The Kokkos Lectures

Module 4: Hierarchical Parallelism

June 17, 2024

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
SAND2020-7475 PE

Welcome to Kokkos

Online Resources:
» https://github.com/kokkos:
» Primary Kokkos GitHub Organization
» https://github.com/kokkos/kokkos-tutorials/wiki/
Kokkos-Lecture-Series:
» Slides, recording and Q&A for the Lectures
> https://kokkos.github.io/kokkos-core-wiki:
> Wiki including API reference
> https://kokkosteam.slack.com:

» Slack channel for Kokkos.
> Please join: fastest way to get your questions answered.
» Can whitelist domains, or invite individual people.

June 17, 2024

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://kokkos.github.io/kokkos-core-wiki
https://kokkosteam.slack.com

Lecture Series Outline

07/17 Module 1: Introduction, Building and Parallel Dispatch
07/24 Module 2: Views and Spaces

07/31 Module 3: Data Structures + MultiDimensional Loops
08/07 Module 4: Hierarchical Parallelism

08/14 Module 5: Tasking, Streams and SIMD

08/21 Module 6: Internode: MPI and PGAS

08/28 Module 7: Tools: Profiling, Tuning and Debugging
09/04 Module 8: Kernels: Sparse and Dense Linear Algebra
09/11 Reserve Day

vVvvyVvVvYvVvyVvYVYyYvYyy

June 17,

Module 3: Summary

MDRangePolicy
» Tightly nested loops (similar to OpenMP collapse clause)
> Available with parallel _for and parallel_reduce
> Tiling strategy over the iteration space

» Control iteration pattern at compile time

View<double**,LayoutLeft> A("A",NO,N1);
parallel_for ("Label",
MDRangePolicy<Rank<2,Iterate::Left,Iterate::Left>>(
{0,0},{NO,N1}),
KOKKOS_LAMBDA (int i, int j) {
A(i,j) = 1000.0 * i + 1.0%j;
1)

June 17, 2024

Module 3: Summary

Subviews

Taking slices of Views
Similar capability as provided by Matlab, Fortran, or Python
Prefer the use of auto for the type

View<int ***> v("v", NO, N1, N2);
auto sv = subview(v, i0, ALL, make_pair(start,end));

Unmanaged Views

>
>
|

June 17

Interoperability with externally allocated arrays
No reference counting, memory not deallocated at destruction

User is responsible for insuring proper dynamic and/or static
extents, MemorySpace, Layout, etc.

View<float**, LayoutRight, HostSpace>
v_unmanaged (raw_ptr, NO, N1);

2024

Module 3: Summary

Atomic operations

» Atomic functions available on the host or the device (e.g.
Kokkos: :atomic_add)

> Use Atomic memory trait for atomic accesses on Views

View<int*> v("v", NO);
View<int*, MemoryTraits<Atomic>> v_atomic = v;

> Use ScatterView for scatter-add parallel pattern

Dual Views

» For managing data synchronization between host and device
» Helps in codes with no holistic view of data flow
» In particular when porting codes incrementally

June 17, 2024

Module 4: Hierarchical Parallelism (08/07)

Hierarchical Parallelism
> How to leverage more parallelism through nested loops.

» The concept of Thread-Teams and Vectorlength.

Scratch Space
» Getting temporary workspace in kernels.

» Leveraging GPU Shared Memory.
Unique Token

> How to acquire safely per-thread resources.

June 17, 2024

Hierarchical parallelism

Finding and exploiting more parallelism in your computations.

Learning objectives:

» Similarities and differences between outer and inner levels of
parallelism

» Thread teams (league of teams of threads)

» Performance improvement with well-coordinated teams

June 17, 2024

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos::parallel_reduce ("yAx",N,
KOKKOS_LAMBDA (const int row,

double & valueToUpdate) {
double thisRowsSum = O0;

for (int col = 0; col < M; ++col) {
thisRowsSum += A(row,col) * x(col);
¥

valueToUpdate += y(row) * thisRowsSum;
}, result);

thread 0

June 17, 2024

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos::parallel_reduce ("yAx",N,
KOKKOS_LAMBDA (const int row,

double & valueToUpdate) {
double thisRowsSum = O0;
for (int col = 0;

col < M; ++col) {
thisRowsSum += A(row,col) * x(col);
¥

valueToUpdate += y(row) * thisRowsSum;
}, result);

thread 0
x’/////
Problem: What if we don't have .
enough rows to saturate the GPU? \
N /|
TITT] | thread 1
I
[1]

June 17, 2024

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos::parallel_reduce ("yAx",N,
KOKKOS_LAMBDA (const int row,

double & valueToUpdate) {
double thisRowsSum = O0;
for (int col = 0;

col < M; ++col) {
thisRowsSum += A(row,col) * x(col);
¥

valueToUpdate += y(row) * thisRowsSum;
}, result);

thread 0

x’/////

Problem: What if we don't have .

enough rows to saturate the GPU? \

Solutions? = -

olutions/’ Ej:l | thread 1
I I I
BB

June 17, 2024

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos::parallel_reduce ("yAx",N,
KOKKOS_LAMBDA (const int row,

double & valueToUpdate) {
double thisRowsSum = O0;
for (int col = 0;

col < M; ++col) {
thisRowsSum += A(row,col) * x(col);
¥

valueToUpdate += y(row) * thisRowsSum;
}, result);

thread 0
x’/////

Problem: What if we don't have .
enough rows to saturate the GPU? \
Solutions? \ /
olutions/’ i 1

> Atomics j:':l:l:l i 1l:h|rela dl]I'

» Thread teams HEEE

June 17, 2024

Example: inner product (1)

Atomics kernel:

Kokkos::parallel_for ("yAx", Nx*M,
KOKKOS_LAMBDA (const size_t index) {

const int row = extractRow(index);

const int col = extractCol(index);

atomic_add (&result, y(row) * A(row,col) * x(col));
1)

thread 0

|
TILT) | fhresd 1

I I |

June 17, 2024

Example: inner product (1)

Atomics kernel:

Kokkos::parallel_for ("yAx", Nx*M,
KOKKOS_LAMBDA (const size_t index) {

const int row = extractRow(index);

const int col = extractCol(index);

atomic_add (&result, y(row) * A(row,col) * x(col));
1)

thread 0

Problem: Poor performance

|
TILT) | fhresd 1

I I |

June 17, 2024

Example: inner product (2)

Using an atomic with every element is doing scalar integration with
atomics. (See module 3)

Instead, you could envision doing a large number of
parallel reduce kernels.

for each row
Functor functor(row, ...);
parallel_reduce (M, functor);

}

June 17, 2024

Example: inner product (2)

Using an atomic with every element is doing scalar integration with
atomics. (See module 3)

Instead, you could envision doing a large number of
parallel reduce kernels.

for each row
Functor functor(row, ...);

parallel_reduce (M, functor);

}

This is an example of hierarchical work.

