
The Kokkos Lectures

Module 1: Introduction, Building and Parallel Dispatch

June 17, 2024

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2020-7263 PE

June 17, 2024 2/76

Welcome to Kokkos

Kokkos is C++ Performance Portability
▶ Write a single source implementation using C++

▶ Use a descriptive Programming Model

▶ Compile for GPUs and CPUs

Kokkos is Ready for Use
▶ Well established project since 2012

▶ Major buy-in by DOE National Labs

▶ Well over 100 projects with over 500 developers use Kokkos

▶ Dedicated developer staff at 5 National Labs

▶ Robust support for software stacks: GCC 8+, Clang 8+, NVCC 11+, ROCM
5.2, Intel 19+

June 17, 2024 3/76

Welcome to Kokkos

Online Resources:
▶ https://github.com/kokkos:

▶ Primary Kokkos GitHub Organization

▶ https://github.com/kokkos/kokkos-tutorials/
LectureSeries:
▶ Find these slides

▶ https://github.com/kokkos/kokkos/wiki:
▶ Wiki including API reference

▶ https://kokkosteam.slack.com:
▶ Slack channel for Kokkos.
▶ Please join: fastest way to get your questions answered.
▶ Can whitelist domains, or invite individual people. Email:

crtrott@sandia.gov

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/LectureSeries
https://github.com/kokkos/kokkos-tutorials/LectureSeries
https://github.com/kokkos/kokkos/wiki
https://kokkosteam.slack.com

June 17, 2024 4/76

Lecture Series Outline

▶ 07/17 Module 1: Introduction, Building and Parallel Dispatch

▶ 07/24 Module 2: Views and Spaces

▶ 07/31 Module 3: Data Structures + MultiDimensional Loops

▶ 08/07 Module 4: Hierarchical Parallelism

▶ 08/14 Module 5: Tasking, Streams and SIMD

▶ 08/21 Module 6: Internode: MPI and PGAS

▶ 08/28 Module 7: Tools: Profiling, Tuning and Debugging

▶ 09/04 Module 8: Kernels: Sparse and Dense Linear Algebra

▶ 09/11 Reserve Day

June 17, 2024 5/76

What to Expect

Lectures

▶ Typically 90 minutes of lecture

▶ Submodules have associated exercise as homework

▶ Typically 2-3 Exercises per lecture

▶ Exercises will be talked through at next meeting.

Exercises

▶ Exercises are small codes with places to do modifications.

▶ Access to GPUs helpful for most of them, but most can be
done on pure CPU systems.

▶ Only dependent on standard compilers (e.g. Clang, NVCC)

▶ Office hours on Tuesdays 3-5 PM Eastern Time (potentially
with AWS access).

▶ Ongoing support at https://kokkosteam.slack.com

https://kokkosteam.slack.com

June 17, 2024 6/76

Module 1

Introduction

What is Kokkos? Who is behind it? Why should you use it?

Parallel Dispatch

Pattern, Policy and Body: how to parallelize simple code with
Kokkos.

Building

What do you need to build Kokkos and Apps? How to integrate
into your build system?

June 17, 2024 7/76

Introduction
Learning objectives:

▶ Why do we need Kokkos

▶ The Kokkos EcoSystem

▶ The Kokkos Team

June 17, 2024 8/76

The HPC Hardware Landscape

(a) Initially not working. Now more robust for Fortran than C++, but getting better.
(b) Research effort.
(c) OpenMP 5 by NVIDIA.
(d) OpenMP 5 by HPE.

(e) OpenMP 5 by Intel.

June 17, 2024 9/76

Cost of Coding

Industry Estimate

A full time software engineer writes 10 lines of production code per
hour: 20k LOC/year.

▶ Typical HPC production app: 300k-600k lines
▶ Sandia alone maintains a few dozen

▶ Large Scientific Libraries:
▶ E3SM: 1,000k lines
▶ Trilinos: 4,000k lines

Conservative estimate: need to rewrite 10% of an app to switch
Programming Model

Software Cost Switching Vendors

Just switching Programming Models costs multiple person-years
per app!

June 17, 2024 9/76

Cost of Coding

Industry Estimate

A full time software engineer writes 10 lines of production code per
hour: 20k LOC/year.

▶ Typical HPC production app: 300k-600k lines
▶ Sandia alone maintains a few dozen

▶ Large Scientific Libraries:
▶ E3SM: 1,000k lines
▶ Trilinos: 4,000k lines

Conservative estimate: need to rewrite 10% of an app to switch
Programming Model

Software Cost Switching Vendors

Just switching Programming Models costs multiple person-years
per app!

June 17, 2024 10/76

What is Kokkos?

▶ A C++ Programming Model for Performance Portability
▶ Implemented as a template library on top CUDA, HIP,

OpenMP, ...
▶ Aims to be descriptive not prescriptive
▶ Aligns with developments in the C++ standard

▶ Expanding solution for common needs of modern science and
engineering codes
▶ Math libraries based on Kokkos
▶ Tools for debugging, profiling and tuning
▶ Utilities for integration with Fortran and Python

▶ It is an Open Source project with a growing community
▶ Maintained and developed at https://github.com/kokkos
▶ Hundreds of users at many large institutions

https://github.com/kokkos

June 17, 2024 11/76

Kokkos at the Center

June 17, 2024 12/76

The Kokkos EcoSystem

June 17, 2024 13/76

The Kokkos Team

Kokkos Core: C. Trott, D. Lebrun-Grandié, D. Arndt, J. Bludau, J. Ciesko, C. Cle-
venger, N. Ellingwood, R. Gayatri, D. Ibanez, D. Lee, S. Lee, N. Liber,
P. Miller, N. Morales, A. Powell, F. Rizzi, M. Simberg, C. Skrzyński,
B. Turcksin
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova, D. Sunder-
land, D.S. Hollman, J. Miles, J. Wilke, J. Madsen, H. Finkel

Kokkos Kernels: S. Rajamanickam, L. Berger-Vergiat, V. Dang, N. Ellingwood, J.
Foucar, E. Harvey, B. Kelley, K. Liegeois, C. Pearson, E. Prudencio
former: S. Acer, K. Kim, J. Loe

Kokkos Tools D. Poliakoff, C. Lewis, S. Hammond, D. Ibanez, J. Madsen, S. Moore,
C. Trott

Kokkos Support C. Trott, G. Shipmann, G. Womeldorff, and all of the above
former: H.C. Edwards, G. Lopez, F. Foertter

June 17, 2024 14/76

Kokkos and the C++ Standard

Kokkos helps improve ISO C++

Ten current or former Kokkos team members are members of the
ISO C++ standard committee.

