
The Kokkos Lectures

Module 2: Views and Spaces

June 17, 2024

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2020-7475 PE

June 17, 2024 2/63

Welcome to Kokkos

Online Resources:
▶ https://github.com/kokkos:

▶ Primary Kokkos GitHub Organization

▶ https://github.com/kokkos/kokkos-tutorials/wiki/
Kokkos-Lecture-Series:
▶ Slides, recording and Q&A for the Lectures

▶ https://kokkos.github.io/kokkos-core-wiki:
▶ Kokkos Core Wiki with API documentation

▶ https://kokkosteam.slack.com:
▶ Slack channel for Kokkos.
▶ Please join: fastest way to get your questions answered.
▶ Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://kokkos.github.io/kokkos-core-wiki
https://kokkosteam.slack.com

June 17, 2024 3/63

Lecture Series Outline

▶ Module 1: Introduction, Building and Parallel Dispatch

▶ Module 2: Views and Spaces

▶ Module 3: Data Structures + MultiDimensional Loops

▶ Module 4: Hierarchical Parallelism

▶ Module 5: Tasking, Streams and SIMD

▶ Module 6: Internode: MPI and PGAS

▶ Module 7: Tools: Profiling, Tuning and Debugging

▶ Module 8: Kernels: Sparse and Dense Linear Algebra

▶ Reserve Day

June 17, 2024 4/63

Module 1: Summary

Kokkos EcoSystem:

▶ C++ Performance Portability Programming Model.

▶ The Kokkos Ecosystem provides capabilities needed for serious
code development.

▶ Kokkos is supported by multiple National Laboratories with a
sizeable dedicated team.

Building Kokkos

▶ Kokkos’s primary build system is CMAKE.

▶ Kokkos options are transitively passed on, including many
necessary compiler options.

▶ The Spack package manager does support Kokkos.

▶ For applications with few if any dependencies, building
Kokkos as part of your code is an option with CMake and
GNU Makefiles.

June 17, 2024 5/63

Module 1: Summary

Data Parallelism:

▶ Simple things stay simple!

▶ You use parallel patterns and execution policies to execute
computational bodies

▶ Simple parallel loops use the parallel for pattern:

parallel_for("Label",N, [=] (int64_t i) {

/* loop body */

});

▶ Reductions combine contributions from loop iterations

int result;

parallel_reduce("Label",N, [=] (int64_t i, int& lres) {

/* loop body */

lres += /* something */

},result);

Recording: https://bit.ly/kokkos-lecture-series-1

https://bit.ly/kokkos-lecture-series-1

June 17, 2024 6/63

Module 2

Kokkos View

What are Views? How to create them? Why should you use it?

Memory and Execution Spaces

How to control where data lives and code executes.

Memory Access Patterns

The importance of access patterns for performance portability and
how to control it.

Advanced Reductions

Going beyond just basic summation.

June 17, 2024 7/63

Views

Learning objectives:

▶ Motivation behind the View abstraction.

▶ Key View concepts and template parameters.

▶ The View life cycle.

June 17, 2024 8/63

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

⇒ Views

L
a
m
b
d
a

F
u
n
ct
o
r

June 17, 2024 8/63

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

⇒ Views

L
a
m
b
d
a

F
u
n
ct
o
r

June 17, 2024 8/63

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

⇒ Views

L
a
m
b
d
a

F
u
n
ct
o
r

June 17, 2024 9/63

Views (0)

View abstraction

▶ A lightweight C++ class with a pointer to array data and a
little meta-data,

▶ that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double*, ...> x(...) , y(...);

... populate x, y...

parallel_for("DAXPY",N, [=] (const int64_t i) {

// Views x and y are captured by value (shallow copy)

y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers, so copy them in your functors.

June 17, 2024 9/63

Views (0)

View abstraction

▶ A lightweight C++ class with a pointer to array data and a
little meta-data,

▶ that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double*, ...> x(...) , y(...);

... populate x, y...

parallel_for("DAXPY",N, [=] (const int64_t i) {

// Views x and y are captured by value (shallow copy)

y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers, so copy them in your functors.

June 17, 2024 10/63

Views (1)

View overview:

▶ Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

▶ Number of dimensions (rank) is fixed at compile-time.

