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i = ag —2,...,0. This does not change the value of the determinant, and after
these row operations, the resulting determinant to compute is:

g1
2L+ Y w My

0 0 0
=
ag-2
-1 0 0 wf T+ @M
det =0
0 -1 0
0 . 0 ~I xod + May—1

Tn this block matrix representation, the determinant of the full matrix is the
determinant of the top right matrix, up to the sign (—=1)*0*!.

Complesity Analysis. We call polyDet the procedure returning the polynomial
det(zoI p, — Ty) using Lemma 2. This step has a complexity O(D;Dj") =
Q(u(.D;;) with the algorithm of [40]. Note that this is precisely the complexity
that was obtained with the algorithm of [12] for sy: s satisfying the stability
and shape position properties. In order to estimate the logarithmic factors in
the complexity formula, we bound the complexity with [34, Theorem 4.4], using
a polynomial matrix multiplication algorithm of complexity O(D log(ag) +
D2 log(ag) log(log(a))) [20]. This way, we bound the number of operations of
polyDet with (when Dy is large):

O (0 log(ao)2 D + g log()? log(log(a0)) D) ~ Ofaglog(ag)? D) . (2)
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Arithmetization-oriented ZK-friendly hash

function for the BLOCKCHAIN
7
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Protocols

Modes of operation

Cryptographic Primitives

m We want software efficient (computer and smartphone but not micro-controllers)
efficient AEAD for packets of a few tens to a few billion bytes.

m AES-GCM; Chacha-poly1305.
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How do we build symmetric primitives?
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Addition / Rotation / XOR
256-bit key

512-bit state

Defined over 32-bit words
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RAM Encryption

Secure RAM

Trivial Protocol

Cryptographic Primitives

m We want very low latency block encryption for specific (and small) block sizes.
m PRINCE? QARMA? not so clear at this stage.
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On their Design Constraints

What PRINCE looks like

PRINCE e

m 64-bit block size; 128-bit key size (=)

m 4-bit S-box optimized for hardware

m 2 different 16 X 16 matrices of [F;, also optimized for hardware
m FX construction

m “o-reflexion” inverse rounds used in the second half
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SRS (e How do we build symmetric primitives?
On their Design Constraints

Some Constants

There are many different “big
machines” and

a symmetric primitive is a very
small (but crucial) cog in a very
big machine,

this has a huge influence
on what the primitive
looks like.

source: https://www.researchgate.net/figure/
The-Steam-Engine-of-James-Watt-and-Mathew-Bolton-15_fig2 347657192
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Usually, we secure data (at rest or in transit).

Envelope: Confidentiality
(nobody can read it)

Seal: Integrity
(nobody can modify it)

aul

Signature: Authentication
(it was written by the right person)
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Securing Computation

More and more protocols intend to secure computations.

FHE Fully Homomorphic Encryption
MPC Multi Party Computations

ZK-* Zero Knowledge- [ proof, argument... |
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FHE
Goal
Allow a third party to perform some operations on encrypted ciphertext that correspond to
meaningful operations on the corresponding plaintext. A form of commutation
Alice Bob
C = Fx(P) Fy is a homomorphic cipher,

~

not a block cipher!

¢’ = A%Fg(P) = Fx (A(P))

\
An example of (not F)HE

XOR-ing a constant to a ciphertext obtained using a stream cipher XORs the same constant in
the plaintext:
(et=(PeK)dt=(PRt)dK
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dge

One Approach to Rule Them All (?): Arithmetization

“Advanced” Protocols: the Reason Behind Some Changes

Zero-Knov

The Symmetric Crypto They Need: Transciphering

Computation Result Server

Kene & Kene Computation Result

‘ .
‘ .

| : : ?
| S | (c, k) ! _ : !
| Kom € Kom : = (BN d=Hie) |
1 c= Bk, (p) ' ! i
1 1 I _ H _ |
'k = Hippe (Ksym) ! E e=A"(d) = Hrue(Ap)) }
| | i _____o '
| | e |

P=Hyl () P = Ap)

Fig. 1: The principle of transciphering, where E is a symmetric cipher (with
secret key Kgm sampled from the space Ksym), H is a fully homomorphic cipher
(with private key Krpe sampled from the space Krng), Ef is a homomorphic
evaluation of E, A corresponds to some arbitrary operations, and A to their
homomorphic evaluation.

source: Transistor: a TFHE-friendly Stream Cipher
https://eprint.iacr.org/2025/282
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‘» : R RS EEEE e : algorithm with a
LY = Hge ) P =Ap) e ' 28

R EEEEEEEEEEES ' high throughput when
Fig. 1: The principle of transciphering, where E is a symmetric cipher (with evaluated

secret key Kgm sampled from the space Ksym), H is a fully homomorphic cipher .