June 17, 2024 15/76

C++20 std::atomic ref

C++11 std::atomic insufficient for HPC

▶ Objects, not functions, with only atomic access

▶ Can’t use non-atomic access in one operation, and then
atomic access in the next

C++20 std::atomic ref adds atomic capabilites as in Kokkos

▶ Can wrap standard allocations.

▶ Works also for sizes which can’t be done lock-free (e.g.
complex<double>)

▶ Atomic operations on reasonably arbitrary types

// Kokkos today

Kokkos :: atomic_add (&a[i] ,5.0);

// atomic_ref in ISO C++20

std:: atomic_ref(a[i]) += 5.0;

June 17, 2024 16/76

C++23 std::mdspan

C++ does not provide multi dimensional arrays

▶ Every scientific programming language has them: Fortran,
Matlab, Python, ...

C++23 std::mdspan adds Kokkos::View like arrays

▶ Reference semantics.

▶ Compile time and runtime extents (also mixed)

▶ Data layouts to allow for adapting hardware specific access
patterns.

▶ Subviews!

// Kokkos today

View <float **[5], LayoutLeft > a("A" ,10,12); a(3,5,1) = 5;

// mdspan in ISO C++23

using ext = extents <int ,dynamic_extent ,dynamic_extent ,5>;

mdspan <float ,ext ,layout_left > a(ptr ,10 ,12); a[3 ,5 ,1]+=5;

June 17, 2024 17/76

Kokkos Users

Kokkos has a growing OpenSource Community

▶ 20 ECP projects list Kokkos as Critical Dependency
▶ 41 list C++ as critical
▶ 25 list Lapack as critical
▶ 21 list Fortran as critical

▶ Slack Channel: 900 members from 90+ institutions
▶ 15% Sandia Nat. Lab.
▶ 24% other US Labs
▶ 22% universities
▶ 39% other

▶ GitHub: 1.1k stars

June 17, 2024 18/76

Prerequisites for Tutorial Exercises

Knowledge of C++: class constructors, member variables,
member functions, member operators, template arguments

Using your own ${HOME}
▶ Git

▶ CMake 3.16 (or newer)

▶ GCC 8.2 (or newer) OR Intel 19.0.5 (or newer) OR Clang 8.0 (or newer)

▶ CUDA nvcc 11.0 (or newer) AND NVIDIA compute capability 6.0 (or newer)

▶ git clone https://github.com/kokkos/kokkos-tutorials

into ${HOME}/Kokkos/kokkos-tutorials

Slides are in
${HOME}/Kokkos/kokkos-tutorials/LectureSeries

Exercises are in
${HOME}/Kokkos/kokkos-tutorials/Exercises

https://github.com/kokkos/kokkos-tutorials

June 17, 2024 19/76

Prerequisites for Tutorial Exercises

Online Resources:

▶ https://github.com/kokkos: Primary Kokkos GitHub
Organization

▶ https://kokkos.github.io/kokkos-core-wiki: Wiki
including API reference

▶ https://github.com/kokkos/kokkos-tutorials: Tutorial
exercises

▶ https://kokkosteam.slack.com: Slack channel for Kokkos

https://github.com/kokkos
https://kokkos.github.io/kokkos-core-wiki
https://github.com/kokkos/kokkos-tutorials
https://kokkosteam.slack.com

June 17, 2024 20/76

Lecture Series Objectives

Kokkos’ basic capabilities:

▶ Simple 1D data parallel computational patterns

▶ Deciding where code is run and where data is placed

▶ Managing data access patterns for performance portability

▶ Multidimensional data parallelism

Kokkos’ advanced capabilities:

▶ Thread safety, thread scalability, and atomic operations

▶ Hierarchical patterns for maximizing parallelism

▶ Task based programming with Kokkos

Kokkos’ tools and Kernels:

▶ How to profile, tune and debug Kokkos code

▶ Interacting with Python and Fortran

▶ Using Kokkos Kernels math library

June 17, 2024 21/76

Tutorial Takeaways

▶ Kokkos enables Single Source Performance Portable
Codes

▶ Simple things stay simple - it is not much more complicated
than OpenMP

▶ Advanced performance optimizing capabilities easier to
use with Kokkos than e.g. CUDA or HIP

▶ Kokkos provides data abstractions critical for performance
portability not available in other programming models
Controlling data access patterns is key for obtaining
performance

▶ The Kokkos Ecosystem comes with tools (profiling,
debugging, tuning, math libraries, etc.) needed for application
development in professional settings

June 17, 2024 22/76

Operating assumptions (0)

Assume you are here because:

▶ Want to use all HPC node architectures; including GPUs

▶ Are familiar with C++

▶ Want GPU programming to be easier

▶ Would like portability, as long as it doesn’t hurt performance

Helpful for understanding nuances:

▶ Are familiar with data parallelism

▶ Are familiar with OpenMP

▶ Are familiar with GPU architecture and CUDA

June 17, 2024 23/76

Operating assumptions (1)