Important concept: Hierarchical parallelism

Algorithms that exhibit hierarchical structure can exploit
hierarchical parallelism with thread teams.

June 17, 2024

Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.

June 17, 2024

Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.

High-level strategy:

1. Do one parallel launch of N teams.

2. Each team handles a row.

3. The threads within teams perform a reduction.
4 team 0, thread 0

. The thread teams perform a reduction.

team 0| 41 s |

/

/

]:'Lteam 0, thread 3

June 17, 2024

Example: inner product (4)

The final hierarchical parallel kernel:

parallel_reduce ("yAx",
team_policy (N, Kokkos::AUTO0),

KOKKOS_LAMBDA (const member_type & teamMember, double & update)
int row = teamMember.league_rank();

double thisRowsSum = O0;
parallel_reduce (TeamThreadRange (teamMember, M),
[=] (int col, double & innerUpdate) {
innerUpdate += A(row, col) * x(col);
}, thisRowsSum);

if (teamMember.team_rank () == 0) {
update += y(row) * thisRowsSum;
}

}, result);

June 17, 2024

TeamPolicy (0)

Important point

Using teams is changing the execution policy.

“Flat parallelism” uses RangePolicy:
We specify a total amount of work.

// total work = N
parallel_for ("Label",
RangePolicy<ExecutionSpace>(0,N), functor);

June 17, 2024

TeamPolicy (0)

Important point

Using teams is changing the execution policy.

“Flat parallelism” uses RangePolicy:
We specify a total amount of work.

// total work = N
parallel_for ("Label",
RangePolicy<ExecutionSpace>(0,N), functor);

“Hierarchical parallelism” uses TeamPolicy:
We specify a team size and a number of teams.

// total work = numberOfTeams * teamSize
parallel_for ("Label",
TeamPolicy<ExecutionSpace >(number0fTeams, teamSize), functor)

June 17, 2024

Important point

When using teams, functor operators receive a team member.

TeamPolicy (1)

using member_type = typename TeamPolicy<ExecSpace>::member_type;

void operator () (const member_type & teamMember) {

// How many teams are there?
const unsigned int league_size

// Which team am | on?
const unsigned int league_rank

// How many threads are in the team?
const unsigned int team_size =

// Which thread am | on this team?
const unsigned int team_rank =

= teamMember.league_size ();

= teamMember.league_rank ();

teamMember .team_size ();

teamMember .team_rank () ;

// Make threads in a team wait on each other:

teamMember .team_barrier ();

June 17, 2024

TeamThreadRange (0)
team 0, thread 0

team 0| 1 s |

/

/

jjlteam 0, thread 3
First attempt at exercise:

operator () (member_type & teamMember) {

const size_t row = teamMember.league_rank();
const size_t col = teamMember.team_rank();
atomic_add (&result,y(row) * A(row,col) * x(entry));

}

June 17, 2024

TeamThreadRange (0)
team 0, thread 0

team 0| 1 s |

/

/

jjlteam 0, thread 3
First attempt at exercise:

operator () (member_type & teamMember) {

const size_t row = teamMember.league_rank();
const size_t col = teamMember.team_rank();
atomic_add (&result,y(row) * A(row,col) * x(entry));

}

» When team size # number of columns, how are units of work
mapped to team’s member threads? Is the mapping
architecture-dependent?

June 17, 2024

TeamThreadRange (1)

Second attempt at exercise:

Divide row length among team members.

operator () (member_type & teamMember) {
const size_t row = teamMember.league_rank();

int begin = teamMember.team_rank();
for(int col = begin; col < M; col += teamMember.team_size()) {
atomic_add (&result, y(row) * A(row,col) * x(entry));

}
}

June 17, 2024

TeamThreadRange (1)

Second attempt at exercise:

Divide row length among team members.

operator () (member_type & teamMember) {

const size_t row = teamMember.league_rank();
int begin = teamMember.team_rank();
for(int col = begin; col < M; col += teamMember.team_size()) {

atomic_add (&result, y(row) * A(row,col) * x(entry));
}
}

> Still bad because atomic_add performs badly under high
contention, how can team’s member threads performantly
cooperate for a nested reduction?

» On CPUs you get a bad data access pattern: this hardcodes
coalesced access, but not caching.

June 17, 2024

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {
const int row = teamMember.league_rank();
double thisRowsSum;
‘“‘do a reduction’’(‘‘over M columns’’,
[=] (const int col) {
thisRowsSum += A(row,col) * x(col);
B;
if (teamMember.team_rank () == 0) {
update += (row) * thisRowsSum;

}

June 17, 2024

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {
const int row = teamMember.league_rank();
double thisRowsSum;
‘“‘do a reduction’’(‘‘over M columns’’,
[=] (const int col) {
thisRowsSum += A(row,col) * x(col);
B;
if (teamMember.team_rank () == 0) {
update += (row) * thisRowsSum;

}

If this were a parallel execution,
we'd use Kokkos: :parallel _reduce.

June 17, 2024

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {
const int row = teamMember.league_rank();
double thisRowsSum;
‘“‘do a reduction’’(‘‘over M columns’’,
[=] (const int col) {
thisRowsSum += A(row,col) * x(col);
B;
if (teamMember.team_rank () == 0) {
update += (row) * thisRowsSum;
}
}

If this were a parallel execution,
we'd use Kokkos: :parallel _reduce.

Key idea: this is a parallel execution.

June 17, 2024

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank();
double thisRowsSum;
‘“‘do a reduction’’(‘‘over M columns’’,

[=] (const int col) {

thisRowsSum += A(row,col) * x(col);

B;
if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

If this were a parallel execution,
we'd use Kokkos: :parallel _reduce.

Key idea: this is a parallel execution.