▶ Arrays are rectangular, not ragged.

▶ Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

▶ Access elements via ”(...)” operator.

Example:

View <double ***> data("label", N0 , N1, N2); //3 run, 0 compile

View <double **[N2]> data("label", N0, N1); //2 run, 1 compile

View <double *[N1][N2]> data("label", N0); //1 run, 2 compile

View <double[N0][N1][N2]> data("label"); //0 run, 3 compile

// Access

data(i,j,k) = 5.3;

Note: runtime-sized dimensions must come first.

June 17, 2024 10/63

Views (1)

View overview:

▶ Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

▶ Number of dimensions (rank) is fixed at compile-time.

▶ Arrays are rectangular, not ragged.

▶ Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

▶ Access elements via ”(...)” operator.
Example:

View <double ***> data("label", N0 , N1, N2); //3 run, 0 compile

View <double **[N2]> data("label", N0, N1); //2 run, 1 compile

View <double *[N1][N2]> data("label", N0); //1 run, 2 compile

View <double[N0][N1][N2]> data("label"); //0 run, 3 compile

// Access

data(i,j,k) = 5.3;

Note: runtime-sized dimensions must come first.

June 17, 2024 11/63

Views (2)

View life cycle:

▶ Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

▶ Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

▶ Reference counting is used for automatic deallocation.

▶ They behave like std::shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);

a = b;

View <double**> c(b);

a(0,2) = 1;

b(0,2) = 2;

c(0,2) = 3;

print_value(a(0,2));

What gets printed?
3.0

June 17, 2024 11/63

Views (2)

View life cycle:

▶ Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

▶ Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

▶ Reference counting is used for automatic deallocation.

▶ They behave like std::shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);

a = b;

View <double**> c(b);

a(0,2) = 1;

b(0,2) = 2;

c(0,2) = 3;

print_value(a(0,2));

What gets printed?

3.0

June 17, 2024 11/63

Views (2)

View life cycle:

▶ Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

▶ Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

▶ Reference counting is used for automatic deallocation.

▶ They behave like std::shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);

a = b;

View <double**> c(b);

a(0,2) = 1;

b(0,2) = 2;

c(0,2) = 3;

print_value(a(0,2));

What gets printed?
3.0

June 17, 2024 12/63

Views (3)

View Properties:
▶ Accessing a View’s sizes is done via its extent(dim)

function.
▶ Static extents can additionally be accessed via

static extent(dim).

▶ You can retrieve a raw pointer via its data() function.

▶ The label can be accessed via label().

Example:

View <double *[5]> a("A",N0);

assert(a.extent (0) == N0);

assert(a.extent (1) == 5);

static_assert(a.static_extent (1) == 5);

assert(a.data() != nullptr);

assert(a.label () == "A");

June 17, 2024 13/63

Exercise #2: Inner Product, Flat Parallelism on the CPU, with Views

▶ Location: Exercises/02/Begin/

▶ Assignment: Change data storage from arrays to Views.

▶ Compile and run on CPU, and then on GPU with UVM

CPU -only using OpenMP

cmake -B build -openmp -DKokkos_ENABLE_OPENMP=ON

cmake --build build -openmp

Run exercise

./build -openmp /02 _Exercise -S 26

Note the warnings , set appropriate environment variables

▶ Vary problem size: -S #

▶ Vary number of rows: -N #

▶ Vary repeats: -nrepeat #

▶ Compare performance of CPU vs GPU

June 17, 2024 14/63

Advanced features we haven’t covered

▶ Memory space in which view’s data resides; covered next.

▶ deep copy view’s data; covered later.
Note: Kokkos never hides a deep copy of data.

▶ Layout of multidimensional array; covered later.

▶ Memory traits; covered later.

▶ Subview: Generating a view that is a “slice” of other
multidimensional array view; covered later.

June 17, 2024 15/63

Execution and Memory spaces

Execution and Memory Spaces

Learning objectives:

▶ Heterogeneous nodes and the space abstractions.

▶ How to control where parallel bodies are run, execution
space.

▶ How to control where view data resides, memory space.

▶ How to avoid illegal memory accesses and manage data
movement.

▶ The need for Kokkos::initialize and finalize.