Target machine:

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

June 17, 2024 24/76

Important Point: Performance Portability

Important Point

There’s a difference between portability and
performance portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won’t scale to 100,000 threads on GPU)

Goal: write one implementation which:

▶ compiles and runs on multiple architectures,

▶ obtains performant memory access patterns across
architectures,

▶ can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

June 17, 2024 24/76

Important Point: Performance Portability

Important Point

There’s a difference between portability and
performance portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won’t scale to 100,000 threads on GPU)

Goal: write one implementation which:

▶ compiles and runs on multiple architectures,

▶ obtains performant memory access patterns across
architectures,

▶ can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

June 17, 2024 24/76

Important Point: Performance Portability

Important Point

There’s a difference between portability and
performance portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won’t scale to 100,000 threads on GPU)

Goal: write one implementation which:

▶ compiles and runs on multiple architectures,

▶ obtains performant memory access patterns across
architectures,

▶ can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

June 17, 2024 25/76

Concepts for Data Parallelism

Learning objectives:

▶ Terminology of pattern, policy, and body.

▶ The data layout problem.

June 17, 2024 26/76

Concepts: Patterns, Policies, and Bodies

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

Terminology:

▶ Pattern: structure of the computations
for, reduction, scan, task-graph, ...

▶ Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

▶ Computational Body: code which performs each unit of
work; e.g., the loop body

⇒ The pattern and policy drive the computational body.

June 17, 2024 26/76

Concepts: Patterns, Policies, and Bodies

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

Terminology:

▶ Pattern: structure of the computations
for, reduction, scan, task-graph, ...

▶ Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

▶ Computational Body: code which performs each unit of
work; e.g., the loop body

⇒ The pattern and policy drive the computational body.

Pattern Policy

B
o
d
y

June 17, 2024 27/76

Threading “Parallel for”

What if we want to thread the loop?

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel PHI and NVIDIA GPU and AMD GPU and ...

June 17, 2024 27/76

Threading “Parallel for”

What if we want to thread the loop?

#pragma omp parallel for

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel PHI and NVIDIA GPU and AMD GPU and ...

June 17, 2024 27/76

Threading “Parallel for”

What if we want to thread the loop?

#pragma omp parallel for

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel PHI and NVIDIA GPU and AMD GPU and ...

June 17, 2024 28/76

“Parallel for” on a GPU via pragmas

Option 1: OpenMP 4.5

#pragma omp target data map (...)

#pragma omp teams num_teams (...) num_threads (...) private (...)

#pragma omp distribute

for (element = 0; element < numElements; ++ element) {

total = 0

#pragma omp parallel for

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

Option 2: OpenACC

#pragma acc parallel copy (...) num_gangs (...) vector_length (...)

#pragma acc loop gang vector

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

June 17, 2024 28/76

“Parallel for” on a GPU via pragmas

Option 1: OpenMP 4.5

#pragma omp target data map (...)

#pragma omp teams num_teams (...) num_threads (...) private (...)

#pragma omp distribute

for (element = 0; element < numElements; ++ element) {

total = 0

#pragma omp parallel for

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

Option 2: OpenACC

#pragma acc parallel copy (...) num_gangs (...) vector_length (...)

#pragma acc loop gang vector

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

June 17, 2024 29/76

Portable, but not performance portable

A standard thread parallel programming model
may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?

Performance depends upon the computation’s
memory access pattern.

June 17, 2024 29/76

Portable, but not performance portable

A standard thread parallel programming model
may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?

Performance depends upon the computation’s
memory access pattern.

June 17, 2024 30/76

Problem: memory access pattern

#pragma something , opencl , etc.

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];

}

}

elementValues[element] = total;

}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance the memory access pattern
must depend on the architecture.

June 17, 2024 30/76

Problem: memory access pattern

#pragma something , opencl , etc.

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];

}

}

elementValues[element] = total;

}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance the memory access pattern
must depend on the architecture.

June 17, 2024 30/76

Problem: memory access pattern

#pragma something , opencl , etc.

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];

}

}

elementValues[element] = total;

}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance the memory access pattern
must depend on the architecture.

June 17, 2024 31/76

Kokkos overview

How does Kokkos address performance portability?

Kokkos is a productive, portable, performant, shared-memory
programming model.

▶ is a C++ library, not a new language or language extension.

▶ provides clear, concise, scalable parallel patterns.

▶ lets you write algorithms once and run on many architectures
e.g. multi-core CPU, GPUs, Xeon Phi, ...

▶ minimizes the amount of architecture-specific
implementation details users must know.

▶ solves the data layout problem by using multi-dimensional
arrays with architecture-dependent layouts

June 17, 2024 32/76

Data parallel patterns

Learning objectives:

▶ How computational bodies are passed to the Kokkos runtime.

▶ How work is mapped to execution resources.

▶ The difference between parallel for and
parallel reduce.

▶ Start parallelizing a simple example.

June 17, 2024 33/76

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

▶ each iteration of a computational body is a unit of work.

▶ an iteration index identifies a particular unit of work.

▶ an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.

June 17, 2024 33/76

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

▶ each iteration of a computational body is a unit of work.

▶ an iteration index identifies a particular unit of work.

▶ an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.

June 17, 2024 33/76

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

▶ each iteration of a computational body is a unit of work.

▶ an iteration index identifies a particular unit of work.

▶ an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.

June 17, 2024 34/76

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

June 17, 2024 34/76

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

June 17, 2024 34/76

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

June 17, 2024 35/76

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

June 17, 2024 35/76

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

June 17, 2024 35/76

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

June 17, 2024 35/76

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

June 17, 2024 36/76

Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce(... data ...);

}

struct AtomForceFunctor {

...

void operator ()(const int64_t atomIndex) const {

atomForces[atomIndex] = calculateForce(... data ...);

}

...