= Nested parallel patterns

June 17, 2024

TeamThreadRange (3)

TeamThreadRange:

operator () (const member_type & teamMember , double & update) {
const int row = teamMember.league_rank();
double thisRowsSum;
parallel_reduce (TeamThreadRange (teamMember , M),
[=] (const int col, double & thisRowsPartialSum) {
thisRowsPartialSum += A(row, col) * x(col);
}, thisRowsSum);
if (teamMember.team_rank() == 0) {
update += y(row) * thisRowsSum;

}

June 17, 2024

TeamThreadRange (3)

TeamThreadRange:

operator () (const member_type & teamMember , double & update) {
const int row = teamMember.league_rank();
double thisRowsSum;
parallel_reduce (TeamThreadRange (teamMember , M),
[=] (const int col, double & thisRowsPartialSum) {
thisRowsPartialSum += A(row, col) * x(col);
}, thisRowsSum);
if (teamMember.team_rank() == 0) {
update += y(row) * thisRowsSum;

}

» The mapping of work indices to threads is
architecture-dependent.

» The amount of work given to the TeamThreadRange need
not be a multiple of the team_size.

P Intrateam reduction handled by Kokkos.

June 17, 2024

Nested parallelism

Anatomy of nested parallelism:

parallel_outer ("Label",
TeamPolicy <ExecutionSpace >(numberOfTeams, teamSize),
KOKKOS_LAMBDA (const member_type & teamMember [, ...J) {
/* beginning of outer body */
parallel_inner (
TeamThreadRange (teamMember , thisTeamsRangeSize),

[=] (const unsigned int indexWithinBatch/[, ...]) {
/* inner body */
Yoo
/* end of outer body */
LY R D

> parallel outer and parallel_inner may be any
combination of for and/or reduce.

» The inner lambda may capture by reference, but
capture-by-value is recommended.

» The policy of the inner lambda is always a TeamThreadRange.
» TeamThreadRange cannot be nested.

June 17,

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(
TeamPolicy<ExecutionSpace >(number0OfTeams , Kokkos::AUTO),
/% functor */);

June 17, 2024

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(
TeamPolicy<ExecutionSpace >(number0OfTeams , Kokkos::AUTO),
/% functor */);

GPUs
» Special hardware available for coordination within a team.

» Within a team 32 (NVIDIA) or 64 (AMD) threads execute
“lock step.”

» Maximum team size: 1024; Recommended team size:
128/256

June 17, 2024

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(
TeamPolicy<ExecutionSpace >(number0OfTeams , Kokkos::AUTO),
/* functor */);

GPUs
» Special hardware available for coordination within a team.

» Within a team 32 (NVIDIA) or 64 (AMD) threads execute
“lock step.”

» Maximum team size: 1024; Recommended team size:
128/256

Intel Xeon Phi:

> Recommended team size: # hyperthreads per core

» Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing

June 17, 2024

Exercise: TeamPolicy

Details:

> Location: Exercises/team policy/

v

Replace RangePolicy<Space> with TeamPolicy<Space>

v

Use AUTO for team_size

v

Make the inner loop a parallel_reduce with TeamThreadRange
policy

» Experiment with the combinations of Layout, Space, N to view
performance

» Hint: what should the layout of A be?
Things to try:
» Vary problem size and number of rows (-S ...; -N ...)
» Compare behavior with Exercise 4 for very non-square matrices
» Compare behavior of CPU vs GPU

June 17, 2024

Bandwidth (GB/s)

600

500

400

300

200

100

Reminder, Exercise #4 with Flat Parallelism

<y|Ax> Exercise 04 (Layout) Fixed Size

KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16¢ Pascal60: Nvidia GPU

— - HSW Left ‘ T
—— HSW Right > .o _._J P
- % - KNL Left . e
—8— KNL Right I's coalesced s- -+

.

["| - -& - Pascal60 Left
—©6— Pascal60 Right

uncached ..+
R S Bk A !

1x10° 1x10” 1x108

Number of Rows (N)

June 17, 2024

1x10°

Exercise: TeamPolicy

<y|Ax> Exercise 05 (Layout/Teams) Fixed Size

KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16¢c Pascal60: Nvidia GPU

T
HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

600
-
—_——
.-
500 [| - -e- -
—o—
> 400 |
I
e
<
5 300 -
2
S
3
m 200 -
100
0
1

June 17, 2024

10 100

‘--l--l--l--l--l-.

1000

)
o -®-e
N

10000 100000
Number of Rows (N)

e -0 -0 -0 -0 -0-0-0_

- -;-; - l" ¥

- - :4.. 2

1x10°

1x107

1x108

1x10°

Three-level parallelism (0)

Exposing Vector Level Parallelism

>

June 17

Optional third level in the hierarchy: ThreadVectorRange

» Can be used for parallel_for, parallel_reduce, or
parallel_scan.

Maps to vectorizable loop on CPUs or (sub-)warp level
parallelism on GPUs.

Enabled with a runtime vector length argument to
TeamPolicy

There is no explicit access to a vector lane ID.

Depending on the backend the full global parallel region has
active vector lanes.

TeamVectorRange uses both thread and vector parallelism.

2024

Three-level parallelism (1)
Anatomy of nested parallelism:

parallel_outer ("Label",
TeamPolicy<>(numberOfTeams , teamSize, vectorLength),
KOKKOS_LAMBDA (const member_type & teamMember /[, ...]) {
/* beginning of outer body */
parallel_middle(
TeamThreadRange (teamMember , thisTeamsRangeSize),
[=] (const int indexWithinBatch/[, ...]) {
/* begin middle body */
parallel_inner (
ThreadVectorRange (teamMember , thisVectorRangeSize),
[=] (const int indexVectorRange[, ...]) {
/* inner body */
Yoooo0)s
/* end middle body x/
YO, ...1);
parallel_middle (
TeamVectorRange (teamMember, someSize),
[=] (const int indexTeamVector[, ...]) {
/* nested body x/
Vo)
/* end of outer body x/
[, ...1);

June 17, 2024

Sum sanity checks (0)

Question: What will the value of totalSum be?

int totalSum = 0;
parallel_reduce ("Sum", RangePolicy<>(0, numberOfThreads),
KOKKOS_LAMBDA (size_t& index, int& partialSum) {
int thisThreadsSum = O0;
for (int i = 0; i < 10; ++i) {
++thisThreadsSum;
¥
partialSum += thisThreadsSum;
}, totalSum);

June 17, 2024

Sum sanity checks (0)

Question: What will the value of totalSum be?

