On the Design Criteria for Symmetric Primitives

Léo Perrin

Inria, Paris
leo.perrin@inria.fr

Journées C2

v 4

: informatics g7 mathematics

Classical vs. new Symmetric Cryptography

Logend
Round 0
W oxse [0 0x3E
W ox7a W oxs6
wy
7747 oxr4 oxa1
D] rowar o =
/72 foun O ox28 [omF
Shiare E oxks @ oxs
. vz O oxes [oxsF
47 Z Round 2 B o7e M o0x92
1%2%7] W oxsc
O Wo ais.
Round 3 Tranc. aifr.
Round 4
Round 5
Round 6
Round 7
Round 8

A
= ouT

Classical vs.

224
4%%7)
%%%7]

73
4%%%]
%%%7)
%%%%)

Setare
Sy

3

e
%%

Aoyr

Round 0

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

o
7|

new Symmetric Cryptography

£
2
H

ER0EIEEED

o aiff.
Trunc. diff.

i = ag —2,...,0. This does not change the value of the determinant, and after
these row operations, the resulting determinant to compute is:

g1
2L+ Y w My

0 0 0
=
ag-2
-1 0 0 wf T+ @M
det =0
0 -1 0
0 . 0 ~I xod + May—1

Tn this block matrix representation, the determinant of the full matrix is the
determinant of the top right matrix, up to the sign (—=1)*0*!.

Complesity Analysis. We call polyDet the procedure returning the polynomial
det(zoI p, — Ty) using Lemma 2. This step has a complexity O(D;Dj") =
Q(u(.D;;) with the algorithm of [40]. Note that this is precisely the complexity
that was obtained with the algorithm of [12] for sy: s satisfying the stability
and shape position properties. In order to estimate the logarithmic factors in
the complexity formula, we bound the complexity with [34, Theorem 4.4], using
a polynomial matrix multiplication algorithm of complexity O(D log(ag) +
D2 log(ag) log(log(a))) [20]. This way, we bound the number of operations of
polyDet with (when Dy is large):

O (0 log(ao)2 D + g log()? log(log(a0)) D) ~ Ofaglog(ag)? D) . (2)

Classical vs.

224
4%%7)
%%%7]

73
4%%%]
%%%7)
%%%%)

Setare
Sy

3

e
%%

Aoyr

Round 0

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

o
7|

new Symmetric Cryptography

£
2
H

ER0EIEEED

o aiff.
Trunc. diff.

i = ag —2,...,0. This does not change the value of the determinant, and after
these row operations, the resulting determinant to compute is:

g1
2L+ Y w My

0 0 0
=
ag-2
-1 0 0 wf T+ @M
det =0
0 -1 0
0 . 0 ~I xod + May—1

Tn this block matrix representation, the determinant of the full matrix is the
determinant of the top right matrix, up to the sign (—=1)*0*!.

Complesity Analysis. We call polyDet the procedure returning the polynomial
det(zoI p, — Ty) using Lemma 2. This step has a complexity O(D;Dj") =
Q(u(.D;;) with the algorithm of [40]. Note that this is precisely the complexity
that was obtained with the algorithm of [12] for sy: s satisfying the stability
and shape position properties. In order to estimate the logarithmic factors in
the complexity formula, we bound the complexity with [34, Theorem 4.4], using
a polynomial matrix multiplication algorithm of complexity O(D log(ag) +
D2 log(ag) log(log(a))) [20]. This way, we bound the number of operations of
polyDet with (when Dy is large):

O (0 log(ao)2 D + g log()? log(log(a0)) D) ~ Ofaglog(ag)? D) . (2)

Arithmetization-oriented ZK-friendly hash

function for the BLOCKCHAIN
7

In this talk

Is there a revolution going on in symmetric cryptography?

In this talk

Is there a revolution going on in symmetric cryptography?

absolutely not.

In this talk

Is there a revolution going on in symmetric cryptography?

absolutely not. Design criteria are changing, again.

In this talk

Is there a revolution going on in symmetric cryptography?

Par:c 11

absolutely not. Design criteria are changing, again.

Part 1.2

Part1
il How do we build symmetric primitives?