}

How does the body access the data?

Important concept

A parallel functor body must have access to all the data it needs
through the functor’s data members.

June 17, 2024 36/76

Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce(... data ...);

}

struct AtomForceFunctor {

...

void operator ()(const int64_t atomIndex) const {

atomForces[atomIndex] = calculateForce(... data ...);

}

...

}

How does the body access the data?

Important concept

A parallel functor body must have access to all the data it needs
through the functor’s data members.

June 17, 2024 37/76

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {

ForceType _atomForces;

DataType _atomData;

AtomForceFunctor(/* args */) {...}

void operator ()(const int64_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

};

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces , data);

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

functor(atomIndex);

}

June 17, 2024 37/76

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {

ForceType _atomForces;

DataType _atomData;

AtomForceFunctor(/* args */) {...}

void operator ()(const int64_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

};

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces , data);

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

functor(atomIndex);

}

S
er
ia
l

June 17, 2024 37/76

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {

ForceType _atomForces;

DataType _atomData;

AtomForceFunctor(/* args */) {...}

void operator ()(const int64_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

};

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces , data);

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

functor(atomIndex);

}

S
er
ia
l

F
u
n
ct
o
r

June 17, 2024 38/76

Using Kokkos for data parallel patterns (6)

The complete picture (using functors):

1. Defining the functor (operator+data):

struct AtomForceFunctor {

ForceType _atomForces;

DataType _atomData;

AtomForceFunctor(ForceType atomForces , DataType data) :

_atomForces(atomForces), _atomData(data) {}

void operator ()(const int64_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

}

2. Executing in parallel with Kokkos pattern:
AtomForceFunctor functor(atomForces , data);

Kokkos :: parallel_for(numberOfAtoms , functor);

June 17, 2024 39/76

Using Kokkos for data parallel patterns (7)

Functors are tedious ⇒ C++11 Lambdas are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

June 17, 2024 39/76

Using Kokkos for data parallel patterns (7)

Functors are tedious ⇒ C++11 Lambdas are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

June 17, 2024 39/76

Using Kokkos for data parallel patterns (7)

Functors are tedious ⇒ C++11 Lambdas are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

June 17, 2024 40/76

parallel for examples

How does this compare to OpenMP?

for (int64_t i = 0; i < N; ++i) {

/* loop body */

}

#pragma omp parallel for

for (int64_t i = 0; i < N; ++i) {

/* loop body */

}

parallel_for(N, [=] (const int64_t i) {

/* loop body */

});

Important concept

Simple Kokkos usage is no more conceptually difficult than
OpenMP, the annotations just go in different places.

S
er
ia
l

O
p
en

M
P

K
o
k
ko

s

June 17, 2024 41/76

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

Wikipedia

June 17, 2024 41/76

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

Wikipedia

double totalIntegral = 0;

for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

June 17, 2024 41/76

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

Wikipedia

double totalIntegral = 0;

for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

How do we parallelize it? Correctly?

June 17, 2024 41/76

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

Wikipedia

double totalIntegral = 0;

for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

How do we parallelize it? Correctly?

Pattern?
Policy?

B
o
d
y?

June 17, 2024 42/76

Scalar integration (1)

An (incorrect) attempt:

double totalIntegral = 0;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

totalIntegral += function(x);}

);

totalIntegral *= dx;

First problem: compiler error; cannot increment totalIntegral
(lambdas capture by value and are treated as const!)

June 17, 2024 43/76

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;

double * totalIntegralPointer = &totalIntegral;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

*totalIntegralPointer += function(x);}

);

totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1

0 load

1 increment load

2 write increment

3 write

June 17, 2024 43/76

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;

double * totalIntegralPointer = &totalIntegral;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

*totalIntegralPointer += function(x);}

);

totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1

0 load

1 increment load

2 write increment

3 write

June 17, 2024 44/76

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

June 17, 2024 44/76

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

June 17, 2024 44/76

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

June 17, 2024 44/76

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

June 17, 2024 45/76

Scalar integration (4)

Example: Scalar integration

double totalIntegral = 0;

#pragma omp parallel for reduction(+: totalIntegral)

for (int64_t i = 0; i < numberOfIntervals; ++i) {

totalIntegral += function (...);

}

double totalIntegral = 0;

parallel_reduce(numberOfIntervals ,

[=] (const int64_t i, double & valueToUpdate) {

valueToUpdate += function (...);

},

totalIntegral);

▶ The operator takes two arguments: a work index and a value
to update.

▶ The second argument is a thread-private value that is
managed by Kokkos; it is not the final reduced value.

O
p
en

M
P

K
o
k
ko

s

June 17, 2024 46/76

Amdahl’s Law (1)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = α+ β∗N
P

▶ α = dispatch overhead

▶ β = time for a unit of work

▶ N = number of units of work

▶ P = available concurrency

Speedup = P ÷
(
1 + α∗P

β∗N

)
▶ Should have α ∗ P ≪ β ∗ N
▶ All runtimes strive to minimize launch overhead α

▶ Find more parallelism to increase N

▶ Merge (fuse) parallel operations to increase β

June 17, 2024 46/76

Amdahl’s Law (1)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = α+ β∗N
P

▶ α = dispatch overhead

▶ β = time for a unit of work

▶ N = number of units of work

▶ P = available concurrency

Speedup = P ÷
(
1 + α∗P

β∗N

)
▶ Should have α ∗ P ≪ β ∗ N
▶ All runtimes strive to minimize launch overhead α

▶ Find more parallelism to increase N

▶ Merge (fuse) parallel operations to increase β

June 17, 2024 46/76

Amdahl’s Law (1)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = α+ β∗N
P

▶ α = dispatch overhead

▶ β = time for a unit of work

▶ N = number of units of work

▶ P = available concurrency

Speedup = P ÷
(
1 + α∗P

β∗N

)
▶ Should have α ∗ P ≪ β ∗ N
▶ All runtimes strive to minimize launch overhead α

▶ Find more parallelism to increase N

▶ Merge (fuse) parallel operations to increase β

June 17, 2024 47/76

Amdahl’s Law (2)

Results: illustrates simple speedup model = P ÷
(
1 + α∗P

β∗N

)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1x106 1x107 1x108

sp
ee

du
p

ov
er

 s
er

ia
l [

-]

number of intervals [-]

Kokkos speedup over serial: Scalar Integration
Kokkos Cuda Pascal60
Kokkos OpenMP HSW
Kokkos OpenMP KNL
Native OpenMP KNL
Unity

N
o
te
:
lo
g
sc
a
le

June 17, 2024 48/76

Naming your kernels

Always name your kernels!