▶ Where to use Kokkos annotation macros for portability.

June 17, 2024 16/63

Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism

(i.e., “place to run code”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Execution spaces: Serial, Threads, OpenMP, Cuda, HIP, ...

June 17, 2024 17/63

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for("MyKernel", numberOfSomethings ,

[=] (const int64_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

▶ Where will Host code be run? CPU? GPU?
⇒ Always in the host process
also known as default host execution space

▶ Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

▶ How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

June 17, 2024 17/63

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for("MyKernel", numberOfSomethings ,

[=] (const int64_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

▶ Where will Host code be run? CPU? GPU?
⇒ Always in the host process
also known as default host execution space

▶ Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

▶ How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

June 17, 2024 17/63

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for("MyKernel", numberOfSomethings ,

[=] (const int64_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

▶ Where will Host code be run? CPU? GPU?
⇒ Always in the host process
also known as default host execution space

▶ Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

▶ How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

June 17, 2024 17/63

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for("MyKernel", numberOfSomethings ,

[=] (const int64_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

▶ Where will Host code be run? CPU? GPU?
⇒ Always in the host process
also known as default host execution space

▶ Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

▶ How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

June 17, 2024 18/63

Execution spaces (3)

Changing the parallel execution space:

parallel_for("Label",

RangePolicy < Execut ionSpace >(0, numberOfIntervals),

[=] (const int64_t i) {

/* ... body ... */

});

parallel_for("Label",

numberOfIntervals , // => RangePolicy <>(0, numberOfIntervals)

[=] (const int64_t i) {

/* ... body ... */

});

Requirements for enabling execution spaces:
▶ Kokkos must be compiled with the execution spaces enabled.

▶ Execution spaces must be initialized (and finalized).

▶ Functions must be marked with a macro for non-CPU spaces.

▶ Lambdas must be marked with a macro for non-CPU spaces.

D
ef
a
u
lt

C
u
st
o
m

June 17, 2024 18/63

Execution spaces (3)

Changing the parallel execution space:

parallel_for("Label",

RangePolicy < Execut ionSpace >(0, numberOfIntervals),

[=] (const int64_t i) {

/* ... body ... */

});

parallel_for("Label",

numberOfIntervals , // => RangePolicy <>(0, numberOfIntervals)

[=] (const int64_t i) {

/* ... body ... */

});

Requirements for enabling execution spaces:
▶ Kokkos must be compiled with the execution spaces enabled.

▶ Execution spaces must be initialized (and finalized).

▶ Functions must be marked with a macro for non-CPU spaces.

▶ Lambdas must be marked with a macro for non-CPU spaces.

D
ef
a
u
lt

C
u
st
o
m

June 17, 2024 19/63

Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
struct ParallelFunctor {

KOKKOS_INLINE_FUNCTION

double helperFunction(const int64_t s) const {...}

KOKKOS_INLINE_FUNCTION

void operator ()(const int64_t index) const {

helperFunction(index);

}

}

// Where kokkos defines:

#define KOKKOS_INLINE_FUNCTION inline // if CPU only

#define KOKKOS_INLINE_FUNCTION inline __device__ __host__ // if CPU + Cuda/HIP

Lambda annotation with KOKKOS LAMBDA macro
Kokkos :: parallel_for("Label",numberOfIterations ,

KOKKOS_LAMBDA (const int64_t index) {...});

// Where Kokkos defines:

#define KOKKOS_LAMBDA [=] // if CPU only

#define KOKKOS_LAMBDA [=] __device__ __host__ // if CPU + Cuda/HIP

These macros are already defined by Kokkos.

June 17, 2024 19/63

Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
struct ParallelFunctor {

KOKKOS_INLINE_FUNCTION

double helperFunction(const int64_t s) const {...}

KOKKOS_INLINE_FUNCTION

void operator ()(const int64_t index) const {

helperFunction(index);

}

}

// Where kokkos defines:

#define KOKKOS_INLINE_FUNCTION inline // if CPU only

#define KOKKOS_INLINE_FUNCTION inline __device__ __host__ // if CPU + Cuda/HIP

Lambda annotation with KOKKOS LAMBDA macro
Kokkos :: parallel_for("Label",numberOfIterations ,

KOKKOS_LAMBDA (const int64_t index) {...});

// Where Kokkos defines:

#define KOKKOS_LAMBDA [=] // if CPU only

#define KOKKOS_LAMBDA [=] __device__ __host__ // if CPU + Cuda/HIP

These macros are already defined by Kokkos.

