Kokkos ::View:: initialization [A]

KokkosP: Execution of kernel 0 is completed.

KokkosP: Entering profiling region: Iterate

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 1

KokkosP: Iterate

KokkosP: K_1

terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaDeviceSynchronize () error(cudaErrorIllegalAddress): an illegal memory access was encountered /ascldap/users/crtrott/Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :143

Traceback functionality not available

June 17, 2024 23/77

Kernel Logger for Debugging

Debugging with Tools

Kokkos Tools can be used to implement Debugging functionality.

The KernelLogger is a tool to localize errors and check the actual
runtime flow of a code.

▶ As other tools it inserts fences - which check for errors.

▶ Prints out Kokkos operations as they happen.

Output from the above test case with KernelLogger:
KokkosP: Allocate <Cuda > name: A pointer: 0x7f598b800000 size: 8000000

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 0

KokkosP: Kokkos ::View:: initialization [A]

KokkosP: Execution of kernel 0 is completed.

KokkosP: Entering profiling region: Iterate

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 1

KokkosP: Iterate

KokkosP: K_1

terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaDeviceSynchronize () error(cudaErrorIllegalAddress): an illegal memory access was encountered /ascldap/users/crtrott/Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :143

Traceback functionality not available

June 17, 2024 24/77

The Standard Profiling Approach

The standard Kokkos profiling approach

Understand Kokkos Utilization (SimpleKernelTimer)

▶ Check how much time in kernels

▶ Identify HotSpot Kernels

Run Memory Analysis (MemoryEvents)

▶ Are there many allocations/deallocations - 5000/s is OK.

▶ Identify temporary allocations which could be hoisted

Identify Serial Code Regions (SpaceTimeStack)

▶ Add Profiling Regions

▶ Find Regions with low fraction of time spend in Kernels

Dive into individual Kernels

▶ Use connector tools (next subsection) to analyze kernels.

▶ E.g. use roof line analysis to find underperforming code.

June 17, 2024 25/77

Exercise - Terrible MiniMD

Analyse a MiniMD variant with a serious performance issue.

Details:

▶ Location: Exercises/tools minimd/

▶ Use standard Profiling Approach.

▶ Find the code location which causes the performance issue.

▶ Run with miniMD.exe -s 20

What should happen:

▶ Performance should be

▶ About 50% of time in a Force compute kernel

▶ About 25% in neighbor list creation

June 17, 2024 26/77

Basic Tool Summary

▶ Kokkos Tools provide an instrumentation interface KokkosP
and Tools to leverage it.

▶ The interface is always available - even in release builds.

▶ Zero overhead if no tool is loaded during the run.

▶ Dynamically load a tool via setting KOKKOS TOOLS LIBS

environment variable.

▶ Set callbacks directly in code for tools compiled into the
executable.

June 17, 2024 27/77

Vendor and Independent
Profiling GUIs
Connector tools translating Kokkos instrumentation.

Learning objectives:

▶ Understand what connectors provide

▶ Understand what tools are available

June 17, 2024 28/77

Using Third Party Tools

Kokkos Tools can also be used to interface and augment existing
profiling tools.

▶ Provide context information like Kernel names

▶ Turn data collection on and off in a tool independent way

There are two ways this happens:
▶ Load a specific connector tool like nvtx-connector

▶ For example for Nsight Compute and VTune

▶ Tools themselves know about Kokkos instrumentation
▶ For example Tau

June 17, 2024 29/77

Connecting to Tools - Nsight Compute

Use the nvtx-connector to interact with NVIDIA tools

Translates KokkosP hooks into NVTX instrumentation

▶ Works with all NVIDIA tools which understand NVTX

▶ Translates Regions and Kernel Dispatches

Initially wasn’t very useful since regions are shown independently of
kernels

But CUDA 11 added renaming of Kernels based on Kokkos
User feedback!

June 17, 2024 29/77

Connecting to Tools - Nsight Compute

Use the nvtx-connector to interact with NVIDIA tools

Translates KokkosP hooks into NVTX instrumentation

▶ Works with all NVIDIA tools which understand NVTX

▶ Translates Regions and Kernel Dispatches

Initially wasn’t very useful since regions are shown independently of
kernels

But CUDA 11 added renaming of Kernels based on Kokkos
User feedback!

June 17, 2024 29/77

Connecting to Tools - Nsight Compute

Use the nvtx-connector to interact with NVIDIA tools

Translates KokkosP hooks into NVTX instrumentation

▶ Works with all NVIDIA tools which understand NVTX

▶ Translates Regions and Kernel Dispatches

Initially wasn’t very useful since regions are shown independently of
kernels

But CUDA 11 added renaming of Kernels based on Kokkos
User feedback!

June 17, 2024 30/77

Connecting to Tools - Nsight Compute

To enable kernel renaming you need to:

▶ Load the nvprof-connector via setting KOKKOS TOOLS LIBS in
the run configuration.