Giving unique names to each kernel is immensely helpful for
debugging and profiling. You will regret it if you don’t!

▶ Non-nested parallel patterns can take an optional string
argument.

▶ The label doesn’t need to be unique, but it is helpful.

▶ Anything convertible to ”std::string”

▶ Used by profiling and debugging tools (see Profiling Tutorial)

Example:
double totalIntegral = 0;

parallel_reduce("Reduction",numberOfIntervals ,

[=] (const int64_t i, double & valueToUpdate) {

valueToUpdate += function (...);

},

totalIntegral);

June 17, 2024 49/76

Recurring Exercise: Inner Product

Exercise: Inner product < y ,A ∗ x >

Details:

▶ y is Nx1, A is NxM, x is Mx1

▶ We’ll use this exercise throughout the tutorial

June 17, 2024 50/76

Exercise #1: include, initialize, finalize Kokkos

The first step in using Kokkos is to include, initialize, and finalize:

#include <Kokkos_Core.hpp >

int main(int argc , char* argv []) {

/* ... do any necessary setup (e.g., initialize MPI) ... */

Kokkos :: initialize(argc , argv);

{

/* ... do computations ... */

}

Kokkos :: finalize ();

return 0;

}

(Optional) Command-line arguments or environment variables:

--kokkos-num-threads=INT or
KOKKOS NUM THREADS

total number of threads

--kokkos-device-id=INT or
KOKKOS DEVICE ID

device (GPU) ID to use

June 17, 2024 51/76

Exercise #1: Inner Product, Flat Parallelism on the CPU

Exercise: Inner product < y ,A ∗ x >

Details:

▶ Location: Exercises/01/Begin/

▶ Look for comments labeled with “EXERCISE”

▶ Need to include, initialize, and finalize Kokkos library

▶ Parallelize loops with parallel for or parallel reduce

▶ Use lambdas instead of functors for computational bodies.

▶ For now, this will only use the CPU.

June 17, 2024 52/76

Exercise #1: logistics

Compiling for CPU

cmake -B build_openmp -DKokkos_ENABLE_OPENMP=ON \

-DCMAKE_BUILD_TYPE=Release

cmake --build build_openmp

Running on CPU with OpenMP backend

Set OpenMP affinity

export OMP_NUM_THREADS =8

export OMP_PROC_BIND=spread OMP_PLACES=threads

Print example command line options:

./ build_openmp /01 _Exercise -h

Run with defaults on CPU

./ build_openmp /01 _Exercise

Run larger problem

./ build_openmp /01 _Exercise -S 26

Things to try:

▶ Vary problem size with command line argument -S s

▶ Vary number of rows with command line argument -N n

▶ Num rows = 2n, num cols = 2m, total size = 2s == 2n+m

June 17, 2024 53/76

Exercise #1 results

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y,Ax> Exercise 01, Fixed Size

HSW
KNL
KNL (HBM)

June 17, 2024 54/76

Exercise #1 Going beyond

More things to try: port your solution to work on the device

▶ You will need to update the dynamic memory allocation.

▶ Replace std::malloc and std::free with
Kokkos::kokkos malloc and Kokkos::kokkos free.

▶ Bonus question: Why does this perform so poorly? (hint: the
answer is in this slide deck somewhere)

▶ Note that this is just for learning purposes and by no mean a
recommended way to manage the lifetime of your arrays. We
will see a better way to do this soon.

Compiling for GPU

cmake -B build_cuda -DKokkos_ENABLE_CUDA=ON \

-DKokkos_ARCH_VOLTA70=ON \

-DCMAKE_BUILD_TYPE=Release

cmake --build build_cuda

June 17, 2024 55/76

Basic capabilities we haven’t covered

▶ Customizing parallel reduce data type and reduction
operator

e.g., minimum, maximum, ...

▶ parallel scan pattern for exclusive and inclusive prefix sum

▶ Using tag dispatch interface to allow non-trivial functors to
have multiple “operator()” functions.

very useful in large, complex applications

June 17, 2024 56/76

Section Summary

▶ Simple usage is similar to OpenMP, advanced features are
also straightforward

▶ Three common data-parallel patterns are parallel for,
parallel reduce, and parallel scan.

▶ A parallel computation is characterized by its pattern, policy,
and body.

▶ User provides computational bodies as functors or lambdas
which handle a single work item.

June 17, 2024 57/76

Building Applications with
Kokkos
Learning objectives:

▶ Install Kokkos via CMake

▶ Build Kokkos inline via CMake

▶ Using Spack

▶ Build Kokkos inline via GNU Makefiles

Ignore This For Tutorial Only

The following details on options to integrate Kokkos into your
build process are NOT necessary to know if you just want to do
the tutorial.

June 17, 2024 57/76

Building Applications with
Kokkos
Learning objectives:

▶ Install Kokkos via CMake

▶ Build Kokkos inline via CMake

▶ Using Spack

▶ Build Kokkos inline via GNU Makefiles

Ignore This For Tutorial Only

The following details on options to integrate Kokkos into your
build process are NOT necessary to know if you just want to do
the tutorial.