(with private key Kpue sampled from the space Krng), E* is a homomorphic homomorphlcally

evaluation of E, A corresponds to some arbitrary operations, and A to their
homomorphic evaluation.

source: Transistor: a TFHE-friendly Stream Cipher
https://eprint.iacr.org/2025/282
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Operates on Z/mZ, where m can be anything, though: more efficient if m is smaller.
Operations allowed

Linear Combinations ), cx;, where the o are constant while x; is input/key dependent.

m Costs almost nothing in terms of time/communication complexity...
m But noise increases

PBS (Programmable BootStrap)  y < S(x)

m Very time consuming...
m .. But resets the noise to a base level
m Can be composed with arbritrary table lookups!

(not T)FHE operates differently, but noise is still present
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(Fully) Homomorphic Encryption
Multi-Party Computations

“Advanced” Protocols: the Reason Behind Some Changes

One Approach to Rule Them All (?): Arithmetization

Examples of stream ciphers for transciphering

Elisabeth-4 [CHMS22]

g=2%  Canbe linearized [GBJR23]

v *?( PRNG

G

’ Key register K ‘

ciphertext

Fig. 1: The group filter permutator design

21/33



(Fully) Homomorphic Encryption

On Symmetric Primitives
“Advanced” Protocols: the Reason Behind S hanges

A Revolution?

Examples of stream ciphers for transciphering

Elisabeth-4 [CHMS22] - ASTA

= 2 or large prime
qg= 2* Can be linearized [GBJR23] 4 .

v *?( PRNG

=1
sl I

Figure 2: Generation of i-th block of DASTA.

Many, many variants (Rasta, Dasta, Pasta, Masta)

‘ Key register K’ ‘

v

source: Dasta — Alternative Linear Layer for Rasta

ciphertext

Fig. 1: The group filter permutator design

21/33



(Fully) Homomorphic Encryption

on
“Advanced” Protocols: the Reason Behind Some Chang

Examples of stream ciphers for transciphering

Elisabeth-4 [CHMS22] - ASTA

= 2 or large prime
qg= 2* Can be linearized [GBJR23] 4 .

v *?( PRNG

=1
sl I

Figure 2: Generation of i-th block of DASTA.

Many, many variants (Rasta, Dasta, Pasta, Masta)
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source: Dasta — Alternative Linear Layer for Rasta

ciphertent Shameless plug

Fig. 1: The group filter permutator design Be sure to check the talk of Nicolas Bon this
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Multi-Party Computations

Goal

Allow multiple parties to evaluate a function together even if some parties are not trustworthy.

Example
Shamir's secret sharing: n 4 1 points are necessary to interpolate a degree n function.

Applications

m Masking (the side-channel attack counter-measure)
m MPC-in-the-head paradigm (e.g. for Picnic signatures)
m Trojan resilience

22/33



(Fully) Homomorphic Encryption
“Advanced” Protocols: the Reason Behind Some Changes Malrtl‘_fa:tyl C:mputatwons
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

The SymCry They Need: a Lot of Different Things

Masking-friendly (Tweakable) BCs. Low number of multiplications in the underlying field.
Examples: small-pSquare [GM MT24b], Fantomas [GLSV15],...

23/33



On Symmetric Primitives
“Advanced” Protocols: the Reason Behind Some Changes

Multi-Party Computations
A Revolutio

The SymCry They Need: a Lot of Different Things

Masking-friendly (Tweakable) BCs. Low number of multiplications in the underlying field.
Examples: small-pSquare [GM MT24b], Fantomas [GLSV15],...