▶ Go to Tools > Preferences > Rename CUDA Kernels by

NVTX and set it on.

This does a few things:

▶ User Labels are now used as the primary name.
▶ You can still expand the row to see which actual kernels are

grouped under it.
▶ For example if multiple kernels have the same label

▶ The bars are now named Label/GLOBAL FUNCTION NAME.

June 17, 2024 31/77

Connecting to Tools - Vtune
To enable kernel renaming you need to:

▶ Load the vtune-connector via setting KOKKOS TOOLS LIBS in
the run configuration.

▶ Choose the Frame Domain / Frame / Function / Call

Stack grouping in the bottom up panel.

This does a few things:

▶ User Labels are now used as the primary name.

▶ You can expand to see individual kernel invocations

▶ You can dive further into an individual kernel invocation to
see function calls within.

▶ Focus in on a kernel or individual invocation and do more
detailed analysis.

Also available: vtune-focused-connector:

▶ Used in conjunction with kernel-filter tool.

▶ Restricts profiling to a subset of kernels.

June 17, 2024 32/77

Connecting to Tools - Vtune

June 17, 2024 33/77

Connecting to Tools - Tau

TAU is a widely used Profiling Tool supporting most
platforms.

Tau supports:

▶ profiling

▶ sampling

▶ tracing

You do not need a connector tool for Tau!

To enable TAU’s Kokkos integration simply

▶ Download and install TAU

▶ Launch your program with tau exec (which will set
KOKKOS TOOLS LIBS for you)

For questions contact tau-users@cs.uoregon.edu

https://www.cs.uoregon.edu/research/tau/downloads.php

June 17, 2024 34/77

Connecting to Tools - Tau

Tau will use Kokkos instrumentation to display names and regions
as defined by Kokkos:

June 17, 2024 35/77

Timemory

Timemory is a modular toolkit provided by NERSC that aims to
simplify the creation of performance analysis tools by providing a
common design pattern of classes which encapsulate how to
perform a start+stop/sample/entry of ”something”. Each of these
components (from timers to HW counters to other profilers) can
be used individually with zero overhead from the library. It also
provides wrappers and utilities for handling multiple components
generically, data storage, writing JSON, comparing outputs, etc.

As a by-product this design, the library provides an large set of
individual profiling libraries whose usage comes with the same ease
as using the simple-timer tool: setting KOKKOS TOOLS LIBS.

https://github.com/NERSC/timemory

June 17, 2024 36/77

Timemory

▶ It also provides novel capabilities other tools don’t, like
simultaneous CPU/GPU roofline modeling.

▶ The usage here is simple:
▶ spack install timemory +kokkos_tools +kokkos_build_config

[+mpi +cuda +cupti +papi +caliper ...]

▶ Wait 3 months while spack builds every software package ever
from scratch

▶ In <PREFIX>/lib/timemory/kokkos_tools/ there will be 5 to 30+
Kokkos profiling libraries

▶ Roofline modeling requires one additional setup
▶ timemory-roofline -T "TITLE"-t gpu_roofline -- <CMD>

▶ Where everything after -- is just running your application

▶ For more information:
https://github.com/NERSC/timemory

https://github.com/NERSC/timemory

June 17, 2024 37/77

Timemory

June 17, 2024 38/77

Other

▶ Caliper - Broad program analysis capabilities. UVM Profiling.

▶ HPCToolkit - Not a connector, but a sampling tool with great
Kokkos support

June 17, 2024 39/77

Connector Summary

▶ Connectors inject Kokkos specific information into vendor and
academic tools.

▶ Helps readability of profiles.

▶ Removes your need to put vendor specific instrumentation in
your code.

▶ Growing list of tools support Kokkos natively.

June 17, 2024 40/77

Tuning
Using Kokkos’ autotuning hooks.

Learning objectives:

▶ Why do we need tuning?

▶ What are Input and Output Variables?

▶ How to register parameters for tuning.

▶ Using the Apollo Tuner.

June 17, 2024 41/77

Why Tuning?

Lets look at the canonical implementation for SPMV in Kokkos:

int rows_per_team = ...;

parallel_for("SPMV",TeamPolicy <>(nrows/rows_per_team ,

team_size ,vector_length),

KOKKOS_LAMBDA(auto const team_t& team) {

int start_row = team.league_rank ()* rows_per_team;

parallel_for(

TeamThreadRange(team ,start_row ,start_row+rows_per_team),

[&](int row) {

int idx_begin = a.offsets(row);

int idx_end = a.offsets(row +1);

parallel_reduce(ThreadVectorRange(team ,idx_begin ,idx_end),

[&](int i, double& lsum) {

lsum += A.value(i) * x(A.idx(i));

},y(row));

});

});

June 17, 2024 42/77

Why Tuning?

There are three free parameters which determine performance:
rows per team team size vector length

These parameters depend most on three factors:

▶ Which architecture are you on?

▶ How many rows are in A?

▶ How many non-zeros are in A?