June 17, 2024 20/63

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (int64_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

June 17, 2024 20/63

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (int64_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

June 17, 2024 20/63

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (int64_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

June 17, 2024 20/63

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (int64_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

June 17, 2024 21/63

Memory spaces (0)

Memory space:
explicitly-manageable memory resource

(i.e., “place to put data”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

June 17, 2024 22/63

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

June 17, 2024 22/63

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

June 17, 2024 22/63

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

June 17, 2024 22/63

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

June 17, 2024 22/63

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

June 17, 2024 22/63

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

June 17, 2024 23/63

Memory spaces (2)

Example: HostSpace

View <double**, HostSpace> hostView (... constructor arguments ...);

Example: CudaSpace

View <double**, CudaSpace> view (... constructor arguments ...);

June 17, 2024 23/63

Memory spaces (2)

Example: HostSpace

View <double**, HostSpace> hostView (... constructor arguments ...);

Example: CudaSpace

View <double**, CudaSpace> view (... constructor arguments ...);

June 17, 2024 24/63

Execution and Memory spaces (0)

Anatomy of a kernel launch:

1. User declares views, allocating.

2. User instantiates a functor with
views.

3. User launches
parallel something:
▶ Functor is copied to the device.
▶ Kernel is run.
▶ Copy of functor on the device is

released.

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev (...);

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

});

Note: no deep copies of array data are performed;
views are like pointers.

June 17, 2024 25/63

Execution and Memory spaces (1)

Example: one view

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev;

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

});

June 17, 2024 26/63

Execution and Memory spaces (2)

Example: two views

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev;

View <int*, Host > host;

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

host(i) = ...;

});

June 17, 2024 26/63

Execution and Memory spaces (2)

Example: two views

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev;

View <int*, Host > host;

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

host(i) = ...;

});

June 17, 2024 27/63

Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1: View lives in CudaSpace

View <double*, CudaSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

June 17, 2024 27/63

Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1: View lives in CudaSpace

View <double*, CudaSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

fault

June 17, 2024 28/63

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
▶ SharedSpace

▶ SharedHostPinnedSpace (skipping)

▶ Mirroring

June 17, 2024 28/63

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
▶ SharedSpace

▶ SharedHostPinnedSpace (skipping)

▶ Mirroring

illegal access

June 17, 2024 28/63

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
▶ SharedSpace

▶ SharedHostPinnedSpace (skipping)

▶ Mirroring

illegal access

June 17, 2024 29/63

Execution and Memory spaces (5)

SharedSpace

#define KL KOKKOS_LAMBDA

View <double*,

SharedSpace > array;

array = ... from file ...

double sum = 0;

parallel_reduce("Label", N,

KL (int i, double & d) {

d += array(i);

},

sum);

Cuda runtime automatically handles data movement,
at a performance hit.

June 17, 2024 30/63

Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.

Mirroring schematic

Kokkos ::View <double**, Space> view (...);

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

June 17, 2024 30/63

Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.

Mirroring schematic

Kokkos ::View <double**, Space> view (...);

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

June 17, 2024 31/63

Mirroring pattern

1. Create a view’s array in some memory space.
Kokkos ::View <double*, Space> view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

June 17, 2024 31/63

Mirroring pattern

1. Create a view’s array in some memory space.
Kokkos ::View <double*, Space> view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

June 17, 2024 31/63

Mirroring pattern

1. Create a view’s array in some memory space.
Kokkos ::View <double*, Space> view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

June 17, 2024 31/63

Mirroring pattern

1. Create a view’s array in some memory space.
Kokkos ::View <double*, Space> view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

June 17, 2024 31/63

Mirroring pattern

1. Create a view’s array in some memory space.
Kokkos ::View <double*, Space> view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

June 17, 2024 31/63

Mirroring pattern

1. Create a view’s array in some memory space.
Kokkos ::View <double*, Space> view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

June 17, 2024 32/63

Mirrors of Views in HostSpace

What if the View is in HostSpace too? Does it make a copy?