On their design constraints

In this talk

Is there a revolution going on in symmetric cryptography?

Part 11
absolutely not. Design criteria are changing, again.
Part 1.2 Part 2
Part 1 Part 2
H How do we build symmetric primitives? Securing computations vs. data

On their design constraints Arithmetization-Orientation?

In this talk

Is there a revolution going on in symmetric cryptography?

Part 11
absolutely not. Design criteria are changing, again.
Conclusion Part1.2 Part 2
Part 1 Part 2
H How do we build symmetric primitives? Securing computations vs. data

On their design constraints Arithmetization-Orientation?

Outline

E} On Symmetric Primitives
“Advanced” Protocols: the Reason Behind Some Changes

A Revolution?

3/33

On Symmetric Primitives
Y How do we build symmetric primitives?
On their Design Constraints

Plan of this Section

E} On Symmetric Primitives

3/33

How do we build symmetric primitives?

Plan of this Section

E} On Symmetric Primitives
m How do we build symmetric primitives?

3/33

How do we build symmetric primitives?

What are symmetric primitives?

Definition (Primitive)

A primitive is a very low level algorithm, a basic brick used to build larger things.

4/33

How do we build symmetric primitives?

What are symmetric primitives?

Definition (Primitive)

A primitive is a very low level algorithm, a basic brick used to build larger things.

Why would anyone need a “symmetric” primitive?

AES, SHA-3, Chacha20, Skinny, Snow-3G, Poly-1305, PRESENT, Blake, GHASH...

4/33

How do we build symmetric primitives?

What are symmetric primitives?

Definition (Primitive)

A primitive is a very low level algorithm, a basic brick used to build larger things.

Why would anyone need a “symmetric” primitive?

AES, SHA-3, Chacha20, Skinny, Snow-3G, Poly-1305, PRESENT, Blake, GHASH...

Efficiency Security

4/33

On Symmetric Primitives . PR
Y How do we build symmetric primitives?
On their Design Constraints

A Crash Course in Symmetric Cryptography (1/2)

Let IF, be a finite field.

5/33

On Symmetric Primitives . PR
Y How do we build symmetric primitives?
On their Design Constraints

A Crash Course in Symmetric Cryptography (1/2)

Let IF, be a finite field.

Block Cipher Family Ex : IF," — " of bijections operating on blocks of fixed size. AES,
Skinny, PRESENT...

5/33

On Symmetric Primitives . PR
Y How do we build symmetric primitives?
On their Design Constraints

A Crash Course in Symmetric Cryptography (1/2)

Let IF, be a finite field.

Block Cipher Family Ex : IF," — " of bijections operating on blocks of fixed size. AES,
Skinny, PRESENT...

Stream Cipher Generates a keystream Sy € (IF)* of arbitrary size. Chacha20, Snow-3G.

5/33

How do we build symmetric primitives?

A Crash Course in Symmetric Cryptography (1/2)

Let IF, be a finite field.
Block Cipher Family Ex : IF," — " of bijections operating on blocks of fixed size. AES,
Skinny, PRESENT...
Stream Cipher Generates a keystream Sy € (IF)* of arbitrary size. Chacha20, Snow-3G.

Hash Function A function H : (F,)* — F,"” mapping arbitrarily sized inputs to fixed-size
outputs. SHA-3, Blake...

5/33

How do we build symmetric primitives?

A Crash Course in Symmetric Cryptography (1/2)

Let IF, be a finite field.
Block Cipher Family Ex : IF," — " of bijections operating on blocks of fixed size. AES,
Skinny, PRESENT...
Stream Cipher Generates a keystream Sy € (IF)* of arbitrary size. Chacha20, Snow-3G.

Hash Function A function H : (F,)* — F,"” mapping arbitrarily sized inputs to fixed-size
outputs. SHA-3, Blake...

Message Authentication Code (MAC) Family of functions M : (Fq)* — F," mapping
arbitrarily sized inputs to fixed-size outputs. Poly-1305,GHASH...

5/33

On Symmetric Primitives . PR
Y How do we build symmetric primitives?
On their Design Constraints

A Crash Course in Symmetric Cryptography (2/2)

The Big Trade Secret of Symmetric Cryptographers©

6/33

How do we build symmetric primitives?