int totalSum = 0;
parallel_reduce ("Sum", RangePolicy<>(0, numberOfThreads),
KOKKOS_LAMBDA (size_t& index, int& partialSum) {
int thisThreadsSum = O0;
for (int i = 0; i < 10; ++i) {
++thisThreadsSum;
¥
partialSum += thisThreadsSum;
}, totalSum);

totalSum = numberOfThreads * 10

June 17, 2024

Question: What will the value of totalSum be?

int totalSum = O0;
parallel_reduce ("Sum", TeamPolicy<>(numberOfTeams, team_size),
KOKKOS_LAMBDA (member_type& teamMember, int& partialSum) {
int thisThreadsSum = 0;
for (int i = 0; i < 10; ++i) {
++thisThreadsSum;
}
partialSum += thisThreadsSum;
}, totalSum);

June 17, 2024

Question: What will the value of totalSum be?

int totalSum = O0;
parallel_reduce ("Sum", TeamPolicy<>(numberOfTeams, team_size),
KOKKOS_LAMBDA (member_type& teamMember, int& partialSum) {
int thisThreadsSum = 0;
for (int i = 0; i < 10; ++i) {
++thisThreadsSum;

}

partialSum += thisThreadsSum;
}, totalSum);

totalSum = numberOfTeams * team_size * 10

June 17, 2024

Question: What will the value of totalSum be?

int totalSum = O0;

parallel_reduce("Sum", TeamPolicy<>(numberOfTeams, team_size),
KOKKOS_LAMBDA (member_type& teamMember, int& partialSum) {
int thisTeamsSum = 0;

parallel_reduce (TeamThreadRange (teamMember , team_size),
[=] (const int index, int& thisTeamsPartialSum) {
int thisThreadsSum = O;
for (int i = 0; i < 10; ++i) {

++thisThreadsSum;

}
thisTeamsPartialSum += thisThreadsSum;

}, thisTeamsSum);

partialSum += thisTeamsSum;

}, totalSum);

June 17, 2024

Question: What will the value of totalSum be?

int totalSum = O0;
parallel_reduce("Sum",
KOKKOS_LAMBDA (member_type& teamMember,
int thisTeamsSum = 0;
parallel_reduce (TeamThreadRange (teamMember , team_size),

[=] (const int index, int& thisTeamsPartialSum) {
int thisThreadsSum = O;
for (int i = 0; i < 10; ++i) {

++thisThreadsSum;

}

thisTeamsPartialSum += thisThreadsSum;

}, thisTeamsSum);
partialSum += thisTeamsSum;

}, totalSum);

TeamPolicy<>(numberOfTeams, team_size),
int& partialSum) A{

totalSum = numberOfTeams * team_size * team_size * 10

June 17, 2024

Restricting Execution: single pattern

The single pattern can be used to restrict execution

P Like parallel patterns it takes a policy, a lambda, and
optionally a broadcast argument.

> Two policies: PerTeam and PerThread.

» Equivalent to OpenMP single directive with nowait

// Restrict to once per thread
single (PerThread (teamMember), [&] (O {

// code
1)
// Restrict to once per team with broadcast
int broadcastedValue = 0;
single (PerTeam (teamMember), [&] (int& broadcastedValue_local) {
broadcastedValue_local = special value assigned by one;

}, broadcastedValue);
// Now everyone has the special value

June 17, 2024

Exercise: TeamVectorLoop

The previous example was extended with an outer loop over
“Elements” to expose a third natural layer of parallelism.

Details:
» Location: Exercises/team_vector_loop/
> Use the single policy instead of checking team rank
> Parallelize all three loop levels.
Things to try:
> Vary problem size and number of rows (-S ...; -N ...)

» Compare behavior with TeamPolicy Exercise for very non-square
matrices

» Compare behavior of CPU vs GPU

June 17, 2024

Bandwidth (GB/s)

Exercise: TeamVectorLoop

<y|Ax> Exercise 06 (Three Level Parallelism) Fixed Size

KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16¢ Pascal60: Nvidia GPU

450

400

350

300 -

250 -

200 -

150 -

100 -

50

O | | | | |
1 10 100 1000 10000 100000 1x10°

Number of Rows (N)

)
e

June 17, 2024

June 17,

Section Summary

Hierarchical work can be parallelized via hierarchical
parallelism.

Hierarchical parallelism is leveraged using thread teams
launched with a TeamPolicy.

Team “worksets” are processed by a team in nested
parallel for (or reduce or scan) calls with a
TeamThreadRange, ThreadVectorRange, and
TeamVectorRange policy.

Execution can be restricted to a subset of the team with the
single pattern using either a PerTeam or PerThread policy.

2024

Scratch memory

Learning objectives:

>

>

June 17,

Understand concept of team and thread private scratch
pads

Understand how scratch memory can reduce global memory
accesses

Recognize when to use scratch memory

Understand how to use scratch memory and when barriers
are necessary

2024

Types of Scratch Space Uses

Two Levels of Scratch Space

> Level 0 is limited in size but fast.

> Level 1 allows larger allocations but is equivalent to High
Bandwidth Memory in latency and bandwidth.

Team or Thread private memory
» Typically used for per work-item temporary storage.

> Advantage over pre-allocated memory is aggregate size scales
with number of threads, not number of work-items.

Manually Managed Cache
> Explicitly cache frequently used data.

» Exposes hardware specific on-core scratch space (e.g. NVIDIA
GPU Shared Memory).

June 17, 2024

Types of Scratch Space Uses

Two Levels of Scratch Space
> Level 0 is limited in size but fast.

> Level 1 allows larger allocations but is equivalent to High
Bandwidth Memory in latency and bandwidth.

Team or Thread private memory
» Typically used for per work-item temporary storage.

> Advantage over pre-allocated memory is aggregate size scales
with number of threads, not number of work-items.

Manually Managed Cache
> Explicitly cache frequently used data.

» Exposes hardware specific on-core scratch space (e.g. NVIDIA
GPU Shared Memory).

Now: Discuss Manually Managed Cache Usecase.

