
The Kokkos Lectures

Module 4: Hierarchical Parallelism

June 17, 2024

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2020-7475 PE

June 17, 2024 2/65

Welcome to Kokkos

Online Resources:
▶ https://github.com/kokkos:

▶ Primary Kokkos GitHub Organization

▶ https://github.com/kokkos/kokkos-tutorials/wiki/
Kokkos-Lecture-Series:
▶ Slides, recording and Q&A for the Lectures

▶ https://kokkos.github.io/kokkos-core-wiki:
▶ Wiki including API reference

▶ https://kokkosteam.slack.com:
▶ Slack channel for Kokkos.
▶ Please join: fastest way to get your questions answered.
▶ Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://kokkos.github.io/kokkos-core-wiki
https://kokkosteam.slack.com

June 17, 2024 3/65

Lecture Series Outline

▶ 07/17 Module 1: Introduction, Building and Parallel Dispatch

▶ 07/24 Module 2: Views and Spaces

▶ 07/31 Module 3: Data Structures + MultiDimensional Loops

▶ 08/07 Module 4: Hierarchical Parallelism

▶ 08/14 Module 5: Tasking, Streams and SIMD

▶ 08/21 Module 6: Internode: MPI and PGAS

▶ 08/28 Module 7: Tools: Profiling, Tuning and Debugging

▶ 09/04 Module 8: Kernels: Sparse and Dense Linear Algebra

▶ 09/11 Reserve Day

June 17, 2024 4/65

Module 3: Summary

MDRangePolicy

▶ Tightly nested loops (similar to OpenMP collapse clause)

▶ Available with parallel for and parallel reduce

▶ Tiling strategy over the iteration space

▶ Control iteration pattern at compile time

View <double**,LayoutLeft > A("A",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2,Iterate ::Left ,Iterate ::Left >>(

{0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

A(i,j) = 1000.0 * i + 1.0*j;

});

June 17, 2024 5/65

Module 3: Summary

Subviews

▶ Taking slices of Views

▶ Similar capability as provided by Matlab, Fortran, or Python

▶ Prefer the use of auto for the type

View <int ***> v("v", N0, N1, N2);

auto sv = subview(v, i0, ALL , make_pair(start ,end));

Unmanaged Views

▶ Interoperability with externally allocated arrays

▶ No reference counting, memory not deallocated at destruction

▶ User is responsible for insuring proper dynamic and/or static
extents, MemorySpace, Layout, etc.

View <float**, LayoutRight , HostSpace >

v_unmanaged(raw_ptr , N0, N1);

June 17, 2024 6/65

Module 3: Summary

Atomic operations

▶ Atomic functions available on the host or the device (e.g.
Kokkos::atomic add)

▶ Use Atomic memory trait for atomic accesses on Views

View <int*> v("v", N0);

View <int*, MemoryTraits <Atomic >> v_atomic = v;

▶ Use ScatterView for scatter-add parallel pattern

Dual Views

▶ For managing data synchronization between host and device
▶ Helps in codes with no holistic view of data flow

▶ In particular when porting codes incrementally

June 17, 2024 7/65

Module 4: Hierarchical Parallelism (08/07)

Hierarchical Parallelism

▶ How to leverage more parallelism through nested loops.

▶ The concept of Thread-Teams and Vectorlength.

Scratch Space

▶ Getting temporary workspace in kernels.

▶ Leveraging GPU Shared Memory.

Unique Token

▶ How to acquire safely per-thread resources.

June 17, 2024 8/65

Hierarchical parallelism
Finding and exploiting more parallelism in your computations.

Learning objectives:

▶ Similarities and differences between outer and inner levels of
parallelism

▶ Thread teams (league of teams of threads)

▶ Performance improvement with well-coordinated teams

June 17, 2024 9/65

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos :: parallel_reduce("yAx",N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?
▶ Atomics

▶ Thread teams

June 17, 2024 9/65

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos :: parallel_reduce("yAx",N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?
▶ Atomics

▶ Thread teams

June 17, 2024 9/65

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos :: parallel_reduce("yAx",N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?

▶ Atomics

▶ Thread teams

June 17, 2024 9/65

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos :: parallel_reduce("yAx",N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?
▶ Atomics

▶ Thread teams

June 17, 2024 10/65

Example: inner product (1)

Atomics kernel:

Kokkos :: parallel_for("yAx", N*M,

KOKKOS_LAMBDA (const size_t index) {

const int row = extractRow(index);

const int col = extractCol(index);

atomic_add (& result , y(row) * A(row ,col) * x(col));

});

Problem: Poor performance

June 17, 2024 10/65

Example: inner product (1)

Atomics kernel:

Kokkos :: parallel_for("yAx", N*M,

KOKKOS_LAMBDA (const size_t index) {

const int row = extractRow(index);

const int col = extractCol(index);

atomic_add (& result , y(row) * A(row ,col) * x(col));

});

Problem: Poor performance

June 17, 2024 11/65

Example: inner product (2)

Using an atomic with every element is doing scalar integration with
atomics. (See module 3)

Instead, you could envision doing a large number of
parallel reduce kernels.

for each row

Functor functor(row , ...);

parallel_reduce(M, functor);

}

This is an example of hierarchical work.

Important concept: Hierarchical parallelism

Algorithms that exhibit hierarchical structure can exploit
hierarchical parallelism with thread teams.

June 17, 2024 11/65

Example: inner product (2)

Using an atomic with every element is doing scalar integration with
atomics. (See module 3)

Instead, you could envision doing a large number of
parallel reduce kernels.

for each row

Functor functor(row , ...);

parallel_reduce(M, functor);

}

This is an example of hierarchical work.

Important concept: Hierarchical parallelism

Algorithms that exhibit hierarchical structure can exploit
hierarchical parallelism with thread teams.

June 17, 2024 12/65

Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.

High-level strategy:
1. Do one parallel launch of N teams.

2. Each team handles a row.

3. The threads within teams perform a reduction.

4. The thread teams perform a reduction.

June 17, 2024 12/65

Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.

High-level strategy:
1. Do one parallel launch of N teams.