Picnic-friendly BCs. Low number of multiplications, security only for a single query.
Example: LowMC [GRRT16]

23/33



On Symmetr
“Advanced” Protocols: the Reason Behind So

Multi-Party Computations

The SymCry They Need: a Lot of Different Things

Masking-friendly (Tweakable) BCs. Low number of multiplications in the underlying field.

Examples: small-pSquare [GM MT24b], Fantomas [GLSV15],...

Picnic-friendly BCs. Low number of multiplications, security only for a single query.
Example: LowMC [GRRT16]

Trojan Resilient BCs Reliance only on linear operations (but over different ring/fields).

23/33



On Symmetr
“Advanced” Protocols: the Reason Behind So

Multi-Party Computations

The SymCry They Need: a Lot of Different Things

Masking-friendly (Tweakable) BCs. Low number of multiplications in the underlying field.
Examples: small-pSquare [GM MT24b], Fantomas [GLSV15],...

Picnic-friendly BCs. Low number of multiplications, security only for a single query.
Example: LowMC [GRRT16]

Trojan Resilient BCs Reliance only on linear operations (but over different ring/fields).
Example: MOE [BFL™T21]

23/33



Multi-Party Computations

“Advanced” Protocols: the Reason Be

The SymCry They Need: a Lot of Different Things

Masking-friendly (Tweakable) BCs. Low number of multiplications in the underlying field.
Examples: small-pSquare [GM MT24b], Fantomas [GLSV15],...

Picnic-friendly BCs. Low number of multiplications, security only for a single query.
Example: LowMC [GRRT16]

Trojan Resilient BCs Reliance only on linear operations (but over different ring/fields).
Example: MOE [BFL™T21]

Pseudo-random Correlated Functions Very low degree evaluation; no chosen plaintext attack
allowed; only low data complexity.
Examples: Crypto DarkMatter [BIPT18], VDLPN [BCGT20]
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| want to convince you | know a secret without revealing it

A generic goal

To be able to prove/argue that a function was evaluated correctly without revealing its input.
Ex: Sudoku time!

Applications

m Offload computation to untrusted 3rd parties

m Electronic vote (mixnets)

Signatures (e.g. with Solid)
m BLOCKCHAIN!T!
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Low Degree Verification

A function F : F; — [F, admits a low degree verification if there exists a low degree function
G:F,® — F,such that
F(xX)—z=0 < G(x,z2)=0.

Direct evaluation if F has a low degree, we are fine: G(x,z) = F(x) — z
Indirect evaluation if F~' has a low degree, then G(x,z) = x — F'(2)

Generalization it is sufficient that F is CCZ-equivalent to a low degree function.
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Verifying if y = c(ax + b)'® + x in R1CS

B to = ax

Ht=t+b
th=1t Xt
th=t Xt

One Approach to Rule Them All (?): Arithmetization

t, = t3 X t3
Bt=txt
tg = cts

B y=ts+x
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A Basic Example of Arithmetization

Verifying if y = c(ax + b)'® + x in R1CS

X Bt=txt
A t=tXxt,
B t=txt

At=tXxt 8] X

This verification costs 4 R1CS constraints

m How to turn a computation into an arithmetic circuit depends on the operations allowed
m Its cost is also arithmetization-dependent—though low degree is usually welcome!

m Arithmetization over a field of odd size — nonbinary ciphers
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e | 0= Bifro +21-X) mod p | = Bilao+ 1 X) modp ‘

Figure 3: The Bar layer B : Fyu — Fy for n = 2 in detail, including the decomposition,
the rotation, the S-box, and the composition.

source: Skyscraper: Fast Hashing on Big Primes,
https://eprint.iacr.org/2025/058.pdf
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The cost of each operation depends on the arithmetization!
Plonk # R1CS

e | 0= Bifro +21-X) mod p | = Bilao+ 1 X) modp ‘

Figure 3: The Bar layer B : Fyu — Fy for n = 2 in detail, including the decomposition,
the rotation, the S-box, and the composition.

source: Skyscraper: Fast Hashing on Big Primes,
https://eprint.iacr.org/2025/058.pdf

Shameless plug
Be sure to check the talks of Antoine Bak and Guilhem Jazeron tomorrow morning!
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= ==

ZK

https://stap-zoo.com/

An increased diversity of
design criteria leads to a
Cambrian explosion of new
symmetric primitives!
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Design Process

Once upon a time, a symmetric cryptographer designed a new symmetric primitive
m Long initial phase to figure out what operations are the most efficient
m New tricks for the initial security analysis
m Tight collaboration with implementers = the people doing the cryptanalysis

m Multiple iterations during the design to maximize efficiency

Dear audience, which specific primitive am | talking about?
all of them!