June 17, 2024

Example: contractDataFieldScalar (1)

One slice of contractDataFieldScalar:
vectorSize

numberOfQPs
°
Il

for (gp = 0; gqp < number0fQPs; ++gp) {
0

total = ;

for (i = 0; i < vectorSize; ++i) {
total += A(qp, i) * B(i);

}

result (qp) = total;

June 17, 2024

Example: contractDataFieldScalar (2)

contractDataFieldScalar:

2
S
OQ,J%
N
Dte
for (element = 0; element < numberOfElements; ++element) {
for (qp = 0; qp < number0fQPs; ++gp) {
total = 0;
for (i = 0; i < vectorSize; ++i) {
total += A(element, gp, i) * B(element, i);
}
result (element, gqp) = total;

June 17, 2024

Example: contractDataFieldScalar (3)

for (element = 0; element < numberOfElements; ++element) {
for (qp = 0; gp < number0fQPs; ++gp) { \D:J:J:I &
total = 0; =
for (i = 0; i < vectorSize; ++i) { . [TTTTTT
total += A(element, qp, i) * B(element, i);
b
result (element, gp) = total; N 2
' N oz
3 Ny 2

RN

Parallelization approaches:

» Each thread handles an element.
Threads: numberOfElements

June 17, 2024

Example: contractDataFieldScalar (3)

for (element = 0; element < numberOfElements; ++element) {
for (qp = 0; gp < number0fQPs; ++gp) { \J:D:J:I N}
total = 0;
for (i = 0; i < vectorSize; ++i) { * [TTTTTI
total += A(element, qp, i) * B(element, i);
b
result (element, gp) = total; N 2
\ o

3 Ny 2

Parallelization approaches:

» Each thread handles an element.
Threads: numberOfElements

> Each thread handles a gp.
Threads: numberOfElements * number0fQPs

June 17, 2024

Example: contractDataFieldScalar (3)

for (element = 0; element < numberOfElements; ++element) {

for (qp = 0; gp < number0fQPs; ++qp) { \Q:J:J:I &
total = 0;
. [TTTTTT

for (i = 0; i < vectorSize; ++i) {

total += A(element, qp, i) * B(element, i);
b
result (element, gp) = total; N

Parallelization approaches:

» Each thread handles an element.
Threads: numberOfElements

> Each thread handles a gp.
Threads: numberOfElements * number0fQPs

» Each thread handles an 1.
Threads: numElements * numQPs * vectorSize
Requires a parallel _reduce.

June 17, 2024

Example: contractDataFieldScalar (3)

for (element = 0; element < numberOfElements; ++element) {

for (qp = 0; gp < number0fQPs; ++qp) { \Q:J:J:I &
total = 0;
. [TTTTTT

for (i = 0; i < vectorSize; ++i) {

total += A(element, qp, i) * B(element, i);
b
result (element, gp) = total; N

Parallelization approaches:

» Each thread handles an element.
Threads: numberOfElements

> Each thread handles a gp.
Threads: numberOfElements * number0fQPs
» Each thread handles an 1.
Threads: numElements * numQPs * vectorSize
Requires a parallel _reduce.

June 17, 2024

Example: contractDataFieldScalar (4)

for (element = 0; element < numberOfElements; ++element) {
for (gp = 0; gp < number0£QPs; ++qp) {
total = 0;
for (i = 0; i < vectorSize; ++i) {
total += A(element, qp, i) * B(element, i);

result (element, gp) = total;

L1]
[T] 7]

Flat kernel: Each thread handles a quadrature point

parallel_for ("L",MDRangePolicy<Rank<2>>({0,0},{numE,numQP}),
KOKKOS_LAMBDA (int element, int qp) {
double total = 0;
for (int i = 0; i < vectorSize; ++i) {
total += A(element, gqp, i) * B(element, i);
}
result (element, qp) = total;

June 17, 2024

Example: contractDataFieldScalar (6)

for (element = 0; element < numberOfElements; ++element) {

for (gp = 0; gp < number0fQPs; ++qp) { !
for i QLTI IILk =

for (i = 0; i < vectorSize; ++i) {
total += A(element, qp, i) * B(element, i);

N

result (element, qp) = total;

2
3 N
} %%E®

N £

RN
Teams kernel: Each team handles an element

operator () (member_type teamMember) {
int element = teamMember.league_rank();
parallel_for(
TeamThreadRange (teamMember , number0fQPs),
[=] (int qp) {
double total = 0;
for (int i = 0; i < vectorSize; ++i) {
total += A(element, qp, i) * B(element, 1i);
}
result (element, qp) = total;
b

June 17, 2024

Example: contractDataFieldScalar (6)

for (element = 0; element < numberOfElements; ++element) {

for (gp = 0; gp < number0fQPs; ++qp) { !
for i QLTI IILk =

for (i = 0; i < vectorSize; ++i) {
total += A(element, qp, i) * B(element, i);

N

result (element, gp) = total; 2
- N N
RN
Teams kernel: Each team handles an element
operator () (member_type teamMember) {
int element = teamMember.league_rank();
parallel_for(
TeamThreadRange (teamMember , number0fQPs),
[=] (int qp) {
double total = 0;
for (int i = 0; i < vectorSize; ++i) {
total += A(element, qp, i) * B(element, 1i);
}
result (element, qp) = total;
B
¥ No real advantage (yet)

June 17, 2024

Scratch memory (0)

Each team has access to a “scratch pad”.

global memory

000000 oboobe

shared memory

“scratch pad”

io©oood 000000

clale

Scratch memory (1)

Scratch memory (scratch pad) as manual cache:

| 4

>

June 17

Accessing data in (level 0) scratch memory is (usually) much
faster than global memory.

GPUs have separate, dedicated, small, low-latency scratch
memories (NOT subject to coalescing requirements).

CPUs don't have special hardware, but programming with
scratch memory results in cache-aware memory access
patterns.

Roughly, it's like a user-managed L1 cache.

2024

Scratch memory (1)

Scratch memory (scratch pad) as manual cache:

» Accessing data in (level 0) scratch memory is (usually) much
faster than global memory.

» GPUs have separate, dedicated, small, low-latency scratch
memories (NOT subject to coalescing requirements).

> CPUs don't have special hardware, but programming with
scratch memory results in cache-aware memory access
patterns.

» Roughly, it's like a user-managed L1 cache.

Important concept

When members of a team read the same data multiple times, it's
better to load the data into scratch memory and read from there.

June 17, 2024

Scratch memory (2)

Scratch memory for temporary per work-item storage:

June 17

Scenario: Algorithm requires temporary workspace of size W.

Without scratch memory: pre-allocate space for N
work-items of size N x W.

With scratch memory: Kokkos pre-allocates space for each
Team or Thread of size T x W.

PerThread and PerTeam scratch can be used concurrently.

Level 0 and Level 1 scratch memory can be used concurrently.

2024

Scratch memory (2)

Scratch memory for temporary per work-item storage:
» Scenario: Algorithm requires temporary workspace of size W.