June 17, 2024 58/76

Options for Building Kokkos

▶ Install Kokkos via CMake: For large projects with multiple
dependencies installing Kokkos via CMake and then building
against it is the best option.

▶ Build Kokkos inline via CMake: This is an option suited for
applications which have few dependencies (and no one
depending on them) and want to build Kokkos inline with
their application.

▶ Using Spack: For projects which largely rely on components
provided by the Spack package manager.

▶ Build Kokkos inline via GNU Makefiles: The option for
projects which don’t want to use CMake. Only inline builds
are supported via Makefiles though. Often this works well for
small applications, with few if any dependencies.

June 17, 2024 59/76

Kokkos CMake Basics

▶ In the spirit of C++ for code performance portability, modern
CMake aims for build system portability

▶ Projects that depend on Kokkos should be agnostic to the
exact build configuration of Kokkos

▶ No CUDA details in C++! No CUDA details in CMake!

▶ Single build system call in your project should configure all
compiler/linker flags:
add_library(myLib goTeamVenture.cpp)

target_link_libraries(myLib PUBLIC Kokkos :: kokkos)

▶ Kokkos configure options are enabled/disabled via CMake as:

cmake -DKokkos_XYZ=ON

June 17, 2024 60/76

CMake Backend Options

▶ Numerous backends can be activated
▶ Only one GPU, one parallel CPU, and Serial at the same time!

▶ -DKokkos_ENABLE_CUDA=ON

▶ -DKokkos_ENABLE_HIP=ON

▶ -DKokkos_ENABLE_SYCL=ON

▶ -DKokkos_ENABLE_OPENMP=ON

▶ -DKokkos_ENABLE_OPENMPTARGET=ON

▶ Verify execution spaces in CMake Output, e.g. CUDA
-- The project name is: Kokkos

...

-- Execution Spaces:

-- Device Parallel: CUDA

-- Host Parallel: NONE

-- Host Serial: SERIAL

June 17, 2024 60/76

CMake Backend Options

▶ Numerous backends can be activated
▶ Only one GPU, one parallel CPU, and Serial at the same time!

▶ -DKokkos_ENABLE_CUDA=ON

▶ -DKokkos_ENABLE_HIP=ON

▶ -DKokkos_ENABLE_SYCL=ON

▶ -DKokkos_ENABLE_OPENMP=ON

▶ -DKokkos_ENABLE_OPENMPTARGET=ON

▶ Verify execution spaces in CMake Output, e.g. CUDA
-- The project name is: Kokkos

...

-- Execution Spaces:

-- Device Parallel: CUDA

-- Host Parallel: NONE

-- Host Serial: SERIAL

June 17, 2024 61/76

CMake Architecture Options

▶ Device backends require architecture be specified (CUDA ,
OpenMPTarget, and HIP)
▶ -DKokkos_ARCH_VOLTA70=ON
▶ -DKokkos_ARCH_AMD_GFX90A=ON: MI250X

▶ Host backends recommend architecture be specified to enable
architecture-specific optimizations
▶ -DKokkos_ARCH_HSW=ON: Haswell
▶ -DKokkos_ARCH_ZEN2=ON: Ryzen (2nd gen)

▶ Architecture flags will automatically propagate to your project
via transitive CMake properties

▶ Verify architectures in CMake Output, e.g. Volta 7.0
-- The project name is: Kokkos

...

-- Architectures:

-- VOLTA70

June 17, 2024 61/76

CMake Architecture Options

▶ Device backends require architecture be specified (CUDA ,
OpenMPTarget, and HIP)
▶ -DKokkos_ARCH_VOLTA70=ON
▶ -DKokkos_ARCH_AMD_GFX90A=ON: MI250X

▶ Host backends recommend architecture be specified to enable
architecture-specific optimizations
▶ -DKokkos_ARCH_HSW=ON: Haswell
▶ -DKokkos_ARCH_ZEN2=ON: Ryzen (2nd gen)

▶ Architecture flags will automatically propagate to your project
via transitive CMake properties

▶ Verify architectures in CMake Output, e.g. Volta 7.0
-- The project name is: Kokkos

...

-- Architectures:

-- VOLTA70

June 17, 2024 62/76

CMake And CUDA

▶ Kokkos is a C++ performance portability layer, but CUDA is
usually built as a separate language with nvcc.

▶ nvcc doesn’t accept all C++ compiler flags

▶ Kokkos’ solution for now is to provide nvcc_wrapper that
converts nvcc into a full C++ compiler.

▶ Set CMake C++ compiler to nvcc_wrapper

▶ CMake will report compiler as host C++ compiler
> cmake ${KOKKOS_SRC}

-DCMAKE_CXX_COMPILER=${KOKKOS_SRC }/bin/nvcc_wrapper
-DKokkos_ENABLE_CUDA=ON

-- The CXX compiler identification is GNU 8.2.0

-- Check for working CXX compiler: bin/nvcc_wrapper

▶ Or simply use clang++ as your compiler...

June 17, 2024 62/76

CMake And CUDA

▶ Kokkos is a C++ performance portability layer, but CUDA is
usually built as a separate language with nvcc.

▶ nvcc doesn’t accept all C++ compiler flags

▶ Kokkos’ solution for now is to provide nvcc_wrapper that
converts nvcc into a full C++ compiler.

▶ Set CMake C++ compiler to nvcc_wrapper

▶ CMake will report compiler as host C++ compiler

> cmake ${KOKKOS_SRC}
-DCMAKE_CXX_COMPILER=${KOKKOS_SRC }/bin/nvcc_wrapper
-DKokkos_ENABLE_CUDA=ON

-- The CXX compiler identification is GNU 8.2.0

-- Check for working CXX compiler: bin/nvcc_wrapper

▶ Or simply use clang++ as your compiler...