June 17, 2024 43/77

Why Tuning
Finding the right parameters is a daunting task.
Heuristics are possible, but they have to change all the time

▶ KokkosKernels’ heuristic for NVIDIA K80 failed on V100

▶ Now AMD GPUs and Intel GPUs are coming.

What if you could auto tune these parameters instead?

What information would you need to provide and what comes out?
Need:

▶ Context information, such as problem sizes.

▶ To be able to provide multiple inputs of different types.

▶ To tune multiple correlated parameters.

▶ Different tuning strategies in different areas.

Kokkos Tuning

Kokkos Tuning provides a flexible runtime auto tuning interface.

June 17, 2024 43/77

Why Tuning
Finding the right parameters is a daunting task.
Heuristics are possible, but they have to change all the time

▶ KokkosKernels’ heuristic for NVIDIA K80 failed on V100

▶ Now AMD GPUs and Intel GPUs are coming.

What if you could auto tune these parameters instead?

What information would you need to provide and what comes out?
Need:

▶ Context information, such as problem sizes.

▶ To be able to provide multiple inputs of different types.

▶ To tune multiple correlated parameters.

▶ Different tuning strategies in different areas.

Kokkos Tuning

Kokkos Tuning provides a flexible runtime auto tuning interface.

June 17, 2024 43/77

Why Tuning
Finding the right parameters is a daunting task.
Heuristics are possible, but they have to change all the time

▶ KokkosKernels’ heuristic for NVIDIA K80 failed on V100

▶ Now AMD GPUs and Intel GPUs are coming.

What if you could auto tune these parameters instead?

What information would you need to provide and what comes out?
Need:

▶ Context information, such as problem sizes.

▶ To be able to provide multiple inputs of different types.

▶ To tune multiple correlated parameters.

▶ Different tuning strategies in different areas.

Kokkos Tuning

Kokkos Tuning provides a flexible runtime auto tuning interface.

June 17, 2024 43/77

Why Tuning
Finding the right parameters is a daunting task.
Heuristics are possible, but they have to change all the time

▶ KokkosKernels’ heuristic for NVIDIA K80 failed on V100

▶ Now AMD GPUs and Intel GPUs are coming.

What if you could auto tune these parameters instead?

What information would you need to provide and what comes out?
Need:

▶ Context information, such as problem sizes.

▶ To be able to provide multiple inputs of different types.

▶ To tune multiple correlated parameters.

▶ Different tuning strategies in different areas.

Kokkos Tuning

Kokkos Tuning provides a flexible runtime auto tuning interface.

June 17, 2024 44/77

Tuning a Parameter

Kokkos’ Tuning Infrastructure is very flexible.

Which makes it right now more complex than is desirable.
We will glance over some aspects here and give you the most
important info for simple tuning tasks.

Kokkos Tuning has four fundamental concepts:

▶ Input-Types: Descriptors for the type of input information
for tuning tasks

▶ Output-Types: Descriptors of output variables for tuning
tasks

▶ Variable-Values: Instances of Input-Types or
Output-Types

▶ Contexts: Marker for tuning scopes.

June 17, 2024 44/77

Tuning a Parameter

Kokkos’ Tuning Infrastructure is very flexible.

Which makes it right now more complex than is desirable.
We will glance over some aspects here and give you the most
important info for simple tuning tasks.

Kokkos Tuning has four fundamental concepts:

▶ Input-Types: Descriptors for the type of input information
for tuning tasks

▶ Output-Types: Descriptors of output variables for tuning
tasks

▶ Variable-Values: Instances of Input-Types or
Output-Types

▶ Contexts: Marker for tuning scopes.

June 17, 2024 44/77

Tuning a Parameter

Kokkos’ Tuning Infrastructure is very flexible.

Which makes it right now more complex than is desirable.
We will glance over some aspects here and give you the most
important info for simple tuning tasks.

Kokkos Tuning has four fundamental concepts:

▶ Input-Types: Descriptors for the type of input information
for tuning tasks

▶ Output-Types: Descriptors of output variables for tuning
tasks

▶ Variable-Values: Instances of Input-Types or
Output-Types

▶ Contexts: Marker for tuning scopes.

June 17, 2024 45/77

Types
The types for input variables and output variables describe what
makes sense to do with a variable

▶ Not types in the C++ sense

▶ These types can contain runtime information such as
candidate sets.

Huh? Where is this coming from?
Think about the different optimization spaces of variables:

▶ Discrete sets, only specific values make sense: e.g. vector
length 2, 4, 8, 16

▶ Continuous ranges, all values in a range 0− N are valid.

▶ Statistical semantics, is the search space logarithmic or linear?

Often you’ll have a simple case, for which we will provide helper
functions.
Tuning Variables (both input and output) need to
accomodate these situations.

We will discuss this later

June 17, 2024 45/77

Types
The types for input variables and output variables describe what
makes sense to do with a variable

▶ Not types in the C++ sense

▶ These types can contain runtime information such as
candidate sets.