2. Each team handles a row.

3. The threads within teams perform a reduction.

4. The thread teams perform a reduction.

June 17, 2024 13/65

Example: inner product (4)

The final hierarchical parallel kernel:

parallel_reduce("yAx",

team_policy(N, Kokkos ::AUTO),

KOKKOS_LAMBDA (const member_type & teamMember , double & update) {

int row = teamMember.league_rank ();

double thisRowsSum = 0;

parallel_reduce(TeamThreadRange(teamMember , M),

[=] (int col, double & innerUpdate) {

innerUpdate += A(row, col) * x(col);

}, thisRowsSum);

if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;

}

}, result);

June 17, 2024 14/65

TeamPolicy (0)

Important point

Using teams is changing the execution policy.

“Flat parallelism” uses RangePolicy:

We specify a total amount of work.

// total work = N

parallel_for("Label",

RangePolicy <ExecutionSpace >(0,N), functor);

“Hierarchical parallelism” uses TeamPolicy:

We specify a team size and a number of teams.

// total work = numberOfTeams * teamSize

parallel_for("Label",

TeamPolicy <ExecutionSpace >(numberOfTeams , teamSize), functor);

June 17, 2024 14/65

TeamPolicy (0)

Important point

Using teams is changing the execution policy.

“Flat parallelism” uses RangePolicy:

We specify a total amount of work.

// total work = N

parallel_for("Label",

RangePolicy <ExecutionSpace >(0,N), functor);

“Hierarchical parallelism” uses TeamPolicy:

We specify a team size and a number of teams.

// total work = numberOfTeams * teamSize

parallel_for("Label",

TeamPolicy <ExecutionSpace >(numberOfTeams , teamSize), functor);

June 17, 2024 15/65

TeamPolicy (1)

Important point

When using teams, functor operators receive a team member.

using member_type = typename TeamPolicy <ExecSpace >:: member_type;

void operator ()(const member_type & teamMember) {

// How many teams are there?
const unsigned int league_size = teamMember.league_size ();

// Which team am I on?
const unsigned int league_rank = teamMember.league_rank ();

// How many threads are in the team?
const unsigned int team_size = teamMember.team_size ();

// Which thread am I on this team?
const unsigned int team_rank = teamMember.team_rank ();

// Make threads in a team wait on each other:
teamMember.team_barrier ();

}

June 17, 2024 16/65

TeamThreadRange (0)

First attempt at exercise:

operator () (member_type & teamMember) {

const size_t row = teamMember.league_rank ();

const size_t col = teamMember.team_rank ();

atomic_add (& result ,y(row) * A(row ,col) * x(entry));

}

▶ When team size ̸= number of columns, how are units of work
mapped to team’s member threads? Is the mapping
architecture-dependent?

June 17, 2024 16/65

TeamThreadRange (0)

First attempt at exercise:

operator () (member_type & teamMember) {

const size_t row = teamMember.league_rank ();

const size_t col = teamMember.team_rank ();

atomic_add (& result ,y(row) * A(row ,col) * x(entry));

}

▶ When team size ̸= number of columns, how are units of work
mapped to team’s member threads? Is the mapping
architecture-dependent?

June 17, 2024 17/65

TeamThreadRange (1)

Second attempt at exercise:

Divide row length among team members.

operator () (member_type & teamMember) {

const size_t row = teamMember.league_rank ();

int begin = teamMember.team_rank ();

for(int col = begin; col < M; col += teamMember.team_size ()) {

atomic_add (& result , y(row) * A(row ,col) * x(entry));

}

}

▶ Still bad because atomic add performs badly under high
contention, how can team’s member threads performantly
cooperate for a nested reduction?

▶ On CPUs you get a bad data access pattern: this hardcodes
coalesced access, but not caching.

June 17, 2024 17/65

TeamThreadRange (1)

Second attempt at exercise:

Divide row length among team members.

operator () (member_type & teamMember) {

const size_t row = teamMember.league_rank ();

int begin = teamMember.team_rank ();

for(int col = begin; col < M; col += teamMember.team_size ()) {

atomic_add (& result , y(row) * A(row ,col) * x(entry));

}

}

▶ Still bad because atomic add performs badly under high
contention, how can team’s member threads performantly
cooperate for a nested reduction?

▶ On CPUs you get a bad data access pattern: this hardcodes
coalesced access, but not caching.

June 17, 2024 18/65

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {

thisRowsSum += A(row ,col) * x(col);

});

if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

⇒ Nested parallel patterns

June 17, 2024 18/65

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {

thisRowsSum += A(row ,col) * x(col);

});

if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

⇒ Nested parallel patterns

June 17, 2024 18/65

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {

thisRowsSum += A(row ,col) * x(col);

});

if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

⇒ Nested parallel patterns

June 17, 2024 18/65

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {

thisRowsSum += A(row ,col) * x(col);

});

if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

⇒ Nested parallel patterns

June 17, 2024 19/65

TeamThreadRange (3)

TeamThreadRange:

operator () (const member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

parallel_reduce(TeamThreadRange(teamMember , M),

[=] (const int col , double & thisRowsPartialSum) {

thisRowsPartialSum += A(row , col) * x(col);

}, thisRowsSum);

if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;

}

}

▶ The mapping of work indices to threads is
architecture-dependent.

▶ The amount of work given to the TeamThreadRange need
not be a multiple of the team size.

▶ Intrateam reduction handled by Kokkos.

June 17, 2024 19/65

TeamThreadRange (3)

TeamThreadRange:

operator () (const member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

parallel_reduce(TeamThreadRange(teamMember , M),

[=] (const int col , double & thisRowsPartialSum) {

thisRowsPartialSum += A(row , col) * x(col);

}, thisRowsSum);

if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;

}

}

▶ The mapping of work indices to threads is
architecture-dependent.

▶ The amount of work given to the TeamThreadRange need
not be a multiple of the team size.

▶ Intrateam reduction handled by Kokkos.

June 17, 2024 20/65

Nested parallelism

Anatomy of nested parallelism:

parallel_outer("Label",

TeamPolicy <ExecutionSpace >(numberOfTeams , teamSize),

KOKKOS_LAMBDA (const member_type & teamMember [, . . .]) {

/* beginning of outer body */

parallel_inner(

TeamThreadRange(teamMember , thisTeamsRangeSize),

[=] (const unsigned int indexWithinBatch [, . . .]) {

/* inner body */

} [, . . .]);
/* end of outer body */

} [, . . .]);

▶ parallel outer and parallel inner may be any
combination of for and/or reduce.