A Crash Course in Symmetric Cryptography (2/2)

The Big Trade Secret of Symmetric Cryptographers©

If you squint hard enough, everythingis a block cipher

6/33

How do we build symmetric primitives?

A Crash Course in Symmetric Cryptography (2/2)

The Big Trade Secret of Symmetric Cryptographers©

If you squint hard enough, everythingis a block cipher

plaintext

6/33

How do we build symmetric primitives?

A Crash Course in Symmetric Cryptography (2/2)

The Big Trade Secret of Symmetric Cryptographers©

If you squint hard enough, everythingis a block cipher

plaintext ———— X;

6/33

How do we build symmetric primitives?

A Crash Course in Symmetric Cryptography (2/2)

The Big Trade Secret of Symmetric Cryptographers©

If you squint hard enough, everythingis a block cipher

plaintext —————) xij —)

S-box
Affine Layer

6/33

How do we build symmetric primitives?

A Crash Course in Symmetric Cryptography (2/2)

The Big Trade Secret of Symmetric Cryptographers©

If you squint hard enough, everythingis a block cipher

S-box

plaintext —————) xij —)

Affine Layer b— =

6/33

How do we build symmetric primitives?

A Crash Course in Symmetric Cryptography (2/2)

The Big Trade Secret of Symmetric Cryptographers©

If you squint hard enough, everythingis a block cipher

S-box

plaintext —————) xij —)

Affine Layer b— =

6/33

How do we build symmetric primitives?

A Crash Course in Symmetric Cryptography (2/2)

The Big Trade Secret of Symmetric Cryptographers©

If you squint hard enough, everythingis a block cipher

¥ ciphertext

S-box

plaintext —————) xij —)

Affine Layer b— =

6/33

On Symmetric Primitives

Advanced” Protocols: the Reason Behind Som

How do we build symmetric primitives?

To Build a Cipher

I will make an
efficient and
secure primitive!

your idea

How do we build symmetric primitives?

To Build a Cipher

| will make an Specification
efficient and Rationale
secure primitive! 15 cryptanalysis

your idea yourcipher.pdf

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

To Build a Cipher

Fundamental research

'

| will make an Specification
efficient and Rationale
secure primitive! 15 cryptanalysis

your idea yourcipher.pdf

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

To Build a Cipher

Fundamental research

' v

| will make an Specification
efficient and Rationale
secure primitive! 15 cryptanalysis

your idea yourcipher.pdf Cryptanalysis!

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

To Build a Cipher

Fundamental research

I will make an Specification Standardisation
efficient and Rationale U
secure primitive! 15 cryptanalysis >age
your idea yourcipher.pdf Cryptanalysis! yourcipher.so

7/33

How do we build symmetric primitives?

What is “Secure”?

Dear audience, what is a secure block cipher?

8/33

How do we build symmetric primitives?

What is “Secure”?

Dear audience, what is a secure block cipher?

What is secure varies

m Has the primitive been analyzed?
m By the designers? Design quality

8/33

How do we build symmetric primitives?

What is “Secure”?

Dear audience, what is a secure block cipher?

What is secure varies

m Has the primitive been analyzed?

m By the designers? Design quality
m By third parties? Analyzability

8/33

How do we build symmetric primitives?

What is “Secure”?

Dear audience, what is a secure block cipher?

What is secure varies

m Has the primitive been analyzed?

m By the designers? Design quality
m By third parties? Analyzability

m Should the primitive work in many context?

8/33

How do we build symmetric primitives?

What is “Secure”?

Dear audience, what is a secure block cipher?

What is secure varies

m Has the primitive been analyzed?

m By the designers? Design quality
m By third parties? Analyzability

m Should the primitive work in many context? modularity vs. single use

8/33

How do we build symmetric primitives?

What is “Secure”?

Dear audience, what is a secure block cipher?

What is secure varies

m Has the primitive been analyzed?

m By the designers? Design quality
m By third parties? Analyzability
m Should the primitive work in many context? modularity vs. single use

How do we define the security that the primitive must provide?

8/33

How do we build symmetric primitives?

What is “Secure”?

Dear audience, what is a secure block cipher?