Huh? Where is this coming from?
Think about the different optimization spaces of variables:

▶ Discrete sets, only specific values make sense: e.g. vector
length 2, 4, 8, 16

▶ Continuous ranges, all values in a range 0− N are valid.

▶ Statistical semantics, is the search space logarithmic or linear?

Often you’ll have a simple case, for which we will provide helper
functions.

Tuning Variables (both input and output) need to
accomodate these situations.

We will discuss this later

June 17, 2024 45/77

Types
The types for input variables and output variables describe what
makes sense to do with a variable

▶ Not types in the C++ sense

▶ These types can contain runtime information such as
candidate sets.

Huh? Where is this coming from?
Think about the different optimization spaces of variables:

▶ Discrete sets, only specific values make sense: e.g. vector
length 2, 4, 8, 16

▶ Continuous ranges, all values in a range 0− N are valid.

▶ Statistical semantics, is the search space logarithmic or linear?

Often you’ll have a simple case, for which we will provide helper
functions.
Tuning Variables (both input and output) need to
accomodate these situations.

We will discuss this later

June 17, 2024 46/77

Tuning a single variable

Kokkos Provided API will be highlighted, and is in the namespace
Kokkos::Tools::Experimental

Start by creating the types (helper functions discussed later):

std::vector <int64_t > candidates = {0, 3, 7, 11};

size_t tuning_candidate_type_id =

create_tuning_output_type("values",candidates);

size_t tuning_input_type_id =

create_tuning_input_type("kernels");

Next create variables for the inputs:

VariableValue input_A =

make_variable_value(tuning_input_type_id ,"A");

VariableValue input_B =

make_variable_value(tuning_input_type_id ,"B");

The actual tuning region is scoped through a context:

size_t context_1 = get_new_context_id ();

begin_context(context_1);

// This is the tuned region

end_context(context_1);

June 17, 2024 47/77

Tuning a single variable

The context scope defines both the timing for the tuning operation
and the scope in which to set input variables and obtain output
(tuned) variables:

size_t context_1 = get_new_context_id ();

begin_context(context_1);

set_input_values(context_1 , 1, &input_value_A);

request_output_values(context_1 , 1, &tuned_value);

end_context(context_1);

In this case we used a Categorical input value

▶ Essentially just marks a code path as used here.
▶ But for SPMV optimal vector length depends on row lengths!

▶ If there is only 1 matrix: categorical works
▶ Else need numerical input value, where output mapping

depends on input potentially not just as a lookup.

We also only used one input and one output value:

▶ Interface takes pointers to arrays for multiple VariableValue!

June 17, 2024 47/77

Tuning a single variable

The context scope defines both the timing for the tuning operation
and the scope in which to set input variables and obtain output
(tuned) variables:

size_t context_1 = get_new_context_id ();

begin_context(context_1);

set_input_values(context_1 , 1, &input_value_A);

request_output_values(context_1 , 1, &tuned_value);

end_context(context_1);

In this case we used a Categorical input value

▶ Essentially just marks a code path as used here.
▶ But for SPMV optimal vector length depends on row lengths!

▶ If there is only 1 matrix: categorical works
▶ Else need numerical input value, where output mapping

depends on input potentially not just as a lookup.

We also only used one input and one output value:

▶ Interface takes pointers to arrays for multiple VariableValue!

June 17, 2024 47/77

Tuning a single variable

The context scope defines both the timing for the tuning operation
and the scope in which to set input variables and obtain output
(tuned) variables:

size_t context_1 = get_new_context_id ();

begin_context(context_1);

set_input_values(context_1 , 1, &input_value_A);

request_output_values(context_1 , 1, &tuned_value);

end_context(context_1);

In this case we used a Categorical input value

▶ Essentially just marks a code path as used here.
▶ But for SPMV optimal vector length depends on row lengths!

▶ If there is only 1 matrix: categorical works
▶ Else need numerical input value, where output mapping

depends on input potentially not just as a lookup.

We also only used one input and one output value:

▶ Interface takes pointers to arrays for multiple VariableValue!

June 17, 2024 48/77

Helper Functions

The code we demonstrated before used helper functions. We’ll
show their implementation to help demonstrate some details.

template <class T>

size_t create_tuning_output_type(

const char* name ,

std::vector <T>& candidate_values) {

using Kokkos ::Tools :: Experimental;

VariableInfo tuningVariableInfo;

tuningVariableInfo.category =

StatisticalCategory :: kokkos_value_categorical;

tuningVariableInfo.type = std:: is_integral <T>:: value ?