June 17, 2024 62/76

CMake And CUDA

▶ Kokkos is a C++ performance portability layer, but CUDA is
usually built as a separate language with nvcc.

▶ nvcc doesn’t accept all C++ compiler flags

▶ Kokkos’ solution for now is to provide nvcc_wrapper that
converts nvcc into a full C++ compiler.

▶ Set CMake C++ compiler to nvcc_wrapper

▶ CMake will report compiler as host C++ compiler
> cmake ${KOKKOS_SRC}

-DCMAKE_CXX_COMPILER=${KOKKOS_SRC }/bin/nvcc_wrapper
-DKokkos_ENABLE_CUDA=ON

-- The CXX compiler identification is GNU 8.2.0

-- Check for working CXX compiler: bin/nvcc_wrapper

▶ Or simply use clang++ as your compiler...

June 17, 2024 62/76

CMake And CUDA

▶ Kokkos is a C++ performance portability layer, but CUDA is
usually built as a separate language with nvcc.

▶ nvcc doesn’t accept all C++ compiler flags

▶ Kokkos’ solution for now is to provide nvcc_wrapper that
converts nvcc into a full C++ compiler.

▶ Set CMake C++ compiler to nvcc_wrapper

▶ CMake will report compiler as host C++ compiler
> cmake ${KOKKOS_SRC}

-DCMAKE_CXX_COMPILER=${KOKKOS_SRC }/bin/nvcc_wrapper
-DKokkos_ENABLE_CUDA=ON

-- The CXX compiler identification is GNU 8.2.0

-- Check for working CXX compiler: bin/nvcc_wrapper

▶ Or simply use clang++ as your compiler...

June 17, 2024 63/76

CMake And HIP

Enable HIP backend Configure with:

-DKokkos_ENABLE_HIP=ON

Compiler Need to explicitly set hipcc or amdclang++ as C++
compiler:

-DCMAKE_CXX_COMPILER=hipcc

Architecture flags Chose one from:

-DKokkos_ARCH_AMD_GFX908=ON # for AMD Radeon Instinct MI100

-DKokkos_ARCH_AMD_GFX90A=ON # for AMD Radeon Instinct MI200 series

June 17, 2024 64/76

CMake And SYCL

Enable SYCL backend Configure with:

-DKokkos_ENABLE_SYCL=ON

Compiler Need to explicitly set icpx as C++ compiler:

-DCMAKE_CXX_COMPILER=icpx

Architecture flags Chose one from:

-DKokkos_ARCH_INTEL_GEN=ON # JIT compiler

-DKokkos_ARCH_INTEL_PVC=ON # for GPU Max 1550/ Ponte Vecchio

June 17, 2024 65/76

CMake And OpenMPTarget

▶ Similar configuration as CUDA/HIP backends, but use:
cmake -DKokkos_ENABLE_OPENMPTARGET=ON

▶ Still requires target device architecture to be given:
cmake -DKokkos_ARCH_VOLTA70=ON

▶ Currently very sensitive to exact compiler/STL combination
▶ Clang15+
▶ GCC9 Toolchain
▶ See scripts/docker/Dockerfile.openmptarget for recipe

▶ C++17 is required

▶ Working on Spack packages to handle complex version
dependencies

scripts/docker/Dockerfile.openmptarget

June 17, 2024 66/76

Building Against an Installed Kokkos (i)

Find exported Kokkos configuration (include dirs, libraries to link
against, compile options, etc.) and generate my project’s build
system accordingly.
Basic starting point Create a CMakeLists.txt file.

cmake_minimum_required(VERSION 3.16)

project(myProject CXX) # C++ needed to build my project

find_package(Kokkos REQUIRED) # fail if Kokkos not found

build my executable from the specified source code

add_executable(myExe source.cpp)

declare dependency on Kokkos

target_link_libraries(myExe PRIVATE Kokkos :: kokkos)

Working with a library

find_package(Kokkos 4.0 REQUIRED) # request Kokkos minimum version

add_library(myLib ${SOURCES })
target_link_libraries(myLib PUBLIC Kokkos :: kokkos)

June 17, 2024 67/76

Building Against an Installed Kokkos (ii)

Finding Kokkos Add Kokkos installation prefix to the list of
directories searched by CMake:

cmake .. -DKokkos_ROOT=<prefix > -DCMAKE_CXX_COMPILER =<...>

Kokkos package introspection Assert that support for host ,
device annotations in lambdas declaration is enabled

(optional) assume my project uses lambdas

if(Kokkos_ENABLE_CUDA)

fatal error if not enabled

kokkos_check(OPTIONS CUDA_ENABLE_LAMBDA)

endif()

or query that generation of relocatable device code is enabled

kokkos_check(

DEVICES CUDA

OPTIONS CUDA_RELOCATABLE_DEVICE_CODE

RESULT_VARIABLE KOKKOS_HAS_CUDA_RDC)

if(KOKKOS_HAS_CUDA_RDC)

...