» Without scratch memory: pre-allocate space for N
work-items of size N x W.

» With scratch memory: Kokkos pre-allocates space for each
Team or Thread of size T x W.

P> PerThread and PerTeam scratch can be used concurrently.

> Level 0 and Level 1 scratch memory can be used concurrently.

Important concept

If an algorithm requires temporary workspace for each work-item,
then use Kokkos' scratch memory.

June 17, 2024

Scratch memory (3)

To use scratch memory, you need to:
1. Tell Kokkos how much scratch memory you'll need.

2. Make scratch memory views inside your kernels.

June 17, 2024

Scratch memory (3)

To use scratch memory, you need to:
1. Tell Kokkos how much scratch memory you'll need.

2. Make scratch memory views inside your kernels.
TeamPolicy<ExecutionSpace> policy(numberOfTeams, teamSize);

// Define a scratch memory view type

using ScratchPadView =
View<double*,ExecutionSpace::scratch_memory_space>;

// Compute how much scratch memory (in bytes) is needed

size_t bytes = ScratchPadView::shmem_size(vectorSize);

// Tell the policy how much scratch memory is needed

int level = 0;

parallel_for(policy.set_scratch_size(level, PerTeam(bytes)),
KOKKOS_LAMBDA (const member_type& teamMember) {

// Create a view from the pre-existing scratch memory
ScratchPadView scratch(teamMember.team_scratch(level),
vectorSize);

DM

June 17, 2024

Example: contractDataFieldScalar (7)

Kernel outline for teams with scratch memory:

operator () (member_type teamMember) {
ScratchPadView scratch(teamMember.team_scratch(0),
vectorSize);
// TODO: load slice of B into scratch

parallel_for(
TeamThreadRange (teamMember , number0fQPs),
[=] (int qp) {
double total = 0;
for (int i = 0; i < vectorSize; ++i) {
// total += A(element, qp, i) * B(element, i)
total += A(element, qgp, i) * scratch(i);
}
result (element, gp) = total;

>

B N %I]

[TTTT =

77

L7777

June 17, 2024

g,
TN

Example: contractDataFieldScalar (8)

How to populate the scratch memory?
» One thread loads it all?

if (teamMember.team_rank () == 0) {
for (int i = 0; i < vectorSize; ++i) {
scratch(i) = B(element, i);

}

}

\j\'t‘:tllllllll I

777

LI 777

Py,
TN

June 17, 2024

Example: contractDataFieldScalar (8)

How to populate the scratch memory?
> Onethreadleads—t—al2 Serial

if (teamMember.team_rank () == 0) {
for (int i = 0; i < vectorSize; ++i) {
scratch(i) = B(element, i);
}
}

> Each thread loads one entry?

scratch(team_rank) = B(element, team_rank);

N \UO:EEH]II[II =
N

2
%be N
%\

June 17, 2024

Example: contractDataFieldScalar (8)

How to populate the scratch memory?

for (int i =
scratch (i)
}
}

- DOnethreadtoadsitall2
if (teamMember.team_rank ()
03

B(element ,

> Each-threadtoads-one-entry?

scratch(team_rank) = B(element,

» TeamVectorRange

parallel_for(

TeamVectorRange (teamMember ,

[=] (int i) {
scratch (i)

B

June 17, 2024

B(element ,

Serial

== 0) {

i < vectorSize;

i);

++i) {

teamSize # vectorSize

i);

te

am_rank) ;

vectorSize),

{gmﬁlllllll
N

g,
O

Example: contractDataFieldScalar (8)

How to populate the scratch memory?

> Onethreadloadsitall2 Serial

if (teamMember.team_rank () == 0) {
for (int i = 0; i < vectorSize; ++i) {
scratch(i) = B(element, i);

}

}

> Each-threadloads-one-entryt teamSize # vectorSize

scratch(team_rank) = B(element, team_rank);

[»> TeamVectorRange

parallel_for(
TeamVectorRange (teamMember , vectorSize),
[=] (int i) {
scratch(i) = B(element, i);
1 \j\'ttmlllllll\
I ™

I:waQ N
o

June 17, 2024

Example: contractDataFieldScalar (9)

(incomplete) Kernel for teams with scratch memory:

operator () (member_type teamMember) {
ScratchPadView scratch(...);

parallel_for(TeamVectorRange(teamMember, vectorSize),
[=] (int i) {
scratch(i) = B(element, i);
1)
// TODO: fix a problem at this location

parallel_for (TeamThreadRange (teamMember , number0fQPs),
[=] (int qp) {
double total = 0;

for (int i = 0; i < vectorSize; ++i) {
total += A(element, qp, i) * scratch(i);

}

result (element, gp) = total;

DM

June 17, 2024

Example: contractDataFieldScalar (9)

(incomplete) Kernel for teams with scratch memory:

operator () (member_type teamMember) {
ScratchPadView scratch(...);

parallel_for(TeamVectorRange(teamMember, vectorSize),
[=] (int i) {
scratch(i) = B(element, i);
1)
// TODO: fix a problem at this location

parallel_for (TeamThreadRange (teamMember , number0fQPs),
[=] (int gp) {
double total = 0;
for (int i = 0; i < vectorSize; ++i) {
total += A(element, qp, i) * scratch(i);
}
result (element, gp) = total;
1)
}

Problem: threads may start to use scratch before all threads are
done loading.

June 17, 2024

Example: contractDataFieldScalar (10)

Kernel for teams with scratch memory:

operator () (member_type teamMember) {
ScratchPadView scratch(...);

parallel_for (TeamVectorRange (teamMember , vectorSize),
[=] (int 1) {
scratch(i) = B(element, i);
1)
teamMember. team_barrier ();

parallel_for (TeamThreadRange (teamMember , number0fQPs),

[=] (int gp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

total += A(element, gqp, i) * scratch(i);

}

result (element, gp) = total; I JEtDIIIIIIT S
s N

June 17, 2024

Exercise: Scratch Memory

Use Scratch Memory to explicitly cache the x-vector for each
element.
Details:

> Location: Exercises/team scratch memory/

» Create a scratch view

> Fill the scratch view in parallel using a TeamVectorRange
Things to try:

» Vary problem size and number of rows (-S ...; -N ...)