ValueType :: kokkos_value_int64 :

ValueType :: kokkos_value_double;

tuningVariableInfo.valueQuantity =

CandidateValueType :: kokkos_value_set;

tuningVariableInfo.candidates = make_candidate_set(

candidate_values.size(),

candidate_values.data ());

return declare_output_type(name , tuningVariableInfo);

}

June 17, 2024 49/77

Helper Functions Continued

size_t create_tuning_input_type(const char* name) {

using Kokkos ::Tools :: Experimental;

VariableInfo info;

info.category = StatisticalCategory :: kokkos_value_categorical;

info.type = ValueType :: kokkos_value_string;

info.valueQuantity = kokkos_value_unbounded;

return declare_input_type(name , info);

}

June 17, 2024 50/77

Apollo: a Prototype Tuning Tool

Apollo: A model driven auto tuning tool

▶ Most feature-rich Tuning tool currently targeting this
interface.

▶ Builds decision tree based models.

▶ Can retrain models if observed and expected performance
deviate.

▶ Can save models for subsequent runs.

How to use Apollo:

export KOKKOS_TOOLS_LIBS=${APOLLO_PATH }/libapollo -tuner.so
./ Executable.exe ARGS

June 17, 2024 50/77

Apollo: a Prototype Tuning Tool

Apollo: A model driven auto tuning tool

▶ Most feature-rich Tuning tool currently targeting this
interface.

▶ Builds decision tree based models.

▶ Can retrain models if observed and expected performance
deviate.

▶ Can save models for subsequent runs.

How to use Apollo:

export KOKKOS_TOOLS_LIBS=${APOLLO_PATH }/libapollo -tuner.so
./ Executable.exe ARGS

June 17, 2024 51/77

Some Results from the KokkosKernels Test Suite

June 17, 2024 52/77

Rules for Tuning

▶ Load the output value array you pass to request output values
with sane defaults. If the tool doesn’t overwrite them, your
program shouldn’t crash. This protects you from a tool-free
situation

▶ No choice from your set/range of candidates should crash
your program. Options can be slow, but must all be functional

▶ Call set input values and request output values only once per
context.

June 17, 2024 53/77

Future: Built-in Tuning

For the future we plan on allowing automatic internal tuning of
things like:

▶ Team Size and Vector Length for TeamPolicy

▶ Tile Sizes for MDRangePolicy

▶ CUDA block size of RangePolicy

▶ Occupancy of kernels.

parallel_for("A",TeamPolicy <>(N,AUTO ,AUTO), ...);

parallel_for("B",MDRangePolicy <>({0,0},{N0,N1},{AUTO ,AUTO}), ...);

But often more context is needed:

▶ Kokkos on its own has limited information: Label, Iteration
Range, and Kernel Type ID.

▶ SPMV: can’t distinguish two matrices with same row count
but vastly different row lengths.

▶ Stencil: can’t distinguish runtime stencil depth.

June 17, 2024 53/77

Future: Built-in Tuning

For the future we plan on allowing automatic internal tuning of
things like:

▶ Team Size and Vector Length for TeamPolicy

▶ Tile Sizes for MDRangePolicy

▶ CUDA block size of RangePolicy

▶ Occupancy of kernels.

parallel_for("A",TeamPolicy <>(N,AUTO ,AUTO), ...);

parallel_for("B",MDRangePolicy <>({0,0},{N0,N1},{AUTO ,AUTO}), ...);

But often more context is needed:

▶ Kokkos on its own has limited information: Label, Iteration
Range, and Kernel Type ID.

▶ SPMV: can’t distinguish two matrices with same row count
but vastly different row lengths.

▶ Stencil: can’t distinguish runtime stencil depth.

June 17, 2024 54/77

Tuning Summary

Kokkos Tuning Hooks enable more performance portability

▶ Avoid figuring out the right heuristic for every platform.

▶ Will be more valuable when targeting Intel, NVIDIA and AMD
GPUs as well as ARM, Intel, IBM and AMD CPUs!

The app provides input variables to describe the context

▶ Input variables are descriptors of the problem scope.

▶ Categorical, Ranges, Sets are possible.

▶ Describe scaling for Ranges such as logarithmic or linear for
categorizing problems.

The app requests output variables

▶ Same type system as input variables.

▶ Enables the description of the search space for tools.

June 17, 2024 55/77

Custom Tools
How to write your own tools for the KokkosP interface.

Learning objectives:

▶ The KokkosP hooks

▶ Callback registration inside the application

▶ Throwaway debugging tools

June 17, 2024 56/77

Motivation

KokkosTools also allow you to write your own tools!

▶ Implement a simple C interface.

▶ Only implement what you want to use!

▶ Full access to the entire instrumentation.

But why would I want to do that?

▶ Profiling tools which know about your code structure and
properly categorize information.

▶ Add in situ analysis hooked into your CI system.

▶ Write debugging tools specific for your framework.

▶ Write throwaway debugging tools for larger apps, instead of
recompiling.

We will first walk through the hooks and then illustate with an
example.

June 17, 2024 56/77

Motivation

KokkosTools also allow you to write your own tools!

▶ Implement a simple C interface.

▶ Only implement what you want to use!

▶ Full access to the entire instrumentation.

But why would I want to do that?

▶ Profiling tools which know about your code structure and
properly categorize information.