Opinion 1

STAPs are nothing special: we (symmetric people) need to do what we always did.
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Underlying Alphabet

F, and [F7 are not the same!
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m Indeed. In particular, g prime means no Frobenius automorphisms, meaning linear
operations are only constant multiplications.

m Protocol flexibility means STAPs are often in fact primitives generators, i.e., algorithms
generating primitives.

m Low degree arithmetization implies low degree algebraic modeling
beware of algebraic attacks!

(there already was a mass extinction event, the Freelunch attack
(shameless plug: check out Aurélien’s talk later this morning)

Opinion 2
Working over [F, (especially if low degree arithmetizations are needed) and the need for
primitive generators introduce new cryptanalysis vectors, but design approaches will rely on

tried and true methods.
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= So many (too many) minor variants...

credit: Diego Delso, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=108259695

Opinion 3

We need more cryptanalysis!

We must become better at handling primitive generators.
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New advanced protocols intended to secure computations need symmetric primitives
The constraints they impose on the designs imply an unusual look at first glance

The constraints they impose vary, and we should be careful about lumping them together
A lot of new sets of constraints = a lof of new designs (Cambrian explosion)...

.. but very little cryptanalysis.
We need more cryptanalysis!

Design criteria dictate the work of symmetric cryptographers
they always have, and always will!

Thank you!
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s} —
functions are applied.
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(Elisabeth-4 follow-ups)

FRAST [CCHT24]; g = 2% Ablock cipher
in a CTR-mode variant. ciphertext

See yOU at the rump SeSSiOn D Fig. 1: The group filter permutator design

Transistor [BBB+25];q = 2% + 1 source: Towards Case-Optimized Hybrid
SNOW-like 'round structure Homomorphic Encryption Featuring the
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degree.
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nonce-dependent matrices.
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source:
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HERA [CHK™'21] g large prime
Ablock cipherin a kind of
CTR-mode variant.
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Trojan Resilience

| ; 1
\. e 1
: / ! sub-circuit ™

M

1 round of encryption i

source: MOE: Multiplication Operated Encryption with Trojan Resilience
https://tosc.iacr.org/index.php/ToSC/article/view/8834
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function.
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participants.

Very low multiplicative depth - Very low data complexity - Only known plaintext, no chosen plaintext!

Crypto DarkMatter [BIP*18]

n—1 n—1
Fe(x) := <Z kix; mod 2 + Z kix; mod 3) mod 2, forx € {0,1}".
i=0 i=0

VDLPN [BCG120]

D w i

fu(x) = D D Nxise ® kije).

i=1 j=1 ¢=1
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Poseidon

Rescue

Griffin

[GLR™20] no specific constraints g
SPN with partial layer of low degree
monomial S-boxes.

Full rounds - partial round - full rounds.
[AABT20] g large prime

SPN with low degree monomials and their
inverses.

Most “AES-like” also most secure at this stage.
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Feistel variant with multiplications instead.
Particularly vulnerable to algebraic attacks!
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ZK-Friendly Hash Functions

Poseidon

Rescue

Griffin

Anemoi

[GLR™20] no specific constraints g
SPN with partial layer of low degree
monomial S-boxes.

Full rounds - partial round - full rounds.
[AABT20] g large prime

SPN with low degree monomials and their
inverses.

Most “AES-like” also most secure at this stage.

[GHR™"23] g large prime

Feistel variant with multiplications instead.
Particularly vulnerable to algebraic attacks!
[BBCT23]g = 2" or large prime

Uses the “Flystel”, a high degree S-box
CCZ-equivalent to a function of low degree.

G{:N

s

source: Cryptanalysis and design of
symmetric primitives defined over
large finite fields, PhD thesis of C.
Bouvier
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