Kokkos ::View <double*, Space> view("test", 10);

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

▶ create mirror view allocates data only if the host process
cannot access view’s data, otherwise hostView references the
same data.

▶ create mirror always allocates data.

▶ create mirror view and copy allocates data if necessary
and also copies data.

Reminder: Kokkos never performs a hidden deep copy.

June 17, 2024 33/63

Exercise #3: Flat Parallelism on the GPU, Views and Host Mirrors

Details:
▶ Location: Exercises/03/Begin/

▶ Add HostMirror Views and deep copy

▶ Make sure you use the correct view in initialization and Kernel

Compile for CPU

cmake -B build -openmp -DKokkos_ENABLE_OPENMP=ON

cmake --build build -openmp

Run on CPU

./build -openmp /03 _Exercise -S 26

Compile for GPU

cmake -B build -cuda -DKokkos_ENABLE_CUDA=ON

cmake --build build -cuda

Run on GPU

./build -cuda /03 _Exercise -S 26

Note the warnings , set appropriate environment variables

Things to try:
▶ Vary problem size and number of rows (-S ...; -N ...)

▶ Change number of repeats (-nrepeat ...)

▶ Compare behavior of CPU vs GPU

June 17, 2024 34/63

View and Spaces Section Summary

▶ Data is stored in Views that are “pointers” to
multi-dimensional arrays residing in memory spaces.

▶ Views abstract away platform-dependent allocation,
(automatic) deallocation, and access.

▶ Heterogeneous nodes have one or more memory spaces.

▶ Mirroring is used for performant access to views in host and
device memory.

▶ Heterogeneous nodes have one or more execution spaces.

▶ You control where parallel code is run by a template
parameter on the execution policy, or by compile-time
selection of the default execution space.

June 17, 2024 35/63

Managing memory access patterns
for performance portability

Learning objectives:

▶ How the View’s Layout parameter controls data layout.

▶ How memory access patterns result from Kokkos mapping
parallel work indices and layout of multidimensional array data

▶ Why memory access patterns and layouts have such a
performance impact (caching and coalescing).

▶ See a concrete example of the performance of various memory
configurations.

June 17, 2024 36/63

Example: inner product (0)

Kokkos :: parallel_reduce("Label",

RangePolicy <ExecutionSpace >(0, N),

KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;

for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Driving question: How should A be laid out in memory?

June 17, 2024 36/63

Example: inner product (0)

Kokkos :: parallel_reduce("Label",

RangePolicy <ExecutionSpace >(0, N),

KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;

for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Driving question: How should A be laid out in memory?

June 17, 2024 37/63

Example: inner product (1)

Layout is the mapping of multi-index to memory:

LayoutLeft

in 2D, “column-major”

LayoutRight

in 2D, “row-major”

June 17, 2024 38/63

Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

▶ Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

▶ If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

▶ Layouts are extensible: ≈ 50 lines

▶ Advanced layouts: LayoutStride, LayoutTiled, ...

June 17, 2024 38/63

Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

▶ Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

▶ If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

▶ Layouts are extensible: ≈ 50 lines

▶ Advanced layouts: LayoutStride, LayoutTiled, ...

June 17, 2024 39/63

Exercise #4: Inner Product, Flat Parallelism

Details:

▶ Location: Exercises/04/Begin/

▶ Replace ‘‘N’’ in parallel dispatch with RangePolicy<ExecSpace>

▶ Add MemSpace to all Views and Layout to A

▶ Experiment with the combinations of ExecSpace, Layout to view
performance

Things to try:

▶ Vary problem size and number of rows (-S ...; -N ...)

▶ Change number of repeats (-nrepeat ...)

▶ Compare behavior of CPU vs GPU

▶ Compare using UVM vs not using UVM on GPUs

▶ Check what happens if MemSpace and ExecSpace do not match.

June 17, 2024 40/63

Exercise #4: Inner Product, Flat Parallelism

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y|Ax> Exercise 04 (Layout) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

Why?

June 17, 2024 41/63

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

▶ CPU threads are independent.
▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

June 17, 2024 41/63

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
▶ CPU threads are independent.

▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

June 17, 2024 41/63

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
▶ CPU threads are independent.

▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

June 17, 2024 41/63

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
▶ CPU threads are independent.

▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

June 17, 2024 41/63

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
▶ CPU threads are independent.

▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

June 17, 2024 42/63

Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:

GPUs: many (synchronized) cores with a shared cache:

June 17, 2024 42/63

Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:

GPUs: many (synchronized) cores with a shared cache:

June 17, 2024 43/63

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access on GPUs and non-cached loads on CPUs
greatly reduces performance (can be 10X)

June 17, 2024 43/63

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access on GPUs and non-cached loads on CPUs
greatly reduces performance (can be 10X)

June 17, 2024 44/63

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

June 17, 2024 44/63

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

June 17, 2024 44/63

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

June 17, 2024 45/63

Mapping indices to cores (1)

Iterating for the execution space:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.

June 17, 2024 45/63

Mapping indices to cores (1)

Iterating for the execution space:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.

June 17, 2024 46/63

Mapping indices to cores (2)

Rule of Thumb

Kokkos index mapping and default layouts provide efficient access
if iteration indices correspond to the first index of array.

Example:

View <double ***, ...> view (...);

...

Kokkos :: parallel_for("Label", ... ,

KOKKOS_LAMBDA (int workIndex) {

...

view (..., ... , workIndex) = ...;

view (... , workIndex , ...) = ...;

view(workIndex , ... , ...) = ...;

});

...

June 17, 2024 47/63

Example: inner product (2)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout appropriately for
the architecture.

Analysis: row-major (LayoutRight)

▶ HostSpace: cached (good)

▶ CudaSpace: uncoalesced (bad)

June 17, 2024 47/63

Example: inner product (2)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout appropriately for
the architecture.

Analysis: row-major (LayoutRight)

▶ HostSpace: cached (good)

▶ CudaSpace: uncoalesced (bad)

June 17, 2024 47/63

Example: inner product (2)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout appropriately for
the architecture.

Analysis: row-major (LayoutRight)

▶ HostSpace: cached (good)

▶ CudaSpace: uncoalesced (bad)

June 17, 2024 48/63

Example: inner product (3)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout optimally for the
architecture.

Analysis: column-major (LayoutLeft)

▶ HostSpace: uncached (bad)

▶ CudaSpace: coalesced (good)

June 17, 2024 48/63

Example: inner product (3)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout optimally for the
architecture.

Analysis: column-major (LayoutLeft)

▶ HostSpace: uncached (bad)

▶ CudaSpace: coalesced (good)

June 17, 2024 49/63

Example: inner product (4)

Analysis: Kokkos architecture-dependent

View <double**, Execut ionSpace > A(N, M);

parallel_for(RangePolicy < Execut ionSpace >(0, N),

... thisRowsSum += A(j, i) * x(i);

(a) OpenMP (b) Cuda

▶ HostSpace: cached (good)

▶ CudaSpace: coalesced (good)

June 17, 2024 50/63

Example: inner product (5)

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y|Ax> Exercise 04 (Layout) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

coalesced

cached

uncoalesced

cached
uncached

June 17, 2024 51/63

Memory Access Pattern Summary

▶ Every View has a Layout set at compile-time through a
template parameter.

▶ LayoutRight and LayoutLeft are most common.

▶ Views in HostSpace default to LayoutRight and Views in
CudaSpace default to LayoutLeft.

▶ Layouts are extensible and flexible.

▶ For performance, memory access patterns must result in
caching on a CPU and coalescing on a GPU.

▶ Kokkos maps parallel work indices and multidimensional array
layout for performance portable memory access patterns.

▶ There is nothing in OpenMP, OpenACC, or OpenCL to manage
layouts.
⇒ You’ll need multiple versions of code or pay the
performance penalty.

June 17, 2024 52/63

Advanced Reductions

Learning objectives:

▶ How to use Reducers to perform different reductions.

▶ How to do multiple reductions in one kernel.

▶ Using Kokkos::View’s as result for asynchronicity.

▶ Custom reductions

June 17, 2024 53/63

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >(max_value));

▶ Note how the operation in the body matches the reducer op!