▶ Add in situ analysis hooked into your CI system.

▶ Write debugging tools specific for your framework.

▶ Write throwaway debugging tools for larger apps, instead of
recompiling.

We will first walk through the hooks and then illustate with an
example.

June 17, 2024 57/77

Infrastructure and Initialization

Some Helper Classes

// Contains a unique device identifier.

struct KokkosPDeviceInfo { uint32_t deviceID; };

// Unique name of execution and memory spaces.

struct SpaceHandle { char name [64]; };

Initialization and Finalization hooks
extern "C" void kokkosp_init_library(

int loadseq , uint64_t version , uint32_t num_devinfos ,

KokkosPDeviceInfo* devinfos);

▶ Called during Kokkos::initialize

▶ Provides device ids used subsequently.

▶ Use this call to setup tool infrastructure.

extern "C" void kokkosp_finalize_library ();

▶ Called during Kokkos::finalize

▶ Usually used to output results.

June 17, 2024 57/77

Infrastructure and Initialization

Some Helper Classes

// Contains a unique device identifier.

struct KokkosPDeviceInfo { uint32_t deviceID; };

// Unique name of execution and memory spaces.

struct SpaceHandle { char name [64]; };

Initialization and Finalization hooks
extern "C" void kokkosp_init_library(

int loadseq , uint64_t version , uint32_t num_devinfos ,

KokkosPDeviceInfo* devinfos);

▶ Called during Kokkos::initialize

▶ Provides device ids used subsequently.

▶ Use this call to setup tool infrastructure.

extern "C" void kokkosp_finalize_library ();

▶ Called during Kokkos::finalize

▶ Usually used to output results.

June 17, 2024 58/77

Parallelism Hooks

extern "C" {

void kokkosp_begin_parallel_for(const char* name ,

uint32_t devid ,

uint64_t* kernid);

void kokkosp_begin_parallel_reduce(const char* name ,

uint32_t devid ,

uint64_t* kernid);

void kokkosp_begin_parallel_scan(const char* name ,

uint32_t devid ,

uint64_t* kernid);

};

▶ Called when a parallel dispatch is initiated.

▶ name is the user provided string or a typeid.

▶ kernid is set by the tool to match up with the end call.

extern "C" void kokkosp_end_parallel_for(uint64_t kernid);

extern "C" void kokkosp_end_parallel_reduce(uint64_t kernid);

extern "C" void kokkosp_end_parallel_scan(uint64_t kernid);

▶ Called when a parallel dispatch is done.

▶ kernid is the value the begin call set.

June 17, 2024 59/77

Memory Hooks

extern "C" void kokkosp_begin_deep_copy(

SpaceHandle dst_hndl , const char* dst_name , const void* dst_ptr ,

SpaceHandle src_hndl , const char* src_name , const void* src_ptr ,

uint64_t size);

▶ Called when a deep copy is started.

▶ Provides space handles, names, ptrs and size of allocations.

extern "C" void kokkosp_end_deep_copy ();

▶ Called when a deep copy is done.

extern "C" void kokkosp_allocate_data(SpaceHandle hndl ,

const char* name , void* ptr , uint64_t size);

extern "C" void kokkosp_deallocate_data(SpaceHandle hndl ,

const char* name , void* ptr , uint64_t size);

▶ Called when allocating or deallocating data.

June 17, 2024 60/77

Callback Registration

Sometimes it is useful to build a tool into an executable.

Callback Registration

Kokkos Tools provide a callback setting system to set tool
callbacks from within the application.

Takes the form of:
void set_HOOK_callback(HOOK_FUNCTION_PTR callback);

Where HOOK is one of
init finalize push_region pop_region begin_parallel_for

end_parallel_for begin_parallel_reduce end_parallel_reduce

begin_parallel_scan end_parallel_scan begin_fence end_fence

allocate_data deallocate_data begin_deep_copy end_deep_copy

One can also store a callback set, reload it and pause tool calls

EventSet get_callbacks (); void set_callbacks(EventSet);

void pause_tools (); void resume_tools ();

June 17, 2024 61/77

Callback Registration

Example:

#include <Kokkos_Core.hpp >

using Kokkos :: Profiling;

using Kokkos ::Tools :: Experimental;

using Kokkos;

void kokkosp_allocate_data(SpaceHandle space ,

const char* label , const void* const ptr , uint64_t size) {

printf("Allocate:␣[%s]␣%lu\n",label ,size);

}

void kokkosp_deallocate_data(SpaceHandle space ,

const char* label , const void* const ptr , uint64_t size) {

printf("Deallocate:␣[%s]␣%lu\n",label ,size);

}

int main(int argc , char* argv []) {

initialize(argc , argv);

set_allocate_data_callback(kokkosp_allocate_data);

set_deallocate_data_callback(kokkosp_deallocate_data);

...

finalize ();

}

June 17, 2024 62/77

Example: Throwaway Debugging Tool

Sometimes you just need to know what is in a View before and
after entering a kernel for the 5th time:

▶ The view is on the GPU and its on some rank of a large run.