June 17, 2024 68/76

CMake Building Kokkos Inline

Build Kokkos as part of your own project (as opposed to finding a
pre-installed Kokkos)

add_subdirectory(<kokkos source dir >)

identical as when finding an installed Kokkos package

add_executable(myExe ${SOURCES })
target_link_libraries(myExe PRIVATE Kokkos :: kokkos)

Pass Kokkos options along with app-specific options at
configuration time

cmake .. -DCMAKE_CXX_COMPILER=<kokkos dir >/bin/nvcc_wrapper \

-DKokkos_ENABLE_CUDA=ON -DKokkos_ENABLE_CUDA_LAMBDA=ON \

-DmyApp_ENABLE_FOO=ON -DmyApp_ENABLE_BAR=ON

June 17, 2024 69/76

Kokkos via Spack: Command Line

▶ Spack provides a package manager that automatically
downloads, configures, and installs package dependencies

▶ Kokkos itself can be easily installed with specific variants (+)
and compilers (%)
spack install kokkos@develop +openmp %gcc@8 .3.0

▶ Good practice is to define “best variant“ in your
packages.yaml directory, e.g. for Volta system
packages:

kokkos:

variants: +cuda +openmp +cuda_lambda +wrapper \

^cuda@12 .0 cuda_arch =70

compiler: [gcc@8 .3.0]

▶ Build rules in package.py automatically map Spack variants
to correct CMake options

▶ Run spack info kokkos to see full list of variants

June 17, 2024 70/76

Kokkos via Spack: Package Files

▶ Build rules created in a package.py file

▶ Step 1: Declare dependency on specific version of kokkos (3.x,
master, or develop)
class myLib(CMakePackage):

depends_on(’kokkos@3 .2’)

▶ Step 2: Add build rule pointing to Spack-installed Kokkos and
same C++ compiler Kokkos uses
def cmake_args(self):

options = []

...

options.append(’-DCMAKE_CXX_COMPILER ={}’.format(

self.spec[’kokkos ’]. kokkos_cxx)

options.append(’-DKokkos_ROOT ={}’.format(

self.spec[’kokkos ’]. prefix)

return options

▶ Full details can be found in Spack.md in Kokkos repo.

June 17, 2024 71/76

Building Kokkos Inline via GNU Makefiles

Building Kokkos inline with GNU Makefiles in three steps:

▶ Set Kokkos Options e.g. KOKKOS DEVICES, KOKKOS ARCH

▶ Include Makefile.kokkos

▶ Add KOKKOS CXXFLAGS, KOKKOS LDFLAGS etc. to build rules

Most Important Settings:

▶ KOKKOS DEVICES: What backends to enabled. Comma
separated list: Serial,OpenMP,Cuda,HIP,OpenMPTarget

▶ KOKKOS ARCH: Set architectures. Comma separated list:
HSW,Volta70,Power9,...

Order Matters!

Add default target, Kokkos settings, and CXXFLAGS before
including Makefile.kokkos!

June 17, 2024 71/76

Building Kokkos Inline via GNU Makefiles

Building Kokkos inline with GNU Makefiles in three steps:

▶ Set Kokkos Options e.g. KOKKOS DEVICES, KOKKOS ARCH

▶ Include Makefile.kokkos

▶ Add KOKKOS CXXFLAGS, KOKKOS LDFLAGS etc. to build rules

Most Important Settings:

▶ KOKKOS DEVICES: What backends to enabled. Comma
separated list: Serial,OpenMP,Cuda,HIP,OpenMPTarget

▶ KOKKOS ARCH: Set architectures. Comma separated list:
HSW,Volta70,Power9,...

Order Matters!

Add default target, Kokkos settings, and CXXFLAGS before
including Makefile.kokkos!

June 17, 2024 72/76

Example Makefile

KOKKOS_PATH = ${HOME}/ Kokkos/kokkos
SRC = $(wildcard *.cpp)

KOKKOS_DEVICES=OpenMP ,Cuda

KOKKOS_ARCH = SKX ,Volta70

default: test

echo "Start Build"

CXX = clang++

CXXFLAGS = -O3 -g

LINK = ${CXX}

OBJ = $(SRC:.cpp=.o)

include $(KOKKOS_PATH)/Makefile.kokkos

test: $(OBJ) $(KOKKOS_LINK_DEPENDS)
$(LINK) $(KOKKOS_LDFLAGS) $(OBJ) $(KOKKOS_LIBS) -o test

%.o:%.cpp $(KOKKOS_CPP_DEPENDS)
$(CXX) $(KOKKOS_CPPFLAGS) $(KOKKOS_CXXFLAGS) $(CXXFLAGS)

-c $<

June 17, 2024 73/76

Section Summary

▶ Kokkos’ primary build system is CMAKE.

▶ Kokkos options are transitively passed on, including many
necessary compiler options.

▶ The Spack package manager does support Kokkos.

▶ If you write an application, and have few if any dependencies,
building Kokkos as part of your code is an option with both
CMake and GNU Makefiles.

June 17, 2024 74/76

Module 1: Summary

Kokkos EcoSystem:

▶ C++ Performance Portability Programming Model.

▶ The Kokkos Ecosystem provides capabilities needed for serious
code development.

▶ Kokkos is supported by multiple National Laboratories with a
sizeable dedicated team.

Building Kokkos

▶ Kokkos’ primary build system is CMAKE.

▶ Kokkos options are transitively passed on, including many
necessary compiler options.

▶ The Spack package manager does support Kokkos.

▶ For applications with few if any dependencies, building
Kokkos as part of your code is an option with CMake and
GNU Makefiles.

June 17, 2024 75/76

Module 1: Summary

Data Parallelism:

▶ Simple things stay simple!

▶ You use parallel patterns and execution policies to execute
computational bodies

▶ Simple parallel loops use the parallel for pattern:

parallel_for("Label",N, [=] (int64_t i) {

/* loop body */

});

▶ Reductions combine contributions from loop iterations

int result;

parallel_reduce("Label",N, [=] (int64_t i, int& lres) {

/* loop body */

lres += /* something */

},result);

June 17, 2024 76/76

Module 2: Outlook (07/24)

Kokkos::View:

▶ Solving the data-layout issue.

▶ Controlling data life-time.

Execution and Memory Spaces:

▶ How to control where data lives.

▶ How to control where code executes.

▶ How to manage data transfers.

Don’t Forget: Join the Slack Channel and drop into our office
hours on Monday.

Updates at:
https://github.com/kokkos/kokkos-tutorials/

https://github.com/kokkos/kokkos-tutorials/