▶ The scalar type is used as a template argument.

▶ Many reducers available: Sum, Prod, Min, Max, MinLoc,

see: https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

▶ Some reducers (like MinLoc) use special scalar types!

▶ Custom value types supported via specialization of
reduction identity.

https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

June 17, 2024 53/63

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >(max_value));

▶ Note how the operation in the body matches the reducer op!

▶ The scalar type is used as a template argument.

▶ Many reducers available: Sum, Prod, Min, Max, MinLoc,

see: https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

▶ Some reducers (like MinLoc) use special scalar types!

▶ Custom value types supported via specialization of
reduction identity.

https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

June 17, 2024 53/63

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >(max_value));

▶ Note how the operation in the body matches the reducer op!

▶ The scalar type is used as a template argument.

▶ Many reducers available: Sum, Prod, Min, Max, MinLoc,

see: https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

▶ Some reducers (like MinLoc) use special scalar types!

▶ Custom value types supported via specialization of
reduction identity.

https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

June 17, 2024 53/63

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >(max_value));

▶ Note how the operation in the body matches the reducer op!

▶ The scalar type is used as a template argument.

▶ Many reducers available: Sum, Prod, Min, Max, MinLoc,

see: https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

▶ Some reducers (like MinLoc) use special scalar types!

▶ Custom value types supported via specialization of
reduction identity.

https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

June 17, 2024 53/63

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >(max_value));

▶ Note how the operation in the body matches the reducer op!

▶ The scalar type is used as a template argument.

▶ Many reducers available: Sum, Prod, Min, Max, MinLoc,

see: https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

▶ Some reducers (like MinLoc) use special scalar types!

▶ Custom value types supported via specialization of
reduction identity.

https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

June 17, 2024 53/63

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >(max_value));

▶ Note how the operation in the body matches the reducer op!

▶ The scalar type is used as a template argument.

▶ Many reducers available: Sum, Prod, Min, Max, MinLoc,

see: https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

▶ Some reducers (like MinLoc) use special scalar types!

▶ Custom value types supported via specialization of
reduction identity.

https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

June 17, 2024 54/63

Simultaneous Reductions

Sometimes multiple reductions are needed

▶ Provide multiple reducers/result arguments

▶ Functor/Lambda operator takes matching thread-local
variables

▶ Mixing scalar types is fine.

float max_value = 0;

double sum = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i,float& tl_max ,double& tl_sum){

float a_i = a[i];

if(a_i > tl_max) tl_max = a_i;

tl_sum += a_i;

}, Kokkos ::Max <float >(max_value),sum);

June 17, 2024 55/63

Views as Result arguments

Reducing into a Scalar is blocking!
▶ Providing a reference to scalar means no lifetime expectation.

▶ Call to parallel reduce returns after writing the result.

▶ Kokkos::View can be used as a result, allowing for
potentially non-blocking execution.

▶ Can provide View to host memory, or to memory accessible by
the ExecutionSpace for the reduction.

▶ Works with Reducers too!

View <double ,HostSpace > h_sum("sum_h");

View <double ,CudaSpace > d_sum("sum_d");

using policy_t = RangePolicy <Cuda >;

parallel_reduce("Label", policy_t(0,N), SomeFunctor ,

h_sum);

parallel_reduce("Label", policy_t(0,N), SomeFunctor ,

Kokkos ::Sum <double ,CudaSpace >(d_sum));

June 17, 2024 56/63

Custom Reductions

Pseudocode for Kokkos implementation

per_thread:

value& tmp=init(local_tmp);

for (i in local range)

functor(i, tmp)

call join for merging values between threads

in the same thread group

let one (the last) thread group merge all results

from all thread groups

call final(result) on one thread

Three ingredients

▶ init (optional), default: default constructor

▶ join (required)

▶ final (optional), default: no-op

June 17, 2024 57/63

Custom Reductions

Rules for choosing reduction behavior

1. If a reducer is specified (return type is a functor with reducer

alias to itself), use that.

2. If functor implements join, use functor as reducer.

3. Otherwise, assume join behaves like operator+.

Note that the functor’s init, join, final members must be
tagged if the call operator is tagged. The reducers member
functions must never be tagged.