▶ Recompiling the app takes hours.

Simple Kokkos tool could do it!
What we need:

▶ Store the pointer and size of the view with a specific label
when it gets allocated.

▶ Print the View when entering a kernel and before exiting it.

▶ Make sure the view didn’t get deallocated in the mean time.

June 17, 2024 62/77

Example: Throwaway Debugging Tool

Sometimes you just need to know what is in a View before and
after entering a kernel for the 5th time:

▶ The view is on the GPU and its on some rank of a large run.

▶ Recompiling the app takes hours.

Simple Kokkos tool could do it!
What we need:

▶ Store the pointer and size of the view with a specific label
when it gets allocated.

▶ Print the View when entering a kernel and before exiting it.

▶ Make sure the view didn’t get deallocated in the mean time.

June 17, 2024 63/77

Example: Throwaway Debugging Tool

Store the pointer:

int* data; uint64_t N; int count;

extern "C" void kokkosp_allocate_data(SpaceHandle handle ,

const char* name , void* ptr , uint64_t size) {

if(strcmp(name ,"PuppyWeights")==0) {

data = (int*)ptr +32; N = size; count = 0;

}}

Print the View:
void print_data () {

std::vector <int > hcpy(N);

cudaMemcpy(hcpy.data(),data ,N*sizeof(int));

for(int i=0;i<N;++i) printf("(%d␣%d)",i,hcpy[i]); printf("\n");

}

extern "C" void kokkosp_begin_parallel_for(const char* name ,

uint32_t , uint64_t* kernid) {

if(strcmp(name ,"PuppyOnCouch")==0) {

count ++; if(count ==5) print_data (); *kernid =1;

} else { *kernid = 0; }

}

extern "C" void kokkosp_end_parallel_for(uint64_t kernid) {

if(kernid == 1 && count ==5) print_data ();

}

June 17, 2024 64/77

TestCode

#include <Kokkos_Core.hpp >

#include <cmath >

int main(int argc , char* argv []) {

Kokkos :: initialize(argc , argv);

{

int N = argc > 1 ? atoi(argv [1]) : 12;

int R = argc > 2 ? atoi(argv [2]) : 10;

Kokkos ::View <double*> a("PuppyWeights",N);

for(int r=0; r<R; r++) {

Kokkos :: parallel_for("PuppyOnCouch",N,KOKKOS_LAMBDA(int i)

{ a(i) = i*r; });

}

}

Kokkos :: finalize ();

}

Output:

(0 0) (1 4) (2 8) (3 12)

(0 0) (1 5) (2 10) (3 15)

June 17, 2024 65/77

Hooks Summary

Implementing your own tools is easy!

▶ Simply implement the needed C callback functions.

▶ Only implement what you need.

▶ Goal is to make it simple enough so that one-off tools are a
viable debugging help.

Callback registration for applications

▶ The callback registration system allows to embed tools in
applications.

▶ Store callback sets and restore them.

June 17, 2024 66/77

Clang Based Static Analysis

Goals of this section

▶ Introduce The Possibility Of Kokkos Specific Warnings

▶ Show The Three Classes Of Errors We Can Detect

▶ Show You How To Use Them

▶ List Current/Planned Warnings

June 17, 2024 67/77

Kokkos Specific Warnings

Can We Have Kokkos Specific Warnings even if the current
configuration compiles?

void fooOOPS(int i) { printf("%i\n", i); }

int main(int argc , char **argv) {

// Initialize ...

Kokkos :: parallel_for (15, KOKKOS_LAMBDA(int i) {

fooOOPS(i);

});

}

// Finalize ...

}

Answer: Yes, now we can.

June 17, 2024 67/77

Kokkos Specific Warnings

Can We Have Kokkos Specific Warnings even if the current
configuration compiles?

void fooOOPS(int i) { printf("%i\n", i); }

int main(int argc , char **argv) {

// Initialize ...

Kokkos :: parallel_for (15, KOKKOS_LAMBDA(int i) {

fooOOPS(i);

});

}

// Finalize ...

}

Answer: Yes, now we can.

June 17, 2024 68/77

void fooOOPS(int i) { printf("%i\n", i); }

int main(int argc , char **argv) {

// Initialize ...

Kokkos :: parallel_for (15, KOKKOS_LAMBDA(int i) {

fooOOPS(i);

});

}

// Finalize ...