▶ The inner lambda may capture by reference, but
capture-by-value is recommended.

▶ The policy of the inner lambda is always a TeamThreadRange.

▶ TeamThreadRange cannot be nested.

June 17, 2024 21/65

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(

TeamPolicy <ExecutionSpace >(numberOfTeams , Kokkos ::AUTO),

/* functor */);

GPUs

▶ Special hardware available for coordination within a team.

▶ Within a team 32 (NVIDIA) or 64 (AMD) threads execute
“lock step.”

▶ Maximum team size: 1024; Recommended team size:
128/256

Intel Xeon Phi:

▶ Recommended team size: # hyperthreads per core

▶ Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing

June 17, 2024 21/65

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(

TeamPolicy <ExecutionSpace >(numberOfTeams , Kokkos ::AUTO),

/* functor */);

GPUs

▶ Special hardware available for coordination within a team.

▶ Within a team 32 (NVIDIA) or 64 (AMD) threads execute
“lock step.”

▶ Maximum team size: 1024; Recommended team size:
128/256

Intel Xeon Phi:

▶ Recommended team size: # hyperthreads per core

▶ Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing

June 17, 2024 21/65

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(

TeamPolicy <ExecutionSpace >(numberOfTeams , Kokkos ::AUTO),

/* functor */);

GPUs

▶ Special hardware available for coordination within a team.

▶ Within a team 32 (NVIDIA) or 64 (AMD) threads execute
“lock step.”

▶ Maximum team size: 1024; Recommended team size:
128/256

Intel Xeon Phi:

▶ Recommended team size: # hyperthreads per core

▶ Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing

June 17, 2024 22/65

Exercise: TeamPolicy

Details:

▶ Location: Exercises/team policy/

▶ Replace RangePolicy<Space> with TeamPolicy<Space>

▶ Use AUTO for team size

▶ Make the inner loop a parallel reduce with TeamThreadRange

policy

▶ Experiment with the combinations of Layout, Space, N to view
performance

▶ Hint: what should the layout of A be?

Things to try:

▶ Vary problem size and number of rows (-S ...; -N ...)

▶ Compare behavior with Exercise 4 for very non-square matrices

▶ Compare behavior of CPU vs GPU

June 17, 2024 23/65

Reminder, Exercise #4 with Flat Parallelism

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y|Ax> Exercise 04 (Layout) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

coalesced

cached

uncoalesced

cached

uncached

June 17, 2024 24/65

Exercise: TeamPolicy

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y|Ax> Exercise 05 (Layout/Teams) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

coalesced

cached

cached

June 17, 2024 25/65

Three-level parallelism (0)

Exposing Vector Level Parallelism
▶ Optional third level in the hierarchy: ThreadVectorRange

▶ Can be used for parallel for, parallel reduce, or
parallel scan.

▶ Maps to vectorizable loop on CPUs or (sub-)warp level
parallelism on GPUs.

▶ Enabled with a runtime vector length argument to
TeamPolicy

▶ There is no explicit access to a vector lane ID.

▶ Depending on the backend the full global parallel region has
active vector lanes.

▶ TeamVectorRange uses both thread and vector parallelism.

June 17, 2024 26/65

Three-level parallelism (1)
Anatomy of nested parallelism:

parallel_outer("Label",

TeamPolicy <>(numberOfTeams , teamSize , vectorLength),

KOKKOS_LAMBDA (const member_type & teamMember [, . . .]) {

/* beginning of outer body */

parallel_middle(

TeamThreadRange(teamMember , thisTeamsRangeSize),

[=] (const int indexWithinBatch [, . . .]) {

/* begin middle body */

parallel_inner(

ThreadVectorRange(teamMember , thisVectorRangeSize),

[=] (const int indexVectorRange [, . . .]) {

/* inner body */

} [,) ;
/∗ end midd le body ∗/

}[, ...]) ;
p a r a l l e l m i d d l e (
TeamVectorRange (teamMember , someSize) ,

[=] (con s t i n t indexTeamVector [, . . .]) {
/∗ ne s t ed body ∗/

} [, . . .]) ;
/∗ end o f ou t e r body ∗/

}[, ...]) ;

June 17, 2024 27/65

Sum sanity checks (0)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", RangePolicy <>(0, numberOfThreads),

KOKKOS_LAMBDA (size_t& index , int& partialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

partialSum += thisThreadsSum;

}, totalSum);

totalSum = numberOfThreads * 10

June 17, 2024 27/65

Sum sanity checks (0)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", RangePolicy <>(0, numberOfThreads),

KOKKOS_LAMBDA (size_t& index , int& partialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

partialSum += thisThreadsSum;

}, totalSum);

totalSum = numberOfThreads * 10

June 17, 2024 28/65

Sum sanity checks (1)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

partialSum += thisThreadsSum;

}, totalSum);

totalSum = numberOfTeams * team size * 10

June 17, 2024 28/65

Sum sanity checks (1)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

partialSum += thisThreadsSum;

}, totalSum);

totalSum = numberOfTeams * team size * 10

June 17, 2024 29/65

Sum sanity checks (2)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {

int thisTeamsSum = 0;

parallel_reduce(TeamThreadRange(teamMember , team_size),

[=] (const int index , int& thisTeamsPartialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

thisTeamsPartialSum += thisThreadsSum;

}, thisTeamsSum);

partialSum += thisTeamsSum;

}, totalSum);

totalSum = numberOfTeams * team size * team size * 10

June 17, 2024 29/65

Sum sanity checks (2)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {

int thisTeamsSum = 0;

parallel_reduce(TeamThreadRange(teamMember , team_size),

[=] (const int index , int& thisTeamsPartialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

thisTeamsPartialSum += thisThreadsSum;

}, thisTeamsSum);

partialSum += thisTeamsSum;

}, totalSum);

totalSum = numberOfTeams * team size * team size * 10

June 17, 2024 30/65

Restricting Execution: single pattern

The single pattern can be used to restrict execution

▶ Like parallel patterns it takes a policy, a lambda, and
optionally a broadcast argument.

▶ Two policies: PerTeam and PerThread.

▶ Equivalent to OpenMP single directive with nowait

// Restrict to once per thread

single(PerThread(teamMember), [&] () {

// code

});

// Restrict to once per team with broadcast

int broadcastedValue = 0;

single(PerTeam(teamMember), [&] (int& broadcastedValue_local) {

broadcastedValue_local = special value assigned by one;

}, broadcastedValue);

// Now everyone has the special value

June 17, 2024 31/65

Exercise: TeamVectorLoop

The previous example was extended with an outer loop over
“Elements” to expose a third natural layer of parallelism.

Details:

▶ Location: Exercises/team vector loop/

▶ Use the single policy instead of checking team rank

▶ Parallelize all three loop levels.

Things to try:

▶ Vary problem size and number of rows (-S ...; -N ...)

▶ Compare behavior with TeamPolicy Exercise for very non-square
matrices

▶ Compare behavior of CPU vs GPU

June 17, 2024 32/65

Exercise: TeamVectorLoop

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 10 100 1000 10000 100000 1x106

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y|Ax> Exercise 06 (Three Level Parallelism) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

2L HSW Begin
3L HSW

2L KNL Begin
3L KNL

2L Pascal60 Begin
3L Pascal60

June 17, 2024 33/65

Section Summary

▶ Hierarchical work can be parallelized via hierarchical
parallelism.

▶ Hierarchical parallelism is leveraged using thread teams
launched with a TeamPolicy.

▶ Team “worksets” are processed by a team in nested
parallel for (or reduce or scan) calls with a
TeamThreadRange, ThreadVectorRange, and
TeamVectorRange policy.

▶ Execution can be restricted to a subset of the team with the
single pattern using either a PerTeam or PerThread policy.

June 17, 2024 34/65

Scratch memory

Learning objectives:

▶ Understand concept of team and thread private scratch
pads

▶ Understand how scratch memory can reduce global memory
accesses

▶ Recognize when to use scratch memory

▶ Understand how to use scratch memory and when barriers
are necessary

June 17, 2024 35/65

Types of Scratch Space Uses

Two Levels of Scratch Space

▶ Level 0 is limited in size but fast.

▶ Level 1 allows larger allocations but is equivalent to High
Bandwidth Memory in latency and bandwidth.

Team or Thread private memory

▶ Typically used for per work-item temporary storage.

▶ Advantage over pre-allocated memory is aggregate size scales
with number of threads, not number of work-items.

Manually Managed Cache

▶ Explicitly cache frequently used data.

▶ Exposes hardware specific on-core scratch space (e.g. NVIDIA
GPU Shared Memory).

Now: Discuss Manually Managed Cache Usecase.

June 17, 2024 35/65

Types of Scratch Space Uses

Two Levels of Scratch Space

▶ Level 0 is limited in size but fast.

▶ Level 1 allows larger allocations but is equivalent to High
Bandwidth Memory in latency and bandwidth.

Team or Thread private memory

▶ Typically used for per work-item temporary storage.

▶ Advantage over pre-allocated memory is aggregate size scales
with number of threads, not number of work-items.

Manually Managed Cache

▶ Explicitly cache frequently used data.

▶ Exposes hardware specific on-core scratch space (e.g. NVIDIA
GPU Shared Memory).

Now: Discuss Manually Managed Cache Usecase.

June 17, 2024 36/65

Example: contractDataFieldScalar (1)

One slice of contractDataFieldScalar:

for (qp = 0; qp < numberOfQPs; ++qp) {

total = 0;

for (i = 0; i < vectorSize; ++i) {

total += A(qp, i) * B(i);

}

result(qp) = total;

}

June 17, 2024 37/65

Example: contractDataFieldScalar (2)

contractDataFieldScalar:

for (element = 0; element < numberOfElements; ++ element) {

for (qp = 0; qp < numberOfQPs; ++qp) {

total = 0;

for (i = 0; i < vectorSize; ++i) {

total += A(element , qp, i) * B(element , i);

}

result(element , qp) = total;

}

}

June 17, 2024 38/65

Example: contractDataFieldScalar (3)

Parallelization approaches:

▶ Each thread handles an element.
Threads: numberOfElements

▶ Each thread handles a qp.
Threads: numberOfElements * numberOfQPs

▶ Each thread handles an i.
Threads: numElements * numQPs * vectorSize

Requires a parallel reduce.

June 17, 2024 38/65

Example: contractDataFieldScalar (3)

Parallelization approaches:

▶ Each thread handles an element.
Threads: numberOfElements

▶ Each thread handles a qp.
Threads: numberOfElements * numberOfQPs

▶ Each thread handles an i.
Threads: numElements * numQPs * vectorSize

Requires a parallel reduce.

June 17, 2024 38/65

Example: contractDataFieldScalar (3)

Parallelization approaches:

▶ Each thread handles an element.
Threads: numberOfElements

▶ Each thread handles a qp.
Threads: numberOfElements * numberOfQPs

▶ Each thread handles an i.
Threads: numElements * numQPs * vectorSize

Requires a parallel reduce.

June 17, 2024 38/65

Example: contractDataFieldScalar (3)

Parallelization approaches:

▶ Each thread handles an element.
Threads: numberOfElements

▶ Each thread handles a qp.
Threads: numberOfElements * numberOfQPs

▶ Each thread handles an i.
Threads: numElements * numQPs * vectorSize

Requires a parallel reduce.

June 17, 2024 39/65

Example: contractDataFieldScalar (4)

Flat kernel: Each thread handles a quadrature point

parallel_for("L",MDRangePolicy <Rank <2>>({0,0},{numE ,numQP}),

KOKKOS_LAMBDA(int element , int qp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

total += A(element , qp, i) * B(element , i);

}

result(element , qp) = total;

}

June 17, 2024 40/65

Example: contractDataFieldScalar (6)

Teams kernel: Each team handles an element

operator ()(member_type teamMember) {

int element = teamMember.league_rank ();

parallel_for(

TeamThreadRange(teamMember , numberOfQPs),

[=] (int qp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

total += A(element , qp, i) * B(element , i);

}

result(element , qp) = total;

});

}

June 17, 2024 40/65

Example: contractDataFieldScalar (6)

Teams kernel: Each team handles an element

operator ()(member_type teamMember) {

int element = teamMember.league_rank ();

parallel_for(

TeamThreadRange(teamMember , numberOfQPs),

[=] (int qp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

total += A(element , qp, i) * B(element , i);

}

result(element , qp) = total;

});

} No real advantage (yet)

June 17, 2024 41/65

Scratch memory (0)

Each team has access to a “scratch pad”.