What is secure varies

m Has the primitive been analyzed?

m By the designers? Design quality
m By third parties? Analyzability
m Should the primitive work in many context? modularity vs. single use

How do we define the security that the primitive must provide?

What are the relevant forms of cryptanalysis?

8/33

How do we build symmetric primitives?

What is “Efficient”?

Dear audience, what is an efficient block cipher?

9/33

How do we build symmetric primitives?

What is “Efficient”?

Dear audience, what is an efficient block cipher?

What is efficient varies

m What are the operations that we can use?
basic logical gates? CPU instructions? AES round?...

9/33

How do we build symmetric primitives?

What is “Efficient”?

Dear audience, what is an efficient block cipher?

What is efficient varies

m What are the operations that we can use?
basic logical gates? CPU instructions? AES round?...

m What are the associated costs?
throughput? physical area? ram consumption? number of masked multiplication?...

9/33

How do we build symmetric primitives?

What is “Efficient”?

Dear audience, what is an efficient block cipher?

What is efficient varies

m What are the operations that we can use?
basic logical gates? CPU instructions? AES round?...

m What are the associated costs?
throughput? physical area? ram consumption? number of masked multiplication?...

What is the intended execution context?

9/33

On their Design Constraints

Plan of this Section

E} On Symmetric Primitives

m On their Design Constraints

9/33

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

Web Encryption

10/33

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

Web Encryption

10/33

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

Web Encryption

Protocols

10/33

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

Web Encryption

Protocols

Modes of operation

10/33

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

Web Encryption

Protocols

Modes of operation

Cryptographic Primitives

10/33

On their Design Constraints

Web Encryption

Protocols

Modes of operation

Cryptographic Primitives

m We want software efficient (computer and smartphone but not micro-controllers)
efficient AEAD for packets of a few tens to a few billion bytes.

10/33

On their Design Constraints

Web Encryption

Protocols

Modes of operation

Cryptographic Primitives

m We want software efficient (computer and smartphone but not micro-controllers)
efficient AEAD for packets of a few tens to a few billion bytes.

m AES-GCM; Chacha-poly1305.

10/33

On Symmetric Primitives

What Chacha looks like

a; b; Ci d;
()
M)
VAR
N>
=19
()
()
D,
&V
<19
()
(M)
D
BV
3l
()
()
D,
>
i
Qi1 bit1 Cit+1 di+1

How do we build symmetric primitives?
On their Design Constraints

Addition / Rotation / XOR
256-bit key

512-bit state

Defined over 32-bit words

1/33

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

RAM Encryption

12/33

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

RAM Encryption

12/33

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

RAM Encryption

Secure RAM

12/33

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

RAM Encryption

Secure RAM

Trivial Protocol

12/33

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

RAM Encryption

Secure RAM

Trivial Protocol

Cryptographic Primitives

12/33

O ST HATEE How do we build symmetric primitives?
On their Design Constraints

RAM Encryption

Secure RAM

Trivial Protocol

Cryptographic Primitives

m We want very low latency block encryption for specific (and small) block sizes.

12/33

SRS (e How do we build symmetric primitives?
On their Design Constraints

RAM Encryption

Secure RAM

Trivial Protocol

Cryptographic Primitives

m We want very low latency block encryption for specific (and small) block sizes.
m PRINCE? QARMA? not so clear at this stage.

12/33

Symmetric Primitives
1ced” Protocols: the Reason Be

On their Design Constraints

What PRINCE looks like

PRINCE e

m 64-bit block size; 128-bit key size (=)

m 4-bit S-box optimized for hardware

m 2 different 16 X 16 matrices of [F;, also optimized for hardware
m FX construction

m “o-reflexion” inverse rounds used in the second half

13/33

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

Some Constants

There are many different “big
machines” and

source: https://www.researchgate.net/figure/
The-Steam-Engine-of-James-Watt-and-Mathew-Bolton-15_fig2 347657192

14/33

https://www.researchgate.net/figure/The-Steam-Engine-of-James-Watt-and-Mathew-Bolton-15_fig2_347657192
https://www.researchgate.net/figure/The-Steam-Engine-of-James-Watt-and-Mathew-Bolton-15_fig2_347657192

On Symmetric Primitives
Y How do we build symmetric primitives?