» Compare behavior with Exercise 6

» Compare behavior of CPU vs GPU

June 17, 2024

Bandwidth (GB/s)

Exercise: Scratch Memory

Exercise 07 (Scratch Memory) Fixed Size

KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16¢ Pascal60: Nvidia GPU

600
= =+ = 06 HSW
—¥— 07 HSW
- - - 06 KNL
—8— 07 KNL
500 | - - - 06 Pascal60 7
—©— 07 Pascal60
400 1
300 1
200 1
100 | 1
O Il Il Il Il Il

June 17, 2024

10 100 1000 10000 100000
Number of Rows (N)

1x10°

Scratch Memory: API Details

Allocating scratch in different levels:

int level = 1; // valid values 0,1
policy.set_scratch_size(level ,PerTeam(bytes));

June 17, 2024

Scratch Memory: API Details

Allocating scratch in different levels:

int level = 1; // valid values 0,1
policy.set_scratch_size(level ,PerTeam(bytes));

Using PerThread, PerTeam or both:

policy.set_scratch_size(level ,PerTeam(bytes));

policy.set_scratch_size(level ,PerThread(bytes));

policy.set_scratch_size(level ,PerTeam(bytesl),
PerThread(bytes2));

June 17, 2024

Scratch Memory: API Details

Allocating scratch in different levels:

int level = 1; // valid values 0,1
policy.set_scratch_size(level ,PerTeam(bytes));

Using PerThread, PerTeam or both:

policy.set_scratch_size(level ,PerTeam(bytes));

policy.set_scratch_size(level ,PerThread(bytes));

policy.set_scratch_size(level ,PerTeam(bytesl),
PerThread(bytes2));

Using both levels of scratch:

policy.set_scratch_size(0,PerTeam(bytes0))
.set_scratch_size(1,PerThread(bytes1));

Note: set_scratch_size() returns a new policy instance, it
doesn’t modify the existing one.

June 17, 2024

June 17

Section Summary

Scratch Memory can be use with the TeamPolicy to
provide thread or team private memory.

Usecase: per work-item temporary storage or manual caching.

Scratch memory exposes on-chip user managed caches (e.g.
on NVIDIA GPUs)

The size must be determined before launching a kernel.

Two levels are available: large/slow and small /fast.

2024

Unique Token

Learning objectives:
» Understand concept of unique tokens and thread-safe resource
access.
P> Learn how to acquire per-team unique ids.
» Understand the difference between Global and Instance
scope.

June 17,

Unique Tokens - Motivation

Why do we need a unique token concept?

| 2

| 2

June 17

Within Functor operator / Lambda there is no portable way
to identify the active execution resource (thread id)

Some algorithms make efficient use of shared resources by
dividing based on execution resource (thread id)

Thread Id is not consistent or portable across all execution
environments

Unique Token provides consistent identifier for resource
allocations and work division

2024

Unique Tokens - Motivation

Original Example: Random Number Generator Pool

int N = 10000000

int K = ...;

RandomGenPool pool(K,seed);

parallel_for ("Loop", N, KOKKOS_LAMBDA (int i) {
int gen_id = .
auto gen = pool[gen_id];

B

How many generators do we need (K)?

June 17, 2024

Unique Tokens - Motivation

Original Example: Random Number Generator Pool

int N = 10000000

int K = ...;

RandomGenPool pool(K,seed);

parallel_for ("Loop", N, KOKKOS_LAMBDA (int i) {
int gen_id = .
auto gen = pool[gen_id];

B

How many generators do we need (K)?

How to get a unique one in the loop (gen_id)?

June 17, 2024

Unique Tokens - Motivation

Original Example: Random Number Generator Pool

int N = 10000000

int K = ...;

RandomGenPool pool(K,seed);

parallel_for ("Loop", N, KOKKOS_LAMBDA (int i) {
int gen_id = ..
auto gen = pool[gen_id];

B

How many generators do we need (K)?
How to get a unique one in the loop (gen_id)?
In OpenMP we could use the thread-id but what in CUDA?

June 17, 2024

Motivating Example

Unique Tokens - Motivation

OpenMP
int K = omp_get_max_threads ();
Kokkos::parallel_for ("L", N, KOKKOS_LAMBDA(int i) {
int tid = omp_get_thread_num();
1)
CUDA
int K = N; // 77
Kokkos::parallel_for ("L", N, KOKKOS_LAMBDA (int i) {
int tid = threadIdx.x + blockDim.x * blockIdx.x; //i??
s

June 17, 2024

Unique Tokens - Motivation

Motivating Example
OpenMP

int K = omp_get_max_threads ();

Kokkos::parallel_for ("L", N, KOKKOS_LAMBDA(int i) {
int tid = omp_get_thread_num();

1)

CUDA

int K = N; // 77
Kokkos::parallel_for ("L", N, KOKKOS_LAMBDA (int i) {

int tid = threadIdx.x + blockDim.x * blockIdx.x; //i??
s

Problem: In CUDA there is no way to get hardware thread-id.

June 17, 2024

Unique Tokens - Motivation

Motivating Example
OpenMP

int K = omp_get_max_threads ();

Kokkos::parallel_for ("L", N, KOKKOS_LAMBDA (int i) {
int tid = omp_get_thread_num();

1)

CUDA

int K = N; // 77
Kokkos::parallel_for ("L", N, KOKKOS_LAMBDA (int i) {

int tid = threadIdx.x + blockDim.x * blockIdx.x; //i??
s

Problem: In CUDA there is no way to get hardware thread-id.

Solution: We need a thread-safe and portable way to obtain
unique identifier that is per-thread specific.

= UniqueToken

June 17, 2024

Unique Token

UniqueToken is a pool of IDs
» User acquires an ID and releases it again.

UniqueToken<ExecutionSpace> token;
int number_of_uniqe_ids = token.size();
RandomGenPool pool (number_of_unique_ids ,seed);
parallel_for ("L", N, KOKKOS_LAMBDA (int i) {
int id = token.acquire();
RandomGen gen = pool(id);

token.release (id);

DN

June 17, 2024

Unique Token

UniqueToken is a pool of IDs

» User acquires an ID and releases it again.

UniqueToken<ExecutionSpace> token;
int number_of_uniqe_ids = token.size();
RandomGenPool pool (number_of_unique_ids ,seed);
parallel_for ("L", N, KOKKOS_LAMBDA (int i) {
int id = token.acquire();
RandomGen gen = pool(id);

token.release (id);

DN

» Do not acquire more than one token in an iteration.

v

You must release the token again.