June 17, 2024 42/65

Scratch memory (1)

Scratch memory (scratch pad) as manual cache:

▶ Accessing data in (level 0) scratch memory is (usually) much
faster than global memory.

▶ GPUs have separate, dedicated, small, low-latency scratch
memories (NOT subject to coalescing requirements).

▶ CPUs don’t have special hardware, but programming with
scratch memory results in cache-aware memory access
patterns.

▶ Roughly, it’s like a user-managed L1 cache.

Important concept

When members of a team read the same data multiple times, it’s
better to load the data into scratch memory and read from there.

June 17, 2024 42/65

Scratch memory (1)

Scratch memory (scratch pad) as manual cache:

▶ Accessing data in (level 0) scratch memory is (usually) much
faster than global memory.

▶ GPUs have separate, dedicated, small, low-latency scratch
memories (NOT subject to coalescing requirements).

▶ CPUs don’t have special hardware, but programming with
scratch memory results in cache-aware memory access
patterns.

▶ Roughly, it’s like a user-managed L1 cache.

Important concept

When members of a team read the same data multiple times, it’s
better to load the data into scratch memory and read from there.

June 17, 2024 43/65

Scratch memory (2)

Scratch memory for temporary per work-item storage:

▶ Scenario: Algorithm requires temporary workspace of size W.

▶ Without scratch memory: pre-allocate space for N
work-items of size N x W.

▶ With scratch memory: Kokkos pre-allocates space for each
Team or Thread of size T x W.

▶ PerThread and PerTeam scratch can be used concurrently.

▶ Level 0 and Level 1 scratch memory can be used concurrently.

Important concept

If an algorithm requires temporary workspace for each work-item,
then use Kokkos’ scratch memory.

June 17, 2024 43/65

Scratch memory (2)

Scratch memory for temporary per work-item storage:

▶ Scenario: Algorithm requires temporary workspace of size W.

▶ Without scratch memory: pre-allocate space for N
work-items of size N x W.

▶ With scratch memory: Kokkos pre-allocates space for each
Team or Thread of size T x W.

▶ PerThread and PerTeam scratch can be used concurrently.

▶ Level 0 and Level 1 scratch memory can be used concurrently.

Important concept

If an algorithm requires temporary workspace for each work-item,
then use Kokkos’ scratch memory.

June 17, 2024 44/65

Scratch memory (3)

To use scratch memory, you need to:

1. Tell Kokkos how much scratch memory you’ll need.

2. Make scratch memory views inside your kernels.

TeamPolicy <ExecutionSpace > policy(numberOfTeams , teamSize);

// Define a scratch memory view type

using ScratchPadView =

View <double*,ExecutionSpace :: scratch_memory_space >;

// Compute how much scratch memory (in bytes) is needed

size_t bytes = ScratchPadView :: shmem_size(vectorSize);

// Tell the policy how much scratch memory is needed

int level = 0;

parallel_for(policy.set_scratch_size(level , PerTeam(bytes)),

KOKKOS_LAMBDA (const member_type& teamMember) {

// Create a view from the pre -existing scratch memory

ScratchPadView scratch(teamMember.team_scratch(level),

vectorSize);

});

June 17, 2024 44/65

Scratch memory (3)

To use scratch memory, you need to:

1. Tell Kokkos how much scratch memory you’ll need.

2. Make scratch memory views inside your kernels.

TeamPolicy <ExecutionSpace > policy(numberOfTeams , teamSize);

// Define a scratch memory view type

using ScratchPadView =

View <double*,ExecutionSpace :: scratch_memory_space >;

// Compute how much scratch memory (in bytes) is needed

size_t bytes = ScratchPadView :: shmem_size(vectorSize);

// Tell the policy how much scratch memory is needed

int level = 0;

parallel_for(policy.set_scratch_size(level , PerTeam(bytes)),

KOKKOS_LAMBDA (const member_type& teamMember) {

// Create a view from the pre -existing scratch memory

ScratchPadView scratch(teamMember.team_scratch(level),

vectorSize);

});

June 17, 2024 45/65

Example: contractDataFieldScalar (7)

Kernel outline for teams with scratch memory:

operator ()(member_type teamMember) {

ScratchPadView scratch(teamMember.team_scratch (0),

vectorSize);

// TODO: load slice of B into scratch

parallel_for(

TeamThreadRange(teamMember , numberOfQPs),

[=] (int qp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

// total += A(element , qp , i) * B(element , i);

total += A(element , qp, i) * scratch(i);

}

result(element , qp) = total;

});

}

June 17, 2024 46/65

Example: contractDataFieldScalar (8)

How to populate the scratch memory?
▶ One thread loads it all?

if (teamMember.team_rank () == 0) {

for (int i = 0; i < vectorSize; ++i) {

scratch(i) = B(element , i);

}

}

▶

scratch(team_rank) = B(element , team_rank);

▶

parallel_for(

TeamVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

June 17, 2024 46/65

Example: contractDataFieldScalar (8)

How to populate the scratch memory?
▶ One thread loads it all? Serial

if (teamMember.team_rank () == 0) {

for (int i = 0; i < vectorSize; ++i) {

scratch(i) = B(element , i);

}

}

▶ Each thread loads one entry?

scratch(team_rank) = B(element , team_rank);

▶

parallel_for(

TeamVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

June 17, 2024 46/65

Example: contractDataFieldScalar (8)

How to populate the scratch memory?
▶ One thread loads it all? Serial

if (teamMember.team_rank () == 0) {

for (int i = 0; i < vectorSize; ++i) {

scratch(i) = B(element , i);

}

}

▶ Each thread loads one entry? teamSize ̸= vectorSize

scratch(team_rank) = B(element , team_rank);

▶ TeamVectorRange

parallel_for(

TeamVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

June 17, 2024 46/65

Example: contractDataFieldScalar (8)

How to populate the scratch memory?
▶ One thread loads it all? Serial

if (teamMember.team_rank () == 0) {

for (int i = 0; i < vectorSize; ++i) {

scratch(i) = B(element , i);

}

}

▶ Each thread loads one entry? teamSize ̸= vectorSize

scratch(team_rank) = B(element , team_rank);

▶ TeamVectorRange

parallel_for(

TeamVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

June 17, 2024 47/65

Example: contractDataFieldScalar (9)

(incomplete) Kernel for teams with scratch memory:

operator ()(member_type teamMember) {

ScratchPadView scratch (...);

parallel_for(TeamVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

// TODO: fix a problem at this location

parallel_for(TeamThreadRange(teamMember , numberOfQPs),

[=] (int qp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

total += A(element , qp, i) * scratch(i);

}

result(element , qp) = total;

});

}

Problem: threads may start to use scratch before all threads are
done loading.

June 17, 2024 47/65

Example: contractDataFieldScalar (9)

(incomplete) Kernel for teams with scratch memory:

operator ()(member_type teamMember) {

ScratchPadView scratch (...);

parallel_for(TeamVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

// TODO: fix a problem at this location

parallel_for(TeamThreadRange(teamMember , numberOfQPs),

[=] (int qp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

total += A(element , qp, i) * scratch(i);

}

result(element , qp) = total;

});

}

Problem: threads may start to use scratch before all threads are
done loading.

June 17, 2024 48/65

Example: contractDataFieldScalar (10)

Kernel for teams with scratch memory:

operator ()(member_type teamMember) {

ScratchPadView scratch (...);

parallel_for(TeamVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

teamMember . t e am ba r r i e r () ;

parallel_for(TeamThreadRange(teamMember , numberOfQPs),

[=] (int qp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

total += A(element , qp, i) * scratch(i);

}

result(element , qp) = total;

});

}

June 17, 2024 49/65

Exercise: Scratch Memory

Use Scratch Memory to explicitly cache the x-vector for each
element.

Details:

▶ Location: Exercises/team scratch memory/

▶ Create a scratch view

▶ Fill the scratch view in parallel using a TeamVectorRange

Things to try:

▶ Vary problem size and number of rows (-S ...; -N ...)

▶ Compare behavior with Exercise 6

▶ Compare behavior of CPU vs GPU

June 17, 2024 50/65

Exercise: Scratch Memory

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

Exercise 07 (Scratch Memory) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

06 HSW
07 HSW
06 KNL
07 KNL
06 Pascal60
07 Pascal60

June 17, 2024 51/65

Scratch Memory: API Details

Allocating scratch in different levels:

int level = 1; // valid values 0,1

policy.set_scratch_size(level ,PerTeam(bytes));

Using PerThread, PerTeam or both:

policy.set_scratch_size(level ,PerTeam(bytes));

policy.set_scratch_size(level ,PerThread(bytes));

policy.set_scratch_size(level ,PerTeam(bytes1),

PerThread(bytes2));

Using both levels of scratch:

policy.set_scratch_size (0,PerTeam(bytes0))

.set_scratch_size (1,PerThread(bytes1));

Note: set scratch size() returns a new policy instance, it
doesn’t modify the existing one.

June 17, 2024 51/65

Scratch Memory: API Details

Allocating scratch in different levels:

int level = 1; // valid values 0,1

policy.set_scratch_size(level ,PerTeam(bytes));

Using PerThread, PerTeam or both:

policy.set_scratch_size(level ,PerTeam(bytes));

policy.set_scratch_size(level ,PerThread(bytes));

policy.set_scratch_size(level ,PerTeam(bytes1),

PerThread(bytes2));

Using both levels of scratch:

policy.set_scratch_size (0,PerTeam(bytes0))

.set_scratch_size (1,PerThread(bytes1));

Note: set scratch size() returns a new policy instance, it
doesn’t modify the existing one.

June 17, 2024 51/65

Scratch Memory: API Details

Allocating scratch in different levels:

int level = 1; // valid values 0,1

policy.set_scratch_size(level ,PerTeam(bytes));

Using PerThread, PerTeam or both:

policy.set_scratch_size(level ,PerTeam(bytes));

policy.set_scratch_size(level ,PerThread(bytes));

policy.set_scratch_size(level ,PerTeam(bytes1),

PerThread(bytes2));

Using both levels of scratch:

policy.set_scratch_size (0,PerTeam(bytes0))

.set_scratch_size (1,PerThread(bytes1));

Note: set scratch size() returns a new policy instance, it
doesn’t modify the existing one.

June 17, 2024 52/65

Section Summary

▶ Scratch Memory can be use with the TeamPolicy to
provide thread or team private memory.

▶ Usecase: per work-item temporary storage or manual caching.

▶ Scratch memory exposes on-chip user managed caches (e.g.
on NVIDIA GPUs)

▶ The size must be determined before launching a kernel.

▶ Two levels are available: large/slow and small/fast.

June 17, 2024 53/65

Unique Token

Learning objectives:

▶ Understand concept of unique tokens and thread-safe resource
access.

▶ Learn how to acquire per-team unique ids.

▶ Understand the difference between Global and Instance
scope.

June 17, 2024 54/65

Unique Tokens - Motivation

Why do we need a unique token concept?

▶ Within Functor operator / Lambda there is no portable way
to identify the active execution resource (thread id)

▶ Some algorithms make efficient use of shared resources by
dividing based on execution resource (thread id)

▶ Thread Id is not consistent or portable across all execution
environments

▶ Unique Token provides consistent identifier for resource
allocations and work division

June 17, 2024 55/65

Unique Tokens - Motivation

Original Example: Random Number Generator Pool

int N = 10000000

int K = ...;

RandomGenPool pool(K,seed);

parallel_for("Loop", N, KOKKOS_LAMBDA(int i) {

int gen_id = ...

auto gen = pool[gen_id];

});

How many generators do we need (K)?

How to get a unique one in the loop (gen id)?

In OpenMP we could use the thread-id but what in CUDA?

June 17, 2024 55/65

Unique Tokens - Motivation

Original Example: Random Number Generator Pool

int N = 10000000

int K = ...;

RandomGenPool pool(K,seed);

parallel_for("Loop", N, KOKKOS_LAMBDA(int i) {

int gen_id = ...

auto gen = pool[gen_id];

});

How many generators do we need (K)?

How to get a unique one in the loop (gen id)?

In OpenMP we could use the thread-id but what in CUDA?

June 17, 2024 55/65

Unique Tokens - Motivation

Original Example: Random Number Generator Pool

int N = 10000000

int K = ...;

RandomGenPool pool(K,seed);

parallel_for("Loop", N, KOKKOS_LAMBDA(int i) {

int gen_id = ...

auto gen = pool[gen_id];

});

How many generators do we need (K)?

How to get a unique one in the loop (gen id)?

In OpenMP we could use the thread-id but what in CUDA?

June 17, 2024 56/65

Unique Tokens - Motivation

Motivating Example

OpenMP
int K = omp_get_max_threads ();

Kokkos :: parallel_for("L", N, KOKKOS_LAMBDA(int i) {

int tid = omp_get_thread_num ();

});

CUDA
int K = N; // ??

Kokkos :: parallel_for("L", N, KOKKOS_LAMBDA(int i) {

int tid = threadIdx.x + blockDim.x * blockIdx.x; //i??

});

Problem: In CUDA there is no way to get hardware thread-id.

Solution: We need a thread-safe and portable way to obtain
unique identifier that is per-thread specific.

⇒ UniqueToken

June 17, 2024 56/65

Unique Tokens - Motivation

Motivating Example

OpenMP
int K = omp_get_max_threads ();

Kokkos :: parallel_for("L", N, KOKKOS_LAMBDA(int i) {

int tid = omp_get_thread_num ();

});

CUDA
int K = N; // ??

Kokkos :: parallel_for("L", N, KOKKOS_LAMBDA(int i) {

int tid = threadIdx.x + blockDim.x * blockIdx.x; //i??

});

Problem: In CUDA there is no way to get hardware thread-id.

Solution: We need a thread-safe and portable way to obtain
unique identifier that is per-thread specific.

⇒ UniqueToken

June 17, 2024 56/65

Unique Tokens - Motivation

Motivating Example

OpenMP
int K = omp_get_max_threads ();

Kokkos :: parallel_for("L", N, KOKKOS_LAMBDA(int i) {

int tid = omp_get_thread_num ();

});

CUDA
int K = N; // ??

Kokkos :: parallel_for("L", N, KOKKOS_LAMBDA(int i) {

int tid = threadIdx.x + blockDim.x * blockIdx.x; //i??

});

Problem: In CUDA there is no way to get hardware thread-id.

Solution: We need a thread-safe and portable way to obtain
unique identifier that is per-thread specific.

⇒ UniqueToken

June 17, 2024 57/65

Unique Token

UniqueToken is a pool of IDs

▶ User acquires an ID and releases it again.

UniqueToken <ExecutionSpace > token;

int number_of_uniqe_ids = token.size ();

RandomGenPool pool(number_of_unique_ids ,seed);

parallel_for("L", N, KOKKOS_LAMBDA(int i) {

int id = token.acquire ();

RandomGen gen = pool(id);

...

token.release(id);

});

▶ Do not acquire more than one token in an iteration.

▶ You must release the token again.

▶ By default the range of ids is 0 to
ExecSpace().concurrency().

June 17, 2024 57/65

Unique Token

UniqueToken is a pool of IDs

▶ User acquires an ID and releases it again.

UniqueToken <ExecutionSpace > token;

int number_of_uniqe_ids = token.size ();

RandomGenPool pool(number_of_unique_ids ,seed);

parallel_for("L", N, KOKKOS_LAMBDA(int i) {

int id = token.acquire ();

RandomGen gen = pool(id);

...

token.release(id);

});

▶ Do not acquire more than one token in an iteration.

▶ You must release the token again.

▶ By default the range of ids is 0 to
ExecSpace().concurrency().

June 17, 2024 58/65

Unique Token - Global vs. Instance Scope

Sometimes you need a Global UniqueToken

▶ Submitting concurrent kernels to CUDA streams (Module 5)

▶ Shared resource in a multi-threaded environment like Legion

UniqueToken is Scoped

UniqueToken has a Scope template parameter which by default is
’Instance’ but can be ’Global’.

void foo() {

UniqueToken <ExecSpace ,UniqueTokenScope ::Global > token_foo;

parallel_for("L", RangePolicy <ExecSpace >(stream1 ,0,N)

, functor_a(token_foo));

}

void bar() {

UniqueToken <ExecSpace ,UniqueTokenScope ::Global > token_bar;

parallel_for("L", RangePolicy <ExecSpace >(stream2 ,0,N)

, functor_b(token_bar));

}

token foo and token bar will provide non-conflicting ids.

June 17, 2024 58/65

Unique Token - Global vs. Instance Scope

Sometimes you need a Global UniqueToken

▶ Submitting concurrent kernels to CUDA streams (Module 5)

▶ Shared resource in a multi-threaded environment like Legion

UniqueToken is Scoped

UniqueToken has a Scope template parameter which by default is
’Instance’ but can be ’Global’.

void foo() {

UniqueToken <ExecSpace ,UniqueTokenScope ::Global > token_foo;

parallel_for("L", RangePolicy <ExecSpace >(stream1 ,0,N)

, functor_a(token_foo));

}

void bar() {

UniqueToken <ExecSpace ,UniqueTokenScope ::Global > token_bar;

parallel_for("L", RangePolicy <ExecSpace >(stream2 ,0,N)

, functor_b(token_bar));

}

token foo and token bar will provide non-conflicting ids.

June 17, 2024 58/65

Unique Token - Global vs. Instance Scope

Sometimes you need a Global UniqueToken

▶ Submitting concurrent kernels to CUDA streams (Module 5)

▶ Shared resource in a multi-threaded environment like Legion

UniqueToken is Scoped

UniqueToken has a Scope template parameter which by default is
’Instance’ but can be ’Global’.

void foo() {

UniqueToken <ExecSpace ,UniqueTokenScope ::Global > token_foo;

parallel_for("L", RangePolicy <ExecSpace >(stream1 ,0,N)

, functor_a(token_foo));

}

void bar() {

UniqueToken <ExecSpace ,UniqueTokenScope ::Global > token_bar;

parallel_for("L", RangePolicy <ExecSpace >(stream2 ,0,N)

, functor_b(token_bar));

}

token foo and token bar will provide non-conflicting ids.

June 17, 2024 58/65

Unique Token - Global vs. Instance Scope

Sometimes you need a Global UniqueToken

▶ Submitting concurrent kernels to CUDA streams (Module 5)

▶ Shared resource in a multi-threaded environment like Legion

UniqueToken is Scoped

UniqueToken has a Scope template parameter which by default is
’Instance’ but can be ’Global’.

void foo() {

UniqueToken <ExecSpace ,UniqueTokenScope ::Global > token_foo;

parallel_for("L", RangePolicy <ExecSpace >(stream1 ,0,N)

, functor_a(token_foo));

}

void bar() {

UniqueToken <ExecSpace ,UniqueTokenScope ::Global > token_bar;

parallel_for("L", RangePolicy <ExecSpace >(stream2 ,0,N)

, functor_b(token_bar));

}

token foo and token bar will provide non-conflicting ids.

June 17, 2024 59/65

Unique Token - Per Team

UniqueToken can also be used for Per-Team resources

There are less teams active than threads. How to get an ID?

Sized UniqueToken

UniqueToken supports custom ranges of ids via constructing sized
tokens.

Acquiring a per-team unique id requires three steps:

▶ Compute the range via concurrency and team size.
▶ Create a sized UniqueToken.

▶ For performance reason make it a bit larger than necessary.

▶ Acquire and broadcast a token in a single pattern.

June 17, 2024 59/65

Unique Token - Per Team

UniqueToken can also be used for Per-Team resources

There are less teams active than threads. How to get an ID?

Sized UniqueToken

UniqueToken supports custom ranges of ids via constructing sized
tokens.

Acquiring a per-team unique id requires three steps:

▶ Compute the range via concurrency and team size.
▶ Create a sized UniqueToken.

▶ For performance reason make it a bit larger than necessary.

▶ Acquire and broadcast a token in a single pattern.

June 17, 2024 59/65

Unique Token - Per Team

UniqueToken can also be used for Per-Team resources

There are less teams active than threads. How to get an ID?

Sized UniqueToken

UniqueToken supports custom ranges of ids via constructing sized
tokens.

Acquiring a per-team unique id requires three steps:

▶ Compute the range via concurrency and team size.
▶ Create a sized UniqueToken.

▶ For performance reason make it a bit larger than necessary.

▶ Acquire and broadcast a token in a single pattern.

June 17, 2024 60/65

Unique Token - Per Team

// Figure out the team size

int team_size = ...;

// How many teams are actually in-flight

int num_active_teams = ExecSpace (). concurrency ()/ team_size;

// Create the token

UniqueToken <ExecSpace > token(num_active_teams * 1.2);

parallel_for("L", TeamPolicy <ExecSpace >(N,team_size),

KOKKOS_LAMBDA(const team_t& team) {

int id;

// Acquire an id and broadcast it with a single thread

single(PerTeam(team),[&](int &lid) {

lid = token.acquire ();

},id);

...

// Release the id again (likely you want a barrier first!)

single(PerTeam(team) ,[&]() {

token.release(id);

});

June 17, 2024 61/65

Exercise UniqueToken

▶ Location: Exercises/unique token/Begin/

▶ Assignment: Convert scatter add loop to use UniqueToken,
removing #ifdef’s

▶ Compile and run on both CPU and GPU

make -j KOKKOS_DEVICES=OpenMP # CPU -only using OpenMP

make -j KOKKOS_DEVICES=Cuda # GPU - note UVM in Makefile

Run exercise

./ uniquetoken.host

./ uniquetoken.cuda

Note the warnings , set appropriate environment variables

▶ Compare performance on CPU of the three variants

▶ Compare performance on GPU of the two variants

▶ Vary problem size: first and second optional argument

June 17, 2024 62/65

Section Summary

▶ UniqueToken provides a thread safe portable way to divide
thread or team specific resources

▶ UniqueToken can be sized, such that it returns only ids
within a specific range.

▶ A Global scope UniqueToken can be acquired, allowing safe
ids accross disjoint concurrent code sections.

June 17, 2024 63/65

Module 4: Summary

Hierarchal Parallelism

▶ Hierarchical work can be parallelized via hierarchical
parallelism.

▶ Hierarchical parallelism is leveraged using thread teams
launched with a TeamPolicy.

▶ Team “worksets” are processed by a team in nested
parallel for (or reduce or scan) calls with a
TeamThreadRange and ThreadVectorRange policy.

▶ Execution can be restricted to a subset of the team with the
single pattern using either a PerTeam or PerThread policy.

▶ Teams can be used to reduce contention for global resources
even in “flat” algorithms.

June 17, 2024 64/65

Module 4: Summary

Scratch Space

▶ Scratch Memory can be use with the TeamPolicy to
provide thread or team private memory.

▶ Usecase: per work-item temporary storage or manual caching.

▶ Scratch memory exposes on-chip user managed caches (e.g.
on NVIDIA GPUs)

▶ The size must be determined before launching a kernel.

▶ Two levels are available: large/slow and small/fast.

Unique Token

▶ UniqueToken give a thread safe portable way to divide
thread specific resources

▶ UniqueToken can be sized to restrict ids to a range.

▶ A Global UniqueToken is available.

June 17, 2024 65/65

Module 5: Outlook (08/14)

Task Parallelism:

▶ Basic interface for fine-grained tasking in Kokkos

▶ How to express dynamic dependency structures in Kokkos

Streams: Concurrent Execution Spaces

▶ How to use Streams within Kokkos Execution spaces

SIMD: Portable vector intrinsic types

▶ How to use SIMD types to improve vectorization

▶ Alternative to ThreadVector loops and outer loop
vectorization

Don’t Forget: Join the Slack Channel and drop into our office
hours on Monday.

Updates at: kokkos.link/the-lectures-updates

Recordings/Slides: kokkos.link/the-lectures

https://kokkos.link/the-lectures-updates
https://kokkos.link/the-lectures