June 17, 2024 58/63

Reducer Concept

c l a s s Reducer {
p u b l i c :

u s i n g r e du c e r = Reducer ;
u s i n g v a l u e t y p e = . . . ;
u s i n g r e s u l t v i e w t y p e = Kokkos : : View<v a l u e t y p e , . . . >;

KOKKOS FUNCTION
vo i d j o i n (v a l u e t y p e& dest , con s t v a l u e t y p e& s r c) con s t ;

// o p t i o n a l
KOKKOS INLINE FUNCTION
vo i d i n i t (v a l u e t y p e& v a l) con s t ;

// o p t i o n a l
KOKKOS INLINE FUNCTION
vo i d f i n a l (v a l u e t y p e& v a l) con s t ;

KOKKOS INLINE FUNCTION
v a l u e t y p e& r e f e r e n c e () con s t ;

KOKKOS INLINE FUNCTION
r e s u l t v i e w t y p e v iew () con s t ;

KOKKOS INLINE FUNCTION
Reducer (v a l u e t y p e& v a l u e) ;

KOKKOS INLINE FUNCTION
Reducer (con s t r e s u l t v i e w t y p e& v a l u e) ;

} ;

June 17, 2024 59/63

Module 2: Summary

Kokkos View

▶ Multi Dimensional Array.

▶ Compile and Runtime Dimensions.

▶ Reference counted like a std::shared ptr to an array.

Kokkos ::View <int*[5]> a("A", N);

a(3,2) = 7;

Execution Spaces

▶ Parallel operations execute in a specified Execution Space

▶ Can be controlled via template argument to Execution Policy

▶ If no Execution Space is provided use
DefaultExecutionSpace

// Equivalent:

parallel_for("L", N, functor);

parallel_for("L",

RangePolicy <DefaultExecutionSpace >(0, N), functor);

June 17, 2024 60/63

Module 2: Summary

Memory Spaces

▶ Kokkos Views store data in Memory Spaces.

▶ Provided as template parameter.

▶ If no Memory Space is given, use
Kokkos::DefaultExecutionSpace::memory space.

▶ deep copy is used to transfer data: no hidden memory copies
by Kokkos.

View <int*, CudaSpace > a("A", M);

// View in host memory to load from file

auto h_a = create_mirror_view(a);

load_from_file(h_a);

// Copy

deep_copy(a,h_a);

June 17, 2024 61/63

Module 2: Summary

Layouts

▶ Kokkos Views use an index mapping to memory determined
by a Layout.

▶ Provided as template parameter.

▶ If no Layout is given, derived from the execution space
associated with the memory space.

▶ Defaults are good if you parallelize over left most index!

View <int**, LayoutLeft > a("A", N, M);

View <int**, LayoutRight > b("B", N, M);

parallel_for("Fill", N, KOKKOS_LAMBDA(int i) {

for(int j = 0; j < M; j++) {

a(i,j) = i * 1000 + j; // coalesced

b(i,j) = i * 1000 + j; // cached

}

});

June 17, 2024 62/63

Module 2: Summary

Advanced Reductions

▶ parallel reduce defaults to summation

▶ Kokkos reducers can be used to reduce over arbitrary
operations

▶ Reductions over multiple values are supported

▶ Only reductions into scalar arguments are guaranteed to be
synchronous

▶ Support for custom reductions

parallel_reduce("Join", n,

KOKKOS_LAMBDA(int i, double& a, int& b) {

int idx = foo ();

if(idx > b) b = idx;

a += bar();

}, result , Kokkos ::Max <int >{ my_max });

June 17, 2024 63/63

Module 3: Outlook (07/31)

Advanced Data Structures

▶ Subsetting and slicing of Views

▶ Higher-level and special purpose View data structures

▶ Atomic access to a View’s data

More Parallel Policies:

▶ Multidimensional loops with MDRangePolicy

Don’t Forget: Join the Slack Channel and drop into our office
hours on Monday.

Updates at: bit.ly/kokkos-lecture-updates

Recordings/Slides: bit.ly/kokkos-lecture-wiki

https://bit.ly/kokkos-lecture-updates
https://bit.ly/kokkos-lecture-wiki