> By default the range of ids is O to
ExecSpace() . concurrency ().

June 17, 2024

Unique Token - Global vs. Instance Scope

Sometimes you need a Global UniqueToken
» Submitting concurrent kernels to CUDA streams (Module 5)

> Shared resource in a multi-threaded environment like Legion

June 17, 2024

Unique Token - Global vs. Instance Scope

Sometimes you need a Global UniqueToken
» Submitting concurrent kernels to CUDA streams (Module 5)

> Shared resource in a multi-threaded environment like Legion

UniqueToken is Scoped

UniqueToken has a Scope template parameter which by default is
'Instance’ but can be 'Global’.

June 17, 2024

Unique Token - Global vs. Instance Scope
Sometimes you need a Global UniqueToken
» Submitting concurrent kernels to CUDA streams (Module 5)

> Shared resource in a multi-threaded environment like Legion

UniqueToken is Scoped

UniqueToken has a Scope template parameter which by default is
'Instance’ but can be 'Global’.

void foo() {
UniqueToken<ExecSpace ,UniqueTokenScope::Global> token_foo;
parallel_for ("L", RangePolicy<ExecSpace>(streaml,0,N)
, functor_a(token_foo));
}
void bar () {
UniqueToken<ExecSpace ,UniqueTokenScope::Global> token_bar;
parallel_for ("L", RangePolicy<ExecSpace>(stream2,0,N)
, functor_b(token_bar));

June 17, 2024

Unique Token - Global vs. Instance Scope
Sometimes you need a Global UniqueToken
» Submitting concurrent kernels to CUDA streams (Module 5)

> Shared resource in a multi-threaded environment like Legion

UniqueToken is Scoped

UniqueToken has a Scope template parameter which by default is
'Instance’ but can be 'Global’.

void foo() {
UniqueToken<ExecSpace ,UniqueTokenScope::Global> token_foo;
parallel_for ("L", RangePolicy<ExecSpace>(streaml,0,N)
, functor_a(token_foo));
}
void bar () {
UniqueToken<ExecSpace ,UniqueTokenScope::Global> token_bar;
parallel_for ("L", RangePolicy<ExecSpace>(stream2,0,N)
, functor_b(token_bar));
}

token_foo and token_bar will provide non-conflicting ids.
June 17, 2024

Unique Token - Per Team

UniqueToken can also be used for Per-Team resources

There are less teams active than threads. How to get an ID?

June 17, 2024

Unique Token - Per Team

UniqueToken can also be used for Per-Team resources

There are less teams active than threads. How to get an ID?

Sized UniqueToken
UniqueToken supports custom ranges of ids via constructing sized
tokens.

June 17, 2024

Unique Token - Per Team

UniqueToken can also be used for Per-Team resources

There are less teams active than threads. How to get an ID?

Sized UniqueToken

UniqueToken supports custom ranges of ids via constructing sized
tokens.

Acquiring a per-team unique id requires three steps:
» Compute the range via concurrency and team_size.

> Create a sized UniqueToken.
> For performance reason make it a bit larger than necessary.

» Acquire and broadcast a token in a single pattern.

June 17, 2024

Unique Token - Per Team

// Figure out the team size

int team_size = ...;

// How many teams are actually in-flight

int num_active_teams = ExecSpace().concurrency()/team_size;
// Create the token

UniqueToken<ExecSpace> token(num_active_teams * 1.2);

parallel_for ("L", TeamPolicy<ExecSpace>(N,team_size),
KOKKOS_LAMBDA (const team_t& team) {
int id;

// Acquire an id and broadcast it with a single thread
single (PerTeam(team) , [&] (int &1id) {

1lid = token.acquire();
},id);

// Release the id again (likely you want a barrier first!
single (PerTeam(team) , [&] () {
token.release(id);

3

June 17, 2024

Exercise UniqueToken

> Location: Exercises/unique_token/Begin/

» Assignment: Convert scatter_add_loop to use UniqueToken,
removing #ifdef's

» Compile and run on both CPU and GPU

make -j KOKKOS_DEVICES=0penMP # CPU-only using OpenMP

make -j KOKKOS_DEVICES=Cuda # GPU - note UVM in Makefile
Run exercise

./uniquetoken.host

./uniquetoken.cuda

Note the warnings, set appropriate environment variables

» Compare performance on CPU of the three variants
» Compare performance on GPU of the two variants

» Vary problem size: first and second optional argument

June 17,

Section Summary

» UniqueToken provides a thread safe portable way to divide
thread or team specific resources

» UniqueToken can be sized, such that it returns only ids
within a specific range.

» A Global scope UniqueToken can be acquired, allowing safe
ids accross disjoint concurrent code sections.

June 17,

Module 4: Summary

Hierarchal Parallelism

>

>

June 17,

Hierarchical work can be parallelized via hierarchical
parallelism.

Hierarchical parallelism is leveraged using thread teams
launched with a TeamPolicy.

Team “worksets” are processed by a team in nested
parallel for (or reduce or scan) calls with a
TeamThreadRange and ThreadVectorRange policy.

Execution can be restricted to a subset of the team with the
single pattern using either a PerTeam or PerThread policy.

Teams can be used to reduce contention for global resources
even in “flat” algorithms.

2024

Module 4: Summary

Scratch Space

» Scratch Memory can be use with the TeamPolicy to
provide thread or team private memory.

> Usecase: per work-item temporary storage or manual caching.

» Scratch memory exposes on-chip user managed caches (e.g.
on NVIDIA GPUs)

» The size must be determined before launching a kernel.
» Two levels are available: large/slow and small/fast.
Unique Token

» UniqueToken give a thread safe portable way to divide
thread specific resources

» UniqueToken can be sized to restrict ids to a range.
> A Global UniqueToken is available.

June 17, 2024

Module 5: Outlook (08/14)
Task Parallelism:

> Basic interface for fine-grained tasking in Kokkos

> How to express dynamic dependency structures in Kokkos

Streams: Concurrent Execution Spaces

» How to use Streams within Kokkos Execution spaces

SIMD: Portable vector intrinsic types
> How to use SIMD types to improve vectorization
> Alternative to ThreadVector loops and outer loop
vectorization

Don’t Forget: Join the Slack Channel and drop into our office
hours on Monday.

Updates at: kokkos.link/the-lectures-updates

Recordings/Slides: kokkos.link /the-lectures
June 17, 2024

https://kokkos.link/the-lectures-updates
https://kokkos.link/the-lectures