}

Using clang-tidy
> clang -tidy -checks=-*,kokkos -* file.cpp

<file:line:col > warning: Function ’fooOOPS ’ called in

a lambda was missing

KOKKOS_X_FUNCTION annotation.

fooOOPS(i);

^

<file:line:col > note: Function ’fooOOPS ’ was delcared here

void fooOOPS(int i) { printf("%i\n", i); }

June 17, 2024 69/77

Types Of Errors

Could become compiler errors
void fooOOPS(int i) { printf("%i\n", i);}

KOKKOS_FUNCTION void foo(){ fooOOPS (1);}

Could become runtime crashes
struct bar {

int baz;

void foo (){ parallel_for (15, KOKKOS_LAMBDA(int){baz ;});}

};

Will produce incorrect results
double foo(){

double d;

auto func = KOKKOS_LAMBDA(int i, double sum){sum += i;};

parallel_reduce (15, func , d);

return d;

}

June 17, 2024 70/77

Getting Started

How to use

▶ Code: kokkos/llvm-project

▶ Build: llvm build instructions

▶ Run: The same way you would normally use clang-tidy,
except with kokkos checks enabled.

https://github.com/kokkos/llvm-project
https://llvm.org/docs/CMake.html

June 17, 2024 71/77

Using Kokkos Checks

Usage Examples: With Cmake

#! /bin/bash

cmake \

/path/to/kokkos/code/you/want/to/build \

-DKokkos_ROOT="/path/to/installed/kokkos" \

-DCMAKE_EXPORT_COMPILE_COMMANDS=ON \

-DCMAKE_CXX_CLANG_TIDY="clang -tidy;-checks=kokkos -*"

The above will:

▶ make a compile commands.json file that clang-tidy and clangd
can use

▶ invoke clang-tidy on all of the files compiled by the CXX
compiler

If the kokkos clang-tidy is not in the path you will need to put the
full path to it.

June 17, 2024 72/77

Using Kokkos Checks

Usage Examples: Invoke clang-tidy directly

> clang -tidy -checks=-*,kokkos -* file.cpp

<file:line:col > warning: Function ’fooOOPS ’ called in

a lambda was missing

KOKKOS_X_FUNCTION annotation.

fooOOPS(i);

^

<file:line:col > note: Function ’fooOOPS ’ was delcared here

void fooOOPS(int i) { printf("%i\n", i); }

Assumes that we have the compile commands.json file from the
previous slide either in the current directory or in a parent directory.

June 17, 2024 73/77

Using Kokkos Checks

Usage Examples: As part of clangd

void fooOOPS(int i) { printf("%i\n", i); }

int main(int argc , char **argv) {

// Initialize ...

Kokkos :: parallel_for (15, KOKKOS_LAMBDA(int i) {

fooOOPS(i); Function ’fooOOPS ’ called in lambda ...

});

}

// Finalize ...

}

clangd is a language server that can work with many editors via a
plugin.

Video Demo Of Clang Tools

https://clangd.llvm.org/
https://clangd.llvm.org/
https://github.com/kokkos/kokkos-tutorials/blob/main/LectureSeries/KokkosTutorial_07_ClangSA.mp4

June 17, 2024 74/77

Existing and Planned Checks

State of The Tool
Current Checks

▶ Ensure KOKKOS FUNCTION (the one you saw here)

▶ KOKKOS LAMBDA captures implicit this

Beta and planned checks

▶ parallel reduce functor takes argument by reference

▶ Nested reference lambda capture const behavior

▶ Unallowed types like std::vector in Kokkos contexts

▶ Force users to provide names for kernels

Your Issue?

▶ Send us your requests: kokkos/llvm-project

https://github.com/kokkos/llvm-project

June 17, 2024 75/77

Module 7: Summary

Kokkos Tools:

▶ Kokkos Tools provide an instrumentation interface KokkosP
and Tools to leverage it.

▶ The interface is always available - even in release builds.

▶ Zero overhead if no tool is loaded during the run.

▶ Dynamically load a tool via setting KOKKOS TOOLS LIBS

environment variable.

▶ Set callbacks in code for tools compiled into the executable.

Kokkos Connector Tools:

▶ Connectors inject Kokkos specific information into vendor and
academic tools.

▶ Helps readability of profiles.

▶ Removes need to put vendor specific instrumentation in codes.

▶ Growing list of tools support Kokkos natively.

June 17, 2024 76/77

Module 7: Summary

Kokkos Tuning Hooks enable more performance portability

▶ Avoid figuring out the right heuristic for every platform.

▶ Input variables descripte the problem scope.

▶ Output variables descripe the search space.

Implementing your own tools is easy!

▶ Simply implement the needed C callback functions.

▶ Only implement what you need.

▶ The callback registration system allows to embed tools in
applications.

Static Analysis

▶ Have semantic checks going beyond C++ errors.

▶ Integrates into your editors.

June 17, 2024 77/77

Module 8: Outlook (09/04)

KokkosKernels Dense Linear Algebra
KokkosKernels Sparse Linear Algebra
KokkosKernels Sparse Solvers
KokkosKernels Graph Kernels

Don’t Forget: Join our Slack Channel and drop into our office
hours on Tuesday.

Updates at: kokkos.link/the-lectures-updates

Recordings/Slides: kokkos.link/the-lectures

https://kokkos.link/the-lectures-updates
https://kokkos.link/the-lectures