On their Design Constraints

Some Constants

There are many different “big
machines” and

a symmetric primitive is a very
small (but crucial) cog in a very
big machine,

source: https://www.researchgate.net/figure/
The-Steam-Engine-of-James-Watt-and-Mathew-Bolton-15_fig2 347657192

14/33

https://www.researchgate.net/figure/The-Steam-Engine-of-James-Watt-and-Mathew-Bolton-15_fig2_347657192
https://www.researchgate.net/figure/The-Steam-Engine-of-James-Watt-and-Mathew-Bolton-15_fig2_347657192

SRS (e How do we build symmetric primitives?
On their Design Constraints

Some Constants

There are many different “big
machines” and

a symmetric primitive is a very
small (but crucial) cog in a very
big machine,

this has a huge influence
on what the primitive
looks like.

source: https://www.researchgate.net/figure/
The-Steam-Engine-of-James-Watt-and-Mathew-Bolton-15_fig2 347657192

14/33

https://www.researchgate.net/figure/The-Steam-Engine-of-James-Watt-and-Mathew-Bolton-15_fig2_347657192
https://www.researchgate.net/figure/The-Steam-Engine-of-James-Watt-and-Mathew-Bolton-15_fig2_347657192

On Symmetric Primitives

How do we build symmetric primitives?
On their Design Constraints

To Build a Cipher (full)

Fundamental research

| will make an Specification Standardisation
efficient and Rationale

secure primitive! 15 cryptanalysis

Usage

How do we build symmetric primitives?

On Symmetric Primitives
On their Design Constraints

To Build a Cipher (full)

Fundamental research

' '

b

I will make an

efficient and
secure/primitive!

AN

Specification

Rationale
15 cryptanalysis

Standardisation

Usage

Design criteria

15/33

On Symmetric Primitives
“Advanced” Protocols: the Reason Behind

Plan of this Section

“Advanced” Protocols: the Reason Behind Some Changes

15/33

“Advanced” Protocols: the Reason Behin

Securing Data

Usually, we secure data (at rest or in transit).

16/33

“Advanced” Protocols: the Reason Behin

Securing Data

Usually, we secure data (at rest or in transit).

Envelope: Confidentiality
(nobody can read it)

16/33

“Advanced” Protocols: the Reason Behin

Securing Data

Usually, we secure data (at rest or in transit).

Envelope: Confidentiality
(nobody can read it)

Seal: Integrity
(nobody can modify it)

16/33

On Sy
“Advanced” Protocols: the Reason Behind

Securing Data

Usually, we secure data (at rest or in transit).

Envelope: Confidentiality
(nobody can read it)

Seal: Integrity
(nobody can modify it)

aul

Signature: Authentication
(it was written by the right person)

16/33

“Advanced” Protocols: the Reason Behin

Securing Computation

More and more protocols intend to secure computations.

FHE Fully Homomorphic Encryption
MPC Multi Party Computations

ZK-* Zero Knowledge- [proof, argument... |

17/33

(Fully) Homomorphic Encryption

On Symmetric Prim
“Advanced” Protocols: the Reason Behind

Plan of this Section

“Advanced” Protocols: the Reason Behind Some Changes
m (Fully) Homomorphic Encryption

17/33

(Fully) Homomorphic Encryption

On Symmetric
“Advanced” Protocols: the Reason Behin

FHE
Goal

Allow a third party to perform some operations on encrypted ciphertext that correspond to
meaningful operations on the corresponding plaintext.

18/33

(Fully) Homomorphic Encryption

On Symmetric Primitives
“Advanced” Protocols: the Reason Behind S

FHE
Goal
Allow a third party to perform some operations on encrypted ciphertext that correspond to
meaningful operations on the corresponding plaintext. A form of commutation

18/33

G (Fully) Homomorphic Encryption

“Advanced” Protocols: the Reason Behind S

FHE
Goal
Allow a third party to perform some operations on encrypted ciphertext that correspond to
meaningful operations on the corresponding plaintext. A form of commutation
Alice Bob
C = Fx(P) Fy is a homomorphic cipher