
The Kokkos Lectures

Module 3: MultiDimensional Loops and Data Structures

June 17, 2024

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2020-7908 PE

June 17, 2024 2/72

Welcome to Kokkos

Online Resources:
▶ https://github.com/kokkos:

▶ Primary Kokkos GitHub Organization

▶ https://kokkos.github.io/kokkos-core-wiki
▶ Slides, recording and Q&A for the Lectures

▶ https://kokkos.github.io/kokkos-core-wiki:
▶ Wiki including API reference

▶ https://kokkosteam.slack.com:
▶ Slack channel for Kokkos.
▶ Please join: fastest way to get your questions answered.
▶ Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://kokkos.github.io/kokkos-core-wiki
https://kokkos.github.io/kokkos-core-wiki
https://kokkosteam.slack.com

June 17, 2024 3/72

Lecture Series Outline

▶ 07/17 Module 1: Introduction, Building and Parallel Dispatch

▶ 07/24 Module 2: Views and Spaces

▶ 07/31 Module 3: Data Structures + MultiDimensional
Loops

▶ 08/07 Module 4: Hierarchical Parallelism

▶ 08/14 Module 5: Tasking, Streams and SIMD

▶ 08/21 Module 6: Internode: MPI and PGAS

▶ 08/28 Module 7: Tools: Profiling, Tuning and Debugging

▶ 09/04 Module 8: Kernels: Sparse and Dense Linear Algebra

▶ 09/11 Reserve Day

June 17, 2024 4/72

Module 1: Summary

Kokkos EcoSystem
Building Kokkos
Data Parallelism:

▶ Simple parallel loops use the parallel for pattern:

parallel_for("Label",N, [=] (int64_t i) {

/* loop body */

});

▶ Reductions combine contributions from loop iterations

int result;

parallel_reduce("Label",N, [=] (int64_t i, int& lres) {

/* loop body */

lres += /* something */

},result);

Recording: https://bit.ly/kokkos-lecture-series-1

https://bit.ly/kokkos-lecture-series-1

June 17, 2024 5/72

Module 2: Summary

Kokkos View

▶ Multi Dimensional Array.

▶ Compile and Runtime Dimensions.

▶ Reference counted like a std::shared ptr to an array.

Kokkos ::View <int*[5]> a("A", N);

a(3,2) = 7;

Execution Spaces

▶ Parallel operations execute in a specified Execution Space

▶ Can be controlled via template argument to Execution Policy

▶ If no Execution Space is provided use
DefaultExecutionSpace

// Equivalent:

parallel_for("L", N, functor);

parallel_for("L",

RangePolicy <DefaultExecutionSpace >(0, N), functor);

June 17, 2024 6/72

Module 2: Summary

Memory Spaces

▶ Kokkos Views store data in Memory Spaces.

▶ Provided as template parameter.

▶ If no Memory Space is given, use
Kokkos::DefaultExecutionSpace::memory space.

▶ deep copy is used to transfer data: no hidden memory copies
by Kokkos.

View <int*, CudaSpace > a("A", M);

// View in host memory to load from file

auto h_a = create_mirror_view(a);

load_from_file(h_a);

// Copy

deep_copy(a,h_a);

June 17, 2024 7/72

Module 2: Summary

Layouts

▶ Kokkos Views use an index mapping to memory determined
by a Layout.

▶ Provided as template parameter.

▶ If no Layout is given, derived from the execution space
associated with the memory space.

▶ Defaults are good if you parallelize over left most index!

View <int**, LayoutLeft > a("A", N, M);

View <int**, LayoutRight > b("B", N, M);

parallel_for("Fill", N, KOKKOS_LAMBDA(int i) {

for(int j = 0; j < M; j++) {

a(i,j) = i * 1000 + j; // coalesced

b(i,j) = i * 1000 + j; // cached

}

});

June 17, 2024 8/72

Module 2: Summary

Advanced Reductions

▶ parallel reduce defaults to summation

▶ Kokkos reducers can be used to reduce over arbitrary
operations

▶ Reductions over multiple values are supported

▶ Only reductions into scalar arguments are guaranteed to be
synchronous

▶ Support for custom reductions

parallel_reduce("Join", n,

KOKKOS_LAMBDA(int i, double& a, int& b) {

int idx = foo ();

if(idx > b) b = idx;

a += bar();

}, result , Kokkos ::Max <int >{ my_max });

June 17, 2024 9/72

Module 3

MultiDimensional Loops

How to parallelize tightly nested loops using the MDRangePolicy?

Subviews and Unmanaged Views

How to get slices of Views, View assignment rules and
interoperating with external memory.

Atomic Data Access

Using atomic functions. Implement an optimal scatter contribute
pattern.

DualView

Managing data synchronization without global understanding of
data flow.

June 17, 2024 10/72

MDRangePolicy

Tightly Nested Loops with
MDRangePolicy

Learning objectives:

▶ Demonstrate usage of the MDRangePolicy with tightly nested
loops.

▶ Syntax - Required and optional settings

▶ Code demo and example

June 17, 2024 11/72

MDRangePolicy (0)

Motivating example: Consider the nested for loops:

for (int i = 0; i < N0; ++i)

for (int j = 0; j < N1; ++j)

for (int k = 0; k < N2; ++k)

some_init_fcn(i, j, k);

Based on Kokkos lessons thus far, you might parallelize this as

Kokkos :: parallel_for("Label", N0,

KOKKOS_LAMBDA (const i) {

for (int j = 0; j < N1; ++j)

for (int k = 0; k < N2; ++k)

some_init_fcn(i, j, k);

}

);

▶ This only parallelizes along one dimension, leaving potential

parallelism unexploited.

▶ What if Ni is too small to amortize the cost of constructing a

parallel region, but Ni*Nj*Nk makes it worthwhile?

June 17, 2024 12/72

MDRangePolicy (1)

OpenMP has a solution: the collapse clause
#pragma omp parallel for collapse (3)

for (int64_t i = 0; i < N0; ++i) {

for (int64_t j = 0; j < N1; ++j) {

for (int64_t k = 0; k < N2; ++k) {

/* loop body */

}

}

}

Note this changed the policy by adding a ‘collapse‘ clause.

With Kokkos you also change the policy:
parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

June 17, 2024 12/72

MDRangePolicy (1)

OpenMP has a solution: the collapse clause
#pragma omp parallel for collapse (3)

for (int64_t i = 0; i < N0; ++i) {

for (int64_t j = 0; j < N1; ++j) {

for (int64_t k = 0; k < N2; ++k) {

/* loop body */

}

}

}

Note this changed the policy by adding a ‘collapse‘ clause.

With Kokkos you also change the policy:
parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

June 17, 2024 12/72

MDRangePolicy (1)

OpenMP has a solution: the collapse clause
#pragma omp parallel for collapse (3)

for (int64_t i = 0; i < N0; ++i) {

for (int64_t j = 0; j < N1; ++j) {

for (int64_t k = 0; k < N2; ++k) {

/* loop body */

}

}

}

Note this changed the policy by adding a ‘collapse‘ clause.

With Kokkos you also change the policy:
parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

June 17, 2024 13/72

MDRangePolicy (2)

MDRangePolicy

MDRangePolicy can parallelize tightly nested loops of 2 to 6
dimensions.

parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

▶ Specify the dimensionality of the loop with Rank < DIM >.

▶ As with Kokkos Views: only rectangular iteration spaces.

▶ Provide initializer lists for begin and end values.

▶ The functor/lambda takes matching number of indicies.

June 17, 2024 13/72

MDRangePolicy (2)

MDRangePolicy

MDRangePolicy can parallelize tightly nested loops of 2 to 6
dimensions.

parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

▶ Specify the dimensionality of the loop with Rank < DIM >.

▶ As with Kokkos Views: only rectangular iteration spaces.

▶ Provide initializer lists for begin and end values.

▶ The functor/lambda takes matching number of indicies.

June 17, 2024 13/72

MDRangePolicy (2)

MDRangePolicy

MDRangePolicy can parallelize tightly nested loops of 2 to 6
dimensions.

parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

▶ Specify the dimensionality of the loop with Rank < DIM >.

▶ As with Kokkos Views: only rectangular iteration spaces.

▶ Provide initializer lists for begin and end values.

▶ The functor/lambda takes matching number of indicies.

June 17, 2024 13/72

MDRangePolicy (2)

MDRangePolicy

MDRangePolicy can parallelize tightly nested loops of 2 to 6
dimensions.

parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

▶ Specify the dimensionality of the loop with Rank < DIM >.

▶ As with Kokkos Views: only rectangular iteration spaces.

▶ Provide initializer lists for begin and end values.

▶ The functor/lambda takes matching number of indicies.

June 17, 2024 13/72

MDRangePolicy (2)

MDRangePolicy

MDRangePolicy can parallelize tightly nested loops of 2 to 6
dimensions.

parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

▶ Specify the dimensionality of the loop with Rank < DIM >.

▶ As with Kokkos Views: only rectangular iteration spaces.

▶ Provide initializer lists for begin and end values.

▶ The functor/lambda takes matching number of indicies.

June 17, 2024 14/72

MDRangePolicy (3)

You can also do Reductions:
double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

▶ The Policy doesn’t change the rules for ‘parallel reduce‘.

▶ Additional Thread Local Argument.

▶ Can do other reductions with reducers.

▶ Can use ‘View‘s as reduction argument.

▶ Multiple reducers not yet implemented though.

June 17, 2024 14/72

MDRangePolicy (3)

You can also do Reductions:
double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

▶ The Policy doesn’t change the rules for ‘parallel reduce‘.

▶ Additional Thread Local Argument.

▶ Can do other reductions with reducers.

▶ Can use ‘View‘s as reduction argument.

▶ Multiple reducers not yet implemented though.

June 17, 2024 14/72

MDRangePolicy (3)

You can also do Reductions:
double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

▶ The Policy doesn’t change the rules for ‘parallel reduce‘.

▶ Additional Thread Local Argument.

▶ Can do other reductions with reducers.

▶ Can use ‘View‘s as reduction argument.

▶ Multiple reducers not yet implemented though.

June 17, 2024 14/72

MDRangePolicy (3)

You can also do Reductions:
double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

▶ The Policy doesn’t change the rules for ‘parallel reduce‘.

▶ Additional Thread Local Argument.

▶ Can do other reductions with reducers.

▶ Can use ‘View‘s as reduction argument.

▶ Multiple reducers not yet implemented though.

June 17, 2024 14/72

MDRangePolicy (3)

You can also do Reductions:
double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

▶ The Policy doesn’t change the rules for ‘parallel reduce‘.

▶ Additional Thread Local Argument.

▶ Can do other reductions with reducers.

▶ Can use ‘View‘s as reduction argument.

▶ Multiple reducers not yet implemented though.

June 17, 2024 14/72

MDRangePolicy (3)

You can also do Reductions:
double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

▶ The Policy doesn’t change the rules for ‘parallel reduce‘.

▶ Additional Thread Local Argument.

▶ Can do other reductions with reducers.

▶ Can use ‘View‘s as reduction argument.

▶ Multiple reducers not yet implemented though.

June 17, 2024 15/72

MDRangePolicy (4)

In structured grid applications a tiling strategy is often used to
help with caching.

Tiling

MDRangePolicy uses a tiling strategy for the iteration space.

▶ Specified as a third initializer list.
▶ For GPUs a tile is handled by a single thread block.

▶ If you provide too large a tile size this will fail!

▶ In Kokkos 3.3 we will add auto tuning for tile sizes.

double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2},{T0 ,T1,T2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

June 17, 2024 16/72

MDRangePolicy (5)

Initializing a Matrix:

View <double**,LayoutLeft > A("A",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2>>({0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

A(i,j) = 1000.0 * i + 1.0*j;

});

View <double**,LayoutRight > B("B",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2>>({0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

B(i,j) = 1000.0 * i + 1.0*j;

});

How do I make sure that I get the right access pattern?

June 17, 2024 16/72

MDRangePolicy (5)

Initializing a Matrix:

View <double**,LayoutLeft > A("A",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2>>({0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

A(i,j) = 1000.0 * i + 1.0*j;

});

View <double**,LayoutRight > B("B",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2>>({0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

B(i,j) = 1000.0 * i + 1.0*j;

});

How do I make sure that I get the right access pattern?

June 17, 2024 17/72

MDRangePolicy (6)

Iteration Pattern

MDRangePolicy provides compile time control over iteration
patterns.

Kokkos : : Rank< N, I t e r a t eOu t e r , I t e r a t e I n n e r >

▶ N: (Required) the rank of the index space (limited from 2 to 6)

▶ IterateOuter (Optional) iteration pattern between tiles
▶ Options: Iterate::Left, Iterate::Right, Iterate::Default

▶ IterateInner (Optional) iteration pattern within tiles
▶ Options: Iterate::Left, Iterate::Right, Iterate::Default

June 17, 2024 18/72

MDRangePolicy (7)

Initializing a Matrix fast:

View <double**,LayoutLeft > A("A",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2,Iterate ::Left ,Iterate ::Left >>(

{0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

A(i,j) = 1000.0 * i + 1.0*j;

});

View <double**,LayoutRight > B("B",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2,Iterate ::Right ,Iterate ::Right >>(

{0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

B(i,j) = 1000.0 * i + 1.0*j;

});

Default Patterns Match

Default iteration patterns match the default memory layouts!

June 17, 2024 18/72

MDRangePolicy (7)

Initializing a Matrix fast:

View <double**,LayoutLeft > A("A",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2,Iterate ::Left ,Iterate ::Left >>(

{0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

A(i,j) = 1000.0 * i + 1.0*j;

});

View <double**,LayoutRight > B("B",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2,Iterate ::Right ,Iterate ::Right >>(

{0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

B(i,j) = 1000.0 * i + 1.0*j;

});

Default Patterns Match

Default iteration patterns match the default memory layouts!

June 17, 2024 19/72

Exercise - mdrange: Initialize multi-dim views with MDRangePolicy
Details:

▶ Location: Exercises/mdrange/Begin/

▶ This begins with the Solution of 02

▶ Initialize the device Views x and y directly on the device using a
parallel for and RangePolicy

▶ Initialize the device View matrix A directly on the device using a
parallel for and MDRangePolicy

Compile for CPU

cmake -B build -openmp -DKokkos_ENABLE_OPENMP=ON

cmake --build build -openmp

Run on CPU

./build -openmp/mdrange_exercise -S 26

Compile for GPU

cmake -B build -cuda -DKokkos_ENABLE_CUDA=ON

cmake --build build -cuda

Run on GPU

./build -cuda/mdrange_exercise -S 26

Note the warnings , set appropriate environment variables

June 17, 2024 20/72

Common Policy Arguments

Template Parameters common to ALL policies.
▶ ExecutionSpace: control where code executes

▶ Options: Serial, OpenMP, Threads, Cuda, HIP, ...

▶ Schedule<Options>: set scheduling policy.
▶ Options: Static, Dynamic

▶ IndexType<Options>: control internal indexing type
▶ Options: int, long, etc

▶ WorkTag: enables multiple operators in one functor

struct Foo {

struct Tag1 {}; struct Tag2 {};

KOKKOS_FUNCTION void operator(Tag1 , int i) const {...}

KOKKOS_FUNCTION void operator(Tag2 , int i) const {...}

void run_both(int N) {

parallel_for(RangePolicy <Tag1 >(0,N),*this);

parallel_for(RangePolicy <Tag2 >(0,N),*this);

}

});

June 17, 2024 21/72

MDRangePolicy Section Summary

MDRangePolicy

▶ allows for tightly nested loops similar to OpenMP’s collapse
clause.

▶ requires functors/lambdas with as many parameters as its
rank is.

▶ works with parallel for and parallel reduce.

▶ uses a tiling strategy for the iteration space.

▶ provides compile time control over iteration patterns.

June 17, 2024 22/72

Subviews

Subviews: Taking slices of
Views

Learning objectives:

▶ Introduce Kokkos::subview—basic capabilities and syntax

▶ Suggested usage and practices

▶ View assignment rules

June 17, 2024 23/72

Subviews: Motivation

Sometimes you have to call functions on a subset of data:

Example: call a frobenius norm on a matrix slice of a rank-3 tensor:

double special_norm(View <double ***> tensor , int i) {

auto matrix = ???;

// Call a function that takes a matrix:

return some_library :: frobenius_norm(matrix);

}

In Fortran or Matlab or Python you can get such a slice:

tensor(i,:,:)

Kokkos can do that too!

Subview

Kokkos::subview can be used to get a view to a subset of an
existing View.

June 17, 2024 23/72

Subviews: Motivation

Sometimes you have to call functions on a subset of data:

Example: call a frobenius norm on a matrix slice of a rank-3 tensor:

double special_norm(View <double ***> tensor , int i) {

auto matrix = ???;

// Call a function that takes a matrix:

return some_library :: frobenius_norm(matrix);

}

In Fortran or Matlab or Python you can get such a slice:

tensor(i,:,:)

Kokkos can do that too!

Subview

Kokkos::subview can be used to get a view to a subset of an
existing View.

June 17, 2024 23/72

Subviews: Motivation

Sometimes you have to call functions on a subset of data:

Example: call a frobenius norm on a matrix slice of a rank-3 tensor:

double special_norm(View <double ***> tensor , int i) {

auto matrix = ???;

// Call a function that takes a matrix:

return some_library :: frobenius_norm(matrix);

}

In Fortran or Matlab or Python you can get such a slice:

tensor(i,:,:)

Kokkos can do that too!

Subview

Kokkos::subview can be used to get a view to a subset of an
existing View.

June 17, 2024 23/72

Subviews: Motivation

Sometimes you have to call functions on a subset of data:

Example: call a frobenius norm on a matrix slice of a rank-3 tensor:

double special_norm(View <double ***> tensor , int i) {

auto matrix = ???;

// Call a function that takes a matrix:

return some_library :: frobenius_norm(matrix);

}

In Fortran or Matlab or Python you can get such a slice:

tensor(i,:,:)

Kokkos can do that too!

Subview

Kokkos::subview can be used to get a view to a subset of an
existing View.

June 17, 2024 24/72

Subviews (1)

Subview description:

▶ A subview is a “slice” of a View

▶ The function template Kokkos::subview() takes a View and
a slice for each dimension and returns a View of the
appropriate shape.

▶ The subview and original View point to the same data—no
extra memory allocation nor copying

▶ Can be constructed on host or within a kernel, since no
allocation of memory occurs

▶ Similar capability as provided by Matlab, Fortran, Python,
etc., using “colon” notation

June 17, 2024 24/72

Subviews (1)

Subview description:

▶ A subview is a “slice” of a View
▶ The function template Kokkos::subview() takes a View and

a slice for each dimension and returns a View of the
appropriate shape.

▶ The subview and original View point to the same data—no
extra memory allocation nor copying

▶ Can be constructed on host or within a kernel, since no
allocation of memory occurs

▶ Similar capability as provided by Matlab, Fortran, Python,
etc., using “colon” notation

June 17, 2024 24/72

Subviews (1)

Subview description:

▶ A subview is a “slice” of a View
▶ The function template Kokkos::subview() takes a View and

a slice for each dimension and returns a View of the
appropriate shape.

▶ The subview and original View point to the same data—no
extra memory allocation nor copying

▶ Can be constructed on host or within a kernel, since no
allocation of memory occurs

▶ Similar capability as provided by Matlab, Fortran, Python,
etc., using “colon” notation

June 17, 2024 24/72

Subviews (1)

Subview description:

▶ A subview is a “slice” of a View
▶ The function template Kokkos::subview() takes a View and

a slice for each dimension and returns a View of the
appropriate shape.

▶ The subview and original View point to the same data—no
extra memory allocation nor copying

▶ Can be constructed on host or within a kernel, since no
allocation of memory occurs

▶ Similar capability as provided by Matlab, Fortran, Python,
etc., using “colon” notation

June 17, 2024 24/72

Subviews (1)

Subview description:

▶ A subview is a “slice” of a View
▶ The function template Kokkos::subview() takes a View and

a slice for each dimension and returns a View of the
appropriate shape.

▶ The subview and original View point to the same data—no
extra memory allocation nor copying

▶ Can be constructed on host or within a kernel, since no
allocation of memory occurs

▶ Similar capability as provided by Matlab, Fortran, Python,
etc., using “colon” notation

June 17, 2024 25/72

Subviews (2)

Introductory Usage Demo:

Given a View:

Kokkos ::View <double ***> v("v", N0 , N1 , N2);

Say we want a 2-dimensional slice at an index i0 in the first
dimension—that is, in Matlab/Fortran/Python notation:

slicei0 = v(i0 , :, :);

This can be accomplished in Kokkos using a subview as follows:

auto sv_i0 =

Kokkos :: subview(v, i0 , Kokkos ::ALL , Kokkos ::ALL);

// Just like in Python , you can do the same thing with

// the equivalent of v(i0, 0:N1, 0:N2)

auto sv_i0_other =

Kokkos :: subview(v, i0 , Kokkos :: make_pair (0, N1),

Kokkos :: make_pair(0, N2));

June 17, 2024 25/72

Subviews (2)

Introductory Usage Demo:

Given a View:

Kokkos ::View <double ***> v("v", N0 , N1 , N2);

Say we want a 2-dimensional slice at an index i0 in the first
dimension—that is, in Matlab/Fortran/Python notation:

slicei0 = v(i0 , :, :);

This can be accomplished in Kokkos using a subview as follows:

auto sv_i0 =

Kokkos :: subview(v, i0 , Kokkos ::ALL , Kokkos ::ALL);

// Just like in Python , you can do the same thing with

// the equivalent of v(i0, 0:N1, 0:N2)

auto sv_i0_other =

Kokkos :: subview(v, i0 , Kokkos :: make_pair (0, N1),

Kokkos :: make_pair(0, N2));

June 17, 2024 25/72

Subviews (2)

Introductory Usage Demo:

Given a View:

Kokkos ::View <double ***> v("v", N0 , N1 , N2);

Say we want a 2-dimensional slice at an index i0 in the first
dimension—that is, in Matlab/Fortran/Python notation:

slicei0 = v(i0 , :, :);

This can be accomplished in Kokkos using a subview as follows:

auto sv_i0 =

Kokkos :: subview(v, i0 , Kokkos ::ALL , Kokkos ::ALL);

// Just like in Python , you can do the same thing with

// the equivalent of v(i0, 0:N1, 0:N2)

auto sv_i0_other =

Kokkos :: subview(v, i0 , Kokkos :: make_pair (0, N1),

Kokkos :: make_pair(0, N2));

June 17, 2024 26/72

Subviews (3)

Subview can take three types of slice arguments:
▶ Index

▶ For every index i the rank of the resulting View is decreased by
one.

▶ Must be between 0 <= i < extent(dim)

▶ Kokkos::pair
▶ References a half-open range of indices.
▶ The begin and end must be within the extents of the original

view.

▶ Kokkos::ALL
▶ References the entire extent in that dimension.
▶ Equivalent to providing make pair(0,v.extent(dim))

June 17, 2024 27/72

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

June 17, 2024 27/72

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

June 17, 2024 27/72

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

June 17, 2024 27/72

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

June 17, 2024 27/72

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

June 17, 2024 27/72

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)

▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

June 17, 2024 27/72

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.

▶ Prioritize readability and maintainability first, then make
changes only if you see a performance impact.

June 17, 2024 27/72

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

June 17, 2024 27/72

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

June 17, 2024 28/72

Exercise—Subviews: Basic usage

Details:

▶ Location: Exercises/subview/Begin/

▶ This begins with the Solution of 04

▶ In the parallel reduce kernel, create a subview for row j of view A

▶ Use this subview when computing A(j,:)*x(:) rather than the matrix
A

Compile for CPU

cmake -B build -openmp -DKokkos_ENABLE_OPENMP=ON

cmake --build build -openmp

Run on CPU

./build -openmp/subview_exercise -S 26

Compile for GPU

cmake -B build -cuda -DKokkos_ENABLE_CUDA=ON

cmake --build build -cuda

Run on GPU

./build -cuda/subview_exercise -S 26

Note the warnings , set appropriate environment variables

June 17, 2024 29/72

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4)

=> Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

June 17, 2024 29/72

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

June 17, 2024 29/72

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

June 17, 2024 29/72

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

June 17, 2024 29/72

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

June 17, 2024 29/72

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

June 17, 2024 29/72

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

June 17, 2024 29/72

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

June 17, 2024 29/72

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

June 17, 2024 29/72

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

June 17, 2024 29/72

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

June 17, 2024 30/72

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

June 17, 2024 30/72

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

June 17, 2024 30/72

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

June 17, 2024 30/72

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

June 17, 2024 30/72

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4)

=> Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

June 17, 2024 30/72

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

June 17, 2024 30/72

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4)

=> Okay,
but only if strides match layout left (checked at runtime)

June 17, 2024 30/72

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

June 17, 2024 31/72

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

June 17, 2024 31/72

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

June 17, 2024 31/72

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

June 17, 2024 31/72

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

June 17, 2024 31/72

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

June 17, 2024 31/72

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

June 17, 2024 31/72

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

June 17, 2024 31/72

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

June 17, 2024 32/72

Subview Summary

▶ Use subviews to get a portion of a View. Helps with:
▶ code reuse
▶ code readability
▶ library function compatibility

▶ Kokkos supports slicing Views similar to
Python/Matlab/Fortran slicing syntax

auto sv = Kokkos :: subview(v, 42, ALL , std:: make_pair (3, 17));

▶ The return type of subview is complicated. Use auto!!
▶ View::operator=() just does the “Right Thing”TM

▶ So generally don’t worry about it at first! This is advanced
stuff, and more for future reference.

June 17, 2024 32/72

Subview Summary

▶ Use subviews to get a portion of a View. Helps with:
▶ code reuse
▶ code readability
▶ library function compatibility

▶ Kokkos supports slicing Views similar to
Python/Matlab/Fortran slicing syntax

auto sv = Kokkos :: subview(v, 42, ALL , std:: make_pair (3, 17));

▶ The return type of subview is complicated. Use auto!!
▶ View::operator=() just does the “Right Thing”TM

▶ So generally don’t worry about it at first! This is advanced
stuff, and more for future reference.

June 17, 2024 32/72

Subview Summary

▶ Use subviews to get a portion of a View. Helps with:
▶ code reuse
▶ code readability
▶ library function compatibility

▶ Kokkos supports slicing Views similar to
Python/Matlab/Fortran slicing syntax

auto sv = Kokkos :: subview(v, 42, ALL , std:: make_pair (3, 17));

▶ The return type of subview is complicated. Use auto!!
▶ View::operator=() just does the “Right Thing”TM

▶ So generally don’t worry about it at first! This is advanced
stuff, and more for future reference.

June 17, 2024 33/72

Unmanaged Views

Unmanaged Views: Dealing
with external memory

Learning objectives:

▶ Why do you need unmanaged views

▶ Introduce unmanaged Views - basic capabilities and syntax

▶ Suggested usage and practices

June 17, 2024 34/72

Interoperating with non-Kokkos Code

Sometimes your Kokkos code can’t control all allocations!

▶ Obviously best to avoid that unpleasant situation ...

But say you use some external function like IO classes:

struct MatrixReader {

int N, M;

std::vector <double > values;

void read_file(std:: string name) {...}

};

How can you get this to the GPU without extra allocation?

Unmanaged Views

Views can wrap existing allocations as Unmanaged Views.

June 17, 2024 34/72

Interoperating with non-Kokkos Code

Sometimes your Kokkos code can’t control all allocations!

▶ Obviously best to avoid that unpleasant situation ...

But say you use some external function like IO classes:

struct MatrixReader {

int N, M;

std::vector <double > values;

void read_file(std:: string name) {...}

};

How can you get this to the GPU without extra allocation?

Unmanaged Views

Views can wrap existing allocations as Unmanaged Views.

June 17, 2024 34/72

Interoperating with non-Kokkos Code

Sometimes your Kokkos code can’t control all allocations!

▶ Obviously best to avoid that unpleasant situation ...

But say you use some external function like IO classes:

struct MatrixReader {

int N, M;

std::vector <double > values;

void read_file(std:: string name) {...}

};

How can you get this to the GPU without extra allocation?

Unmanaged Views

Views can wrap existing allocations as Unmanaged Views.

June 17, 2024 35/72

Unmanaged Views (0)

Unmanaged View description:

▶ Normally, Views allocate memory and manage.

▶ Instead, Views can use externally controlled memory

▶ Caveats
▶ No reference counting
▶ No deallocation in the constructor
▶ No check for the correct memory space

▶ Usages
▶ Layout-punning: e.g., treat multidimensional View as

one-dimensional views without copying
▶ Use std::vector or memory from CUDA library, e.g.

cuSPARSE

June 17, 2024 35/72

Unmanaged Views (0)

Unmanaged View description:

▶ Normally, Views allocate memory and manage.

▶ Instead, Views can use externally controlled memory
▶ Caveats

▶ No reference counting
▶ No deallocation in the constructor
▶ No check for the correct memory space

▶ Usages
▶ Layout-punning: e.g., treat multidimensional View as

one-dimensional views without copying
▶ Use std::vector or memory from CUDA library, e.g.

cuSPARSE

June 17, 2024 36/72

Unmanaged Views (1)

Back to our IO example:

struct MatrixReader {

int N, M;

std::vector <double > values;

void read_file(std:: string name) {...}

};

To create an unmanaged View:

▶ Provide a pointer as the first constructor argument.

▶ Give all the runtime dimensions.

▶ Make sure Layout and MemorySpace match!

▶ Unmanaged Views do NOT get a label!

MatrixReader reader; reader.read_file("MM");

View <double**,LayoutRight ,HostSpace >

h_a(reader.values.data(),reader.N,reader.M);

How do we get this to the device?

June 17, 2024 36/72

Unmanaged Views (1)

Back to our IO example:

struct MatrixReader {

int N, M;

std::vector <double > values;

void read_file(std:: string name) {...}

};

To create an unmanaged View:

▶ Provide a pointer as the first constructor argument.

▶ Give all the runtime dimensions.

▶ Make sure Layout and MemorySpace match!

▶ Unmanaged Views do NOT get a label!

MatrixReader reader; reader.read_file("MM");

View <double**,LayoutRight ,HostSpace >

h_a(reader.values.data(),reader.N,reader.M);

How do we get this to the device?

June 17, 2024 36/72

Unmanaged Views (1)

Back to our IO example:

struct MatrixReader {

int N, M;

std::vector <double > values;

void read_file(std:: string name) {...}

};

To create an unmanaged View:

▶ Provide a pointer as the first constructor argument.

▶ Give all the runtime dimensions.

▶ Make sure Layout and MemorySpace match!

▶ Unmanaged Views do NOT get a label!

MatrixReader reader; reader.read_file("MM");

View <double**,LayoutRight ,HostSpace >

h_a(reader.values.data(),reader.N,reader.M);

How do we get this to the device?

June 17, 2024 37/72

Unmanaged Views (2)

In Module 2 we learned the Mirror Pattern

▶ But the mirror pattern started with a device view!

Mirror in any Space

Kokkos::create mirror view can take a space argument for location
of mirror.

// Create mirror into default memory space

using space_t = DefaultExecutionSpace :: memory_space;

auto a = create_mirror_view(space_t(), h_a);

// Copy values from the host to the device

deep_copy(a, h_a);

Since the “create mirror and then copy” pattern is common we
have a shortcut:
auto a = create_mirror_view_and_copy(space_t(), h_a);

June 17, 2024 37/72

Unmanaged Views (2)

In Module 2 we learned the Mirror Pattern

▶ But the mirror pattern started with a device view!

Mirror in any Space

Kokkos::create mirror view can take a space argument for location
of mirror.

// Create mirror into default memory space

using space_t = DefaultExecutionSpace :: memory_space;

auto a = create_mirror_view(space_t(), h_a);

// Copy values from the host to the device

deep_copy(a, h_a);

Since the “create mirror and then copy” pattern is common we
have a shortcut:
auto a = create_mirror_view_and_copy(space_t(), h_a);

June 17, 2024 37/72

Unmanaged Views (2)

In Module 2 we learned the Mirror Pattern

▶ But the mirror pattern started with a device view!

Mirror in any Space

Kokkos::create mirror view can take a space argument for location
of mirror.

// Create mirror into default memory space

using space_t = DefaultExecutionSpace :: memory_space;

auto a = create_mirror_view(space_t(), h_a);

// Copy values from the host to the device

deep_copy(a, h_a);

Since the “create mirror and then copy” pattern is common we
have a shortcut:
auto a = create_mirror_view_and_copy(space_t(), h_a);

June 17, 2024 37/72

Unmanaged Views (2)

In Module 2 we learned the Mirror Pattern

▶ But the mirror pattern started with a device view!

Mirror in any Space

Kokkos::create mirror view can take a space argument for location
of mirror.

// Create mirror into default memory space

using space_t = DefaultExecutionSpace :: memory_space;

auto a = create_mirror_view(space_t(), h_a);

// Copy values from the host to the device

deep_copy(a, h_a);

Since the “create mirror and then copy” pattern is common we
have a shortcut:
auto a = create_mirror_view_and_copy(space_t(), h_a);

June 17, 2024 38/72

Scratch Allocations

Using pre-allocated scratch memory for temporary data structures
is common to:

▶ Eliminate costly allocation/deallocation operations

▶ Reduce total memory footprint.

Unmanaged Views of Scratch Allocations

Unmanaged Views can be used to get arrays of different shapes
backed by the same memory.

void* scratch = kokkos_malloc <>("Scratch", scratch_size);

View <double**> a_scr(scratch , N,M);

View <int*> b_scr(scratch ,K);

How much memory do you need for a View?

int scratch_size = View <double **>:: required_allocation_size(N,M);

June 17, 2024 38/72

Scratch Allocations

Using pre-allocated scratch memory for temporary data structures
is common to:

▶ Eliminate costly allocation/deallocation operations

▶ Reduce total memory footprint.

Unmanaged Views of Scratch Allocations

Unmanaged Views can be used to get arrays of different shapes
backed by the same memory.

void* scratch = kokkos_malloc <>("Scratch", scratch_size);

View <double**> a_scr(scratch , N,M);

View <int*> b_scr(scratch ,K);

How much memory do you need for a View?

int scratch_size = View <double **>:: required_allocation_size(N,M);

June 17, 2024 38/72

Scratch Allocations

Using pre-allocated scratch memory for temporary data structures
is common to:

▶ Eliminate costly allocation/deallocation operations

▶ Reduce total memory footprint.

Unmanaged Views of Scratch Allocations

Unmanaged Views can be used to get arrays of different shapes
backed by the same memory.

void* scratch = kokkos_malloc <>("Scratch", scratch_size);

View <double**> a_scr(scratch , N,M);

View <int*> b_scr(scratch ,K);

How much memory do you need for a View?

int scratch_size = View <double **>:: required_allocation_size(N,M);

June 17, 2024 39/72

Unmanaged Views Summary

▶ Unmanaged Views wrap existing allocations
▶ No ref-counting
▶ No deallocation after losing scope
▶ No memory space checks

▶ Unmanaged view is created with pointer and runtime
dimensions
void* ptr = kokkos_malloc <>("Alloc", alloc_size);

View <double**> h_a((double *)ptr ,N,M);

▶ Unmanaged view uses
▶ Access externally controlled memory
▶ Access temporary scratch memory
▶ Layout pruning - view underlying data using different layout

June 17, 2024 39/72

Unmanaged Views Summary

▶ Unmanaged Views wrap existing allocations
▶ No ref-counting
▶ No deallocation after losing scope
▶ No memory space checks

▶ Unmanaged view is created with pointer and runtime
dimensions

void* ptr = kokkos_malloc <>("Alloc", alloc_size);

View <double**> h_a((double *)ptr ,N,M);

▶ Unmanaged view uses
▶ Access externally controlled memory
▶ Access temporary scratch memory
▶ Layout pruning - view underlying data using different layout

June 17, 2024 39/72

Unmanaged Views Summary

▶ Unmanaged Views wrap existing allocations
▶ No ref-counting
▶ No deallocation after losing scope
▶ No memory space checks

▶ Unmanaged view is created with pointer and runtime
dimensions
void* ptr = kokkos_malloc <>("Alloc", alloc_size);

View <double**> h_a((double *)ptr ,N,M);

▶ Unmanaged view uses
▶ Access externally controlled memory
▶ Access temporary scratch memory
▶ Layout pruning - view underlying data using different layout

June 17, 2024 39/72

Unmanaged Views Summary

▶ Unmanaged Views wrap existing allocations
▶ No ref-counting
▶ No deallocation after losing scope
▶ No memory space checks

▶ Unmanaged view is created with pointer and runtime
dimensions
void* ptr = kokkos_malloc <>("Alloc", alloc_size);

View <double**> h_a((double *)ptr ,N,M);

▶ Unmanaged view uses
▶ Access externally controlled memory
▶ Access temporary scratch memory
▶ Layout pruning - view underlying data using different layout

June 17, 2024 40/72

Thread safety and
atomic operations
Learning objectives:

▶ Understand that coordination techniques for low-count CPU
threading are not scalable.

▶ Understand how atomics can parallelize the scatter-add
pattern.

▶ Gain performance intuition for atomics on the CPU and
GPU, for different data types and contention rates.

June 17, 2024 41/72

Examples: Histogram

Histogram kernel:

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const Something value = ...;

const size_t bucketIndex = computeBucketIndex(value);

++ _histogram(bucketIndex);

});

Problem: Multiple threads may try to write to the same location.

Solution strategies:

▶ Locks: not feasible on GPU

▶ Thread-private copies:
not thread-scalable

▶ Atomics

http://www.farmaceuticas.com.br/tag/graficos/

June 17, 2024 41/72

Examples: Histogram

Histogram kernel:

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const Something value = ...;

const size_t bucketIndex = computeBucketIndex(value);

++ _histogram(bucketIndex);

});

Problem: Multiple threads may try to write to the same location.

Solution strategies:

▶ Locks: not feasible on GPU

▶ Thread-private copies:
not thread-scalable

▶ Atomics

http://www.farmaceuticas.com.br/tag/graficos/

June 17, 2024 41/72

Examples: Histogram

Histogram kernel:

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const Something value = ...;

const size_t bucketIndex = computeBucketIndex(value);

++ _histogram(bucketIndex);

});

Problem: Multiple threads may try to write to the same location.

Solution strategies:

▶ Locks: not feasible on GPU

▶ Thread-private copies:
not thread-scalable

▶ Atomics

http://www.farmaceuticas.com.br/tag/graficos/

June 17, 2024 42/72

Atomics

Atomics: the portable and thread-scalable solution

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const Something value = ...;

const int bucketIndex = computeBucketIndex(value);

Kokkos :: atomic_add (& _histogram(bucketIndex), 1);

});

▶ Atomics are the only scalable solution to thread safety.

▶ Locks are not portable.

▶ Data replication is not thread scalable.

June 17, 2024 42/72

Atomics

Atomics: the portable and thread-scalable solution

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const Something value = ...;

const int bucketIndex = computeBucketIndex(value);

Kokkos :: atomic_add (& _histogram(bucketIndex), 1);

});

▶ Atomics are the only scalable solution to thread safety.

▶ Locks are not portable.

▶ Data replication is not thread scalable.

June 17, 2024 42/72

Atomics

Atomics: the portable and thread-scalable solution

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const Something value = ...;

const int bucketIndex = computeBucketIndex(value);

Kokkos :: atomic_add (& _histogram(bucketIndex), 1);

});

▶ Atomics are the only scalable solution to thread safety.

▶ Locks are not portable.

▶ Data replication is not thread scalable.

June 17, 2024 42/72

Atomics

Atomics: the portable and thread-scalable solution

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const Something value = ...;

const int bucketIndex = computeBucketIndex(value);

Kokkos :: atomic_add (& _histogram(bucketIndex), 1);

});

▶ Atomics are the only scalable solution to thread safety.

▶ Locks are not portable.

▶ Data replication is not thread scalable.

June 17, 2024 43/72

Performance of atomics (0)

How expensive are atomics?

Thought experiment: scalar integration

operator ()(const unsigned int intervalIndex ,

double & valueToUpdate) const {

double contribution = function (...);

valueToUpdate += contribution;

}

Idea: what if we instead do this with parallel for and atomics?

operator ()(const unsigned int intervalIndex) const {

const double contribution = function (...);

Kokkos : : atomic add (&globalSum , contribution);

}

How much of a performance penalty is incurred?

June 17, 2024 43/72

Performance of atomics (0)

How expensive are atomics?

Thought experiment: scalar integration

operator ()(const unsigned int intervalIndex ,

double & valueToUpdate) const {

double contribution = function (...);

valueToUpdate += contribution;

}

Idea: what if we instead do this with parallel for and atomics?

operator ()(const unsigned int intervalIndex) const {

const double contribution = function (...);

Kokkos : : atomic add (&globalSum , contribution);

}

How much of a performance penalty is incurred?

June 17, 2024 44/72

Performance of atomics (1)

Two costs: (independent) work and coordination.
parallel_reduce(numberOfIntervals ,

KOKKOS_LAMBDA (const unsigned int intervalIndex ,

double & valueToUpdate) {

valueToUpdate += function (...);

}, totalIntegral);

Experimental setup

operator ()(const unsigned int index) const {

Kokkos :: atomic_add (& globalSums[index % atomicStride], 1);

}

▶ This is the most extreme case: all coordination and no work.

▶ Contention is captured by the atomicStride.
atomicStride → 1 ⇒ Scalar integration (bad)
atomicStride → large ⇒ Independent (good)

June 17, 2024 44/72

Performance of atomics (1)

Two costs: (independent) work and coordination.
parallel_reduce(numberOfIntervals ,

KOKKOS_LAMBDA (const unsigned int intervalIndex ,

double & valueToUpdate) {

valueToUpdate += function (...);

}, totalIntegral);

Experimental setup

operator ()(const unsigned int index) const {

Kokkos :: atomic_add (& globalSums[index % atomicStride], 1);

}

▶ This is the most extreme case: all coordination and no work.

▶ Contention is captured by the atomicStride.
atomicStride → 1 ⇒ Scalar integration (bad)
atomicStride → large ⇒ Independent (good)

June 17, 2024 45/72

Performance of atomics (2)
Atomics performance: 1 million adds, no work per kernel

0 1 2 3 4 5 6

log10(contention) [-]

5

4

3

2

1

0

lo
g
1
0
(s

p
e
e
d
u
p
 o

v
e
r

in
d
e
p
e
n
d
e
n
t)

 [
-]

Slowdown from atomics: Summary for 1 million adds, mod, 0 pows

cuda double
cuda uint64_t

cuda float
cuda unsigned
omp double
omp size_t

omp float
omp unsigned
phi double
phi size_t

phi float
phi unsigned

N
ot
e:

lo
g
sc
a
le

June 17, 2024 45/72

Performance of atomics (2)
Atomics performance: 1 million adds, no work per kernel

0 1 2 3 4 5 6

log10(contention) [-]

5

4

3

2

1

0

lo
g
1
0
(s

p
e
e
d
u
p
 o

v
e
r

in
d
e
p
e
n
d
e
n
t)

 [
-]

Slowdown from atomics: Summary for 1 million adds, mod, 0 pows

cuda double
cuda uint64_t

cuda float
cuda unsigned
omp double
omp size_t

omp float
omp unsigned
phi double
phi size_t

phi float
phi unsigned

N
ot
e:

lo
g
sc
a
le

Low(?) penalty for low contention

High penalty for
high contention

June 17, 2024 46/72

Performance of atomics (3)
Atomics performance: 1 million adds, some work per kernel

0 1 2 3 4 5 6

log10(contention) [-]

5

4

3

2

1

0

lo
g
1
0
(s

p
e
e
d
u
p
 o

v
e
r

in
d
e
p
e
n
d
e
n
t)

 [
-]

Slowdown from atomics: Summary for 1 million adds, mod, 2 pows

cuda double
cuda uint64_t

cuda float
cuda unsigned
omp double
omp size_t

omp float
omp unsigned
phi double
phi size_t

phi float
phi unsigned

N
ot
e:

lo
g
sc
a
le

No penalty for low contention

High penalty for
high contention

June 17, 2024 47/72

Performance of atomics (4)
Atomics performance: 1 million adds, lots of work per kernel

0 1 2 3 4 5 6

log10(contention) [-]

5

4

3

2

1

0

lo
g
1
0
(s

p
e
e
d
u
p
 o

v
e
r

in
d
e
p
e
n
d
e
n
t)

 [
-]

Slowdown from atomics: Summary for 1 million adds, mod, 5 pows

cuda double
cuda uint64_t

cuda float
cuda unsigned
omp double
omp size_t

omp float
omp unsigned
phi double
phi size_t

phi float
phi unsigned

N
ot
e:

lo
g
sc
a
le

No penalty for low contention

High penalty for
high contention

June 17, 2024 48/72

Advanced features

Atomics on arbitrary types:

▶ Atomic operations work if the corresponding operator exists,
i.e., atomic add works on any data type with “+”.

▶ Atomic exchange works on any data type.
// Assign *dest to val , return former value of *dest

template <typename T>

T atomic_exchange(T * dest , T val);

// If *dest == comp then assign *dest to val

// Return true if succeeds.

template <typename T>

bool atomic_compare_exchange_strong(T * dest , T comp , T val);

June 17, 2024 49/72

Memory traits

Slight detour: View memory traits:

▶ Beyond a Layout and Space, Views can have memory traits.

▶ Memory traits either provide convenience or allow for certain
hardware-specific optimizations to be performed.

Example: If all accesses to a View will be atomic, use the Atomic
memory trait:

View <double**, Layout , Space ,

MemoryTraits<Atomic> > forces (...);

Many memory traits exist or are experimental, including Atomic,
Unmanaged, Restrict, and RandomAccess.

June 17, 2024 49/72

Memory traits

Slight detour: View memory traits:

▶ Beyond a Layout and Space, Views can have memory traits.

▶ Memory traits either provide convenience or allow for certain
hardware-specific optimizations to be performed.

Example: If all accesses to a View will be atomic, use the Atomic
memory trait:

View <double**, Layout , Space ,

MemoryTraits<Atomic> > forces (...);

Many memory traits exist or are experimental, including Atomic,
Unmanaged, Restrict, and RandomAccess.

June 17, 2024 50/72

RandomAccess memory trait

Example: RandomAccess memory trait:

On GPUs, there is a special pathway for fast read-only, random
access, originally designed for textures.

In the early days you had to access this via CUDA:

Kokkos can hide mechanisms like that as simple as:
View < const double ***, Layout , Space ,

MemoryTraits<RandomAccess> > name (...);

June 17, 2024 50/72

RandomAccess memory trait

Example: RandomAccess memory trait:

On GPUs, there is a special pathway for fast read-only, random
access, originally designed for textures.

In the early days you had to access this via CUDA:

Kokkos can hide mechanisms like that as simple as:
View < const double ***, Layout , Space ,

MemoryTraits<RandomAccess> > name (...);

June 17, 2024 50/72

RandomAccess memory trait

Example: RandomAccess memory trait:

On GPUs, there is a special pathway for fast read-only, random
access, originally designed for textures.

In the early days you had to access this via CUDA:

Kokkos can hide mechanisms like that as simple as:
View < const double ***, Layout , Space ,

MemoryTraits<RandomAccess> > name (...);

June 17, 2024 51/72

Scatter Contribute (1)

Histogram generation is an example of the Scatter Contribute
pattern.

▶ Like a reduction but with many results.

▶ Number of results scales with number of inputs.

▶ Each results gets contributions from a small number of
inputs/iterations.

▶ Uses an inputs-to-results map not inverse.

Examples:

▶ Particles contributing to neighbors forces.

▶ Cells contributing forces to nodes.

▶ Computing histograms.

▶ Computing a density grid from point source contributions.

June 17, 2024 52/72

Scatter Contribute (2)

Compute forces on particles via neighbor contributions
This kernel uses Newtons Third Law: Actio = Reactio
void compute_forces(View <real3*> x, View <real3*> f,

View <int**> neighs , Interaction force) {

int N = x.extent (0);

int num_neighs = neighs.extent (1);

parallel_for("ForceCompute", N, KOKKOS_LAMBDA(int i) {

for(int j=0; j<num_neighs; j++) {

real3 df = force.compute(x(i),x(neighs(i,j)));

f(i) += df;

f(j) -= df;

}

});

}

This kernel has a race condition on f though!

June 17, 2024 52/72

Scatter Contribute (2)

Compute forces on particles via neighbor contributions
This kernel uses Newtons Third Law: Actio = Reactio
void compute_forces(View <real3*> x, View <real3*> f,

View <int**> neighs , Interaction force) {

int N = x.extent (0);

int num_neighs = neighs.extent (1);

parallel_for("ForceCompute", N, KOKKOS_LAMBDA(int i) {

for(int j=0; j<num_neighs; j++) {

real3 df = force.compute(x(i),x(neighs(i,j)));

f(i) += df;

f(j) -= df;

}

});

}

This kernel has a race condition on f though!

June 17, 2024 53/72

ScatterView (0)

There are two useful algorithms:.

▶ Atomics: thread-scalable but depends on atomic
performance.

▶ Data Replication: every thread owns a copy of the output,
not thread-scalable but good for low (< 16) threads count
architectures.

Important Capability: ScatterView

ScatterView can transparently switch between Atomic and Data
Replication based scatter algorithms.

▶ Abstracts over scatter contribute algorithms.

▶ Compile time choice with backend-specific defaults.

▶ Only limited number of operations are supported.

▶ Part of Kokkos Containers (in Kokkos 3.2 still experimental).

June 17, 2024 53/72

ScatterView (0)

There are two useful algorithms:.

▶ Atomics: thread-scalable but depends on atomic
performance.

▶ Data Replication: every thread owns a copy of the output,
not thread-scalable but good for low (< 16) threads count
architectures.

Important Capability: ScatterView

ScatterView can transparently switch between Atomic and Data
Replication based scatter algorithms.

▶ Abstracts over scatter contribute algorithms.

▶ Compile time choice with backend-specific defaults.

▶ Only limited number of operations are supported.

▶ Part of Kokkos Containers (in Kokkos 3.2 still experimental).

June 17, 2024 53/72

ScatterView (0)

There are two useful algorithms:.

▶ Atomics: thread-scalable but depends on atomic
performance.

▶ Data Replication: every thread owns a copy of the output,
not thread-scalable but good for low (< 16) threads count
architectures.

Important Capability: ScatterView

ScatterView can transparently switch between Atomic and Data
Replication based scatter algorithms.

▶ Abstracts over scatter contribute algorithms.

▶ Compile time choice with backend-specific defaults.

▶ Only limited number of operations are supported.

▶ Part of Kokkos Containers (in Kokkos 3.2 still experimental).

June 17, 2024 54/72

ScatterView (1)

Creating a ScatterView:
Usually a ScatterView wraps an existing View

▶ Allows the atomic variant to work without extra allocation.

void compute_forces(View <real3*> x, View <real3*> f,

View <int**> neighs , Interaction force) {

Kokkos :: Experimental :: ScatterView <real3*> scatter_f(f);

...

Accessing the ScatterView

In the kernel obtain an atomic or thread-local accessor.
parallel_for("ForceCompute", N, KOKKOS_LAMBDA(int i) {

auto f_a = scatter_f.access ();

for(int j=0; j<num_neighs; j++) {

real3 df = force.compute(x(i),x(neighs(i,j)));

f_a(i) += df;

f_a(j) -= df;

}

});

Only the += and -= operators are available!

June 17, 2024 54/72

ScatterView (1)

Creating a ScatterView:
Usually a ScatterView wraps an existing View

▶ Allows the atomic variant to work without extra allocation.

void compute_forces(View <real3*> x, View <real3*> f,

View <int**> neighs , Interaction force) {

Kokkos :: Experimental :: ScatterView <real3*> scatter_f(f);

...

Accessing the ScatterView

In the kernel obtain an atomic or thread-local accessor.
parallel_for("ForceCompute", N, KOKKOS_LAMBDA(int i) {

auto f_a = scatter_f.access ();

for(int j=0; j<num_neighs; j++) {

real3 df = force.compute(x(i),x(neighs(i,j)));

f_a(i) += df;

f_a(j) -= df;

}

});

Only the += and -= operators are available!

June 17, 2024 54/72

ScatterView (1)

Creating a ScatterView:
Usually a ScatterView wraps an existing View

▶ Allows the atomic variant to work without extra allocation.

void compute_forces(View <real3*> x, View <real3*> f,

View <int**> neighs , Interaction force) {

Kokkos :: Experimental :: ScatterView <real3*> scatter_f(f);

...

Accessing the ScatterView

In the kernel obtain an atomic or thread-local accessor.
parallel_for("ForceCompute", N, KOKKOS_LAMBDA(int i) {

auto f_a = scatter_f.access ();

for(int j=0; j<num_neighs; j++) {

real3 df = force.compute(x(i),x(neighs(i,j)));

f_a(i) += df;

f_a(j) -= df;

}

});

Only the += and -= operators are available!

June 17, 2024 54/72

ScatterView (1)

Creating a ScatterView:
Usually a ScatterView wraps an existing View

▶ Allows the atomic variant to work without extra allocation.

void compute_forces(View <real3*> x, View <real3*> f,

View <int**> neighs , Interaction force) {

Kokkos :: Experimental :: ScatterView <real3*> scatter_f(f);

...

Accessing the ScatterView

In the kernel obtain an atomic or thread-local accessor.
parallel_for("ForceCompute", N, KOKKOS_LAMBDA(int i) {

auto f_a = scatter_f.access ();

for(int j=0; j<num_neighs; j++) {

real3 df = force.compute(x(i),x(neighs(i,j)));

f_a(i) += df;

f_a(j) -= df;

}

});

Only the += and -= operators are available!

June 17, 2024 54/72

ScatterView (1)

Creating a ScatterView:
Usually a ScatterView wraps an existing View

▶ Allows the atomic variant to work without extra allocation.

void compute_forces(View <real3*> x, View <real3*> f,

View <int**> neighs , Interaction force) {

Kokkos :: Experimental :: ScatterView <real3*> scatter_f(f);

...

Accessing the ScatterView

In the kernel obtain an atomic or thread-local accessor.
parallel_for("ForceCompute", N, KOKKOS_LAMBDA(int i) {

auto f_a = scatter_f.access ();

for(int j=0; j<num_neighs; j++) {

real3 df = force.compute(x(i),x(neighs(i,j)));

f_a(i) += df;

f_a(j) -= df;

}

});

Only the += and -= operators are available!

June 17, 2024 55/72

ScatterView (2)

We are missing one step though:

Contribute back to the
original view.

void compute_forces(View <real3*> x, View <real3*> f,

View <int**> neighs , Interaction force) {

Kokkos :: Experimental :: ScatterView <real3*> scatter_f(f);

parallel_for("ForceCompute", N, KOKKOS_LAMBDA(int i) {

...

});

Kokkos :: Experimental :: contribute(f,scatter_f);

▶ No-op when scatter f uses atomic access

▶ Combines thread-local arrays in case of data duplication

Important Point

Reuse ScatterView if possible: creating and destroying data
duplicates is costly and should be avoided

June 17, 2024 55/72

ScatterView (2)

We are missing one step though: Contribute back to the
original view.

void compute_forces(View <real3*> x, View <real3*> f,

View <int**> neighs , Interaction force) {

Kokkos :: Experimental :: ScatterView <real3*> scatter_f(f);

parallel_for("ForceCompute", N, KOKKOS_LAMBDA(int i) {

...

});

Kokkos :: Experimental :: contribute(f,scatter_f);

▶ No-op when scatter f uses atomic access

▶ Combines thread-local arrays in case of data duplication

Important Point

Reuse ScatterView if possible: creating and destroying data
duplicates is costly and should be avoided

June 17, 2024 55/72

ScatterView (2)

We are missing one step though: Contribute back to the
original view.

void compute_forces(View <real3*> x, View <real3*> f,

View <int**> neighs , Interaction force) {

Kokkos :: Experimental :: ScatterView <real3*> scatter_f(f);

parallel_for("ForceCompute", N, KOKKOS_LAMBDA(int i) {

...

});

Kokkos :: Experimental :: contribute(f,scatter_f);

▶ No-op when scatter f uses atomic access

▶ Combines thread-local arrays in case of data duplication

Important Point

Reuse ScatterView if possible: creating and destroying data
duplicates is costly and should be avoided

June 17, 2024 55/72

ScatterView (2)

We are missing one step though: Contribute back to the
original view.

void compute_forces(View <real3*> x, View <real3*> f,

View <int**> neighs , Interaction force) {

Kokkos :: Experimental :: ScatterView <real3*> scatter_f(f);

parallel_for("ForceCompute", N, KOKKOS_LAMBDA(int i) {

...

});

Kokkos :: Experimental :: contribute(f,scatter_f);

▶ No-op when scatter f uses atomic access

▶ Combines thread-local arrays in case of data duplication

Important Point

Reuse ScatterView if possible: creating and destroying data
duplicates is costly and should be avoided

June 17, 2024 56/72

ScatterView (3)

When reusing a ScatterView the duplicates have to be reset.

scatter_f.reset ();

The complete picture:

void compute_forces(View <real3*> x, View <real3*> f,

ScatterView <real3*> scatter_f ,

View <int**> neighs , Interaction force) {

scatter_f.reset ();

int N = x.extent (0);

int num_neighs = neighs.extent (1);

parallel_for("ForceCompute", N, KOKKOS_LAMBDA(int i) {

auto f_a = scatter_f.access ();

for(int j=0; j<num_neighs; j++) {

real3 df = force.compute(x(i),x(neighs(i,j)));

f_a(i) += df;

f_a(j) -= df;

}

});

Kokkos :: Experimental :: contribute(f,scatter_f);

}

June 17, 2024 56/72

ScatterView (3)

When reusing a ScatterView the duplicates have to be reset.

scatter_f.reset ();

The complete picture:

void compute_forces(View <real3*> x, View <real3*> f,

ScatterView <real3*> scatter_f ,

View <int**> neighs , Interaction force) {

scatter_f.reset ();

int N = x.extent (0);

int num_neighs = neighs.extent (1);

parallel_for("ForceCompute", N, KOKKOS_LAMBDA(int i) {

auto f_a = scatter_f.access ();

for(int j=0; j<num_neighs; j++) {

real3 df = force.compute(x(i),x(neighs(i,j)));

f_a(i) += df;

f_a(j) -= df;

}

});

Kokkos :: Experimental :: contribute(f,scatter_f);

}

June 17, 2024 57/72

ScatterView (4)

But I need something else than a Sum!

ScatterView has more options including the reduction op.

template <class DataType , class Layout , class Space ,

class Operation , int Duplication , int Contribution >

class ScatterView;

▶ DataType, Layout, Space: as in Kokkos::View

▶ Operation: ScatterSum, ScatterProd, ScatterMin, or
ScatterMax.

▶ Duplication: Whether to duplicate values per thread.

▶ Contribution: Whether to use atomics.

June 17, 2024 57/72

ScatterView (4)

But I need something else than a Sum!
ScatterView has more options including the reduction op.

template <class DataType , class Layout , class Space ,

class Operation , int Duplication , int Contribution >

class ScatterView;

▶ DataType, Layout, Space: as in Kokkos::View

▶ Operation: ScatterSum, ScatterProd, ScatterMin, or
ScatterMax.

▶ Duplication: Whether to duplicate values per thread.

▶ Contribution: Whether to use atomics.

June 17, 2024 58/72

Exercise ScatterView

▶ Location: Exercises/scatter view/Begin/

▶ Assignment: Convert scatter view loop to use ScatterView.

▶ Compile and run on both CPU and GPU

Compile for CPU

cmake -B build -openmp -DKokkos_ENABLE_OPENMP=ON

cmake --build build -openmp

Run on CPU

./build -openmp/scatterview -S 26

Compile for GPU

cmake -B build -cuda -DKokkos_ENABLE_CUDA=ON

cmake --build build -cuda

Run on GPU

./build -cuda/scatterview -S 26

Note the warnings , set appropriate environment variables

▶ Compare performance on CPU of the three variants

▶ Compare performance on GPU of the two variants

▶ Vary problem size: first and second optional argument

June 17, 2024 59/72

Section Summary

▶ Atomics are the only thread-scalable solution to thread safety.
▶ Locks or data replication are not portable or scalable

▶ Atomic performance depends on ratio of independent work
and atomic operations.
▶ With more work, there is a lower performance penalty, because

of increased opportunity to interleave work and atomic.

▶ The Atomic memory trait can be used to make all accesses
to a view atomic.

▶ The cost of atomics can be negligible:
▶ CPU ideal: contiguous access, integer types
▶ GPU ideal: scattered access, 32-bit types

▶ Many programs with the scatter-add pattern can be
thread-scalably parallelized using atomics without much
modification.

June 17, 2024 60/72

DualView

DualView

Learning objectives:

▶ Motivation and Value Added.

▶ Usage.

▶ Exercises.

June 17, 2024 61/72

DualView(0)

Motivation and Value-added

▶ DualView was designed to help transition codes to Kokkos.

▶ DualView simplifies the task of managing data movement
between memory spaces, e.g., host and device.

▶ When converting a typical app to use Kokkos, there is usually
no holistic view of such data transfers.

June 17, 2024 61/72

DualView(0)

Motivation and Value-added

▶ DualView was designed to help transition codes to Kokkos.

▶ DualView simplifies the task of managing data movement
between memory spaces, e.g., host and device.

▶ When converting a typical app to use Kokkos, there is usually
no holistic view of such data transfers.

June 17, 2024 61/72

DualView(0)

Motivation and Value-added

▶ DualView was designed to help transition codes to Kokkos.

▶ DualView simplifies the task of managing data movement
between memory spaces, e.g., host and device.

▶ When converting a typical app to use Kokkos, there is usually
no holistic view of such data transfers.

June 17, 2024 62/72

DualView(1)

DualView

• Value	Added: Simplifies	the	task	of	
managing	the	movement	of	data	
between	memory	spaces,	eg,	host	and	
device.

device host

MirrorViewView ?

deep_copy

• deep	copies	are	expensive,	and	to	be	used	
sparingly

• do	I	really	need	to	do	a	deep	copy	here?
• where	is	the	most	recent	data?
• is	my	data	on	the	host	or	device	stale?
• did	someone	modify	the	code	upstream	so	that	

the	data	is	now	stale,	but	wasn’t	yesterday?

Without DualView, could use MirrorViews, but

▶ deep copies are expensive, use sparingly

▶ do I need a deep copy here?

▶ where is the most recent data?

▶ is data on the host or device stale?

▶ was code modified upstream? is data here now stale, but not
in previous version?

June 17, 2024 63/72

DualView: Usage

DualView bundles two views, a Host View and a Device View

DualView

DualView

device host

ViewView

• Bundles	two	views,	e.g.	a	host	View	and	a	device	View
• DualView::modify<MemorySpace>()	marks	the	data	as	modified	on	the	given	MemorySpace
• DualView::sync<MemorySpace>()	deep	copies	the	data	to	the	given	MemorySpace only	if	the	

two	memory	spaces	are	not	in	sync.
• DualView relies	on	calls	to	modify()	to	determine	if	data	actually	needs	to	be	copied	during	a	

call	to	sync().
• sync()	does	nothing	if	there	is	a	single	memory	space,	so	they	are	efficient	to	use	all	the	time

There is no automatic tracking of data freshness:

▶ you must tell Kokkos when data has been modified on a
memory space.

▶ If you mark data as modified when you modify it, then Kokkos
will know if it needs to move data

June 17, 2024 64/72

DualView: Usage(1)

DualView bundles two views, a Host View and a Device
View

▶ Data members for the two views
DualView :: t_host h_view

DualView ::t_dev d_view

▶ Retrieve data members
t_host view_host ();

t_dev view_device ();

▶ Mark data as modified
void modify_host ();

void modify_device ();

June 17, 2024 65/72

DualView: Usage(2)

DualView bundles two views, a Host View and a Device
View

▶ Sync data in a direction if not in sync

void sync_host ();

void sync_device ();

▶ Check sync status

bool need_sync_host ();

bool need_sync_device ();

June 17, 2024 66/72

DualView: Usage in generic context

DualView has templated functions for generic use in
templated code

▶ Retrieve data members
template <class Space >

auto view ();

▶ Mark data as modified
template <class Space >

void modify ();

▶ Sync data in a direction if not in sync

template <class Space >

void sync ();

▶ Check sync status

template <class Space >

bool need_sync ();

June 17, 2024 67/72

DualView Example
class Foo {

DualView <...> data;

void run_a() {

data.sync_device (); data.modify_device ();

auto d_data = data.view_device ();

parallel_for(N, KOKKOS_LAMBDA(int i) { d_data(i)+=/*mod d_d*/});

}

void run_b() {

data.sync_host ();

auto h_data = data.view_host ();

for(int i=0; i<N; i++) { h_data(i) += /* modify h_data */ });

data.modify_host ();

}

void run_c() {

data.sync_device ();

auto d_data = data.view_device ();

parallel_for(N, KOKKOS_LAMBDA(int i) { /* read d_data */ });

}

void do_operations(bool a, bool b, bool c) {

if(a) run_a ();

if(b) run_b ();

if(c) run_c ();

}

};

June 17, 2024 68/72

Exercise - DualView
Details:

▶ Location: Exercises/dualview/Begin/

▶ Modify or create a new compute enthalpy function in
dual view exercise.cpp to:

▶ 1. Take (dual)views as arguments
▶ 2. Call modify() and/or sync() when appropriate for the dual

views
▶ 3. Runs the kernel on host or device execution spaces

Compile for CPU

cmake -B build -openmp -DKokkos_ENABLE_OPENMP=ON

cmake --build build -openmp

Run on CPU

./build -openmp/dualview -S 26

Compile for GPU

cmake -B build -cuda -DKokkos_ENABLE_CUDA=ON

cmake --build build -cuda

Run on GPU

./build -cuda/dualview -S 26

Note the warnings , set appropriate environment variables

June 17, 2024 69/72

Module 3: Summary

MDRangePolicy

▶ Tightly nested loops (similar to OpenMP collapse clause)

▶ Available with parallel for and parallel reduce

▶ Tiling strategy over the iteration space

▶ Control iteration pattern at compile time

View <double**,LayoutLeft > A("A",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2,Iterate ::Left ,Iterate ::Left >>(

{0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

A(i,j) = 1000.0 * i + 1.0*j;

});

June 17, 2024 70/72

Module 3: Summary

Subviews

▶ Taking slices of Views

▶ Similar capability as provided by Matlab, Fortran, or Python

▶ Prefer the use of auto for the type

View <int ***> v("v", N0, N1, N2);

auto sv = subview(v, i0, ALL , make_pair(start ,end));

Unmanaged Views

▶ Interoperability with externally allocated arrays

▶ No reference counting, memory not deallocated at destruction

▶ User is responsible for insuring proper dynamic and/or static
extents, MemorySpace, Layout, etc.

View <float**, LayoutRight , HostSpace >

v_unmanaged(raw_ptr , N0, N1);

June 17, 2024 71/72

Module 3: Summary

Atomic operations

▶ Atomic functions available on the host or the device (e.g.
Kokkos::atomic add)

▶ Use Atomic memory trait for atomic accesses on Views

View <int*> v("v", N0);

View <int*, MemoryTraits <Atomic >> v_atomic = v;

▶ Use ScatterView for scatter-add parallel pattern

Dual Views

▶ For managing data synchronization between host and device
▶ Helps in codes with no holistic view of data flow

▶ In particular when porting codes incrementally

June 17, 2024 72/72

Module 4: Hierarchical Parallelism (08/07)

Hierarchical Parallelism

▶ How to leverage more parallelism through nested loops.

▶ The concept of Thread-Teams and Vectorlength.

Scratch Space

▶ Getting temporary workspace in kernels.

▶ Leveraging GPU Shared Memory.

Unique Token

▶ How to acquire safely per-thread resources.

Don’t Forget: Join the Slack Channel and drop into our office
hours on Monday.
Updates at: bit.ly/kokkos-lecture-updates
Recordings/Slides: bit.ly/kokkos-lecture-wiki

https://bit.ly/kokkos-lecture-updates
https://bit.ly/kokkos-lecture-wiki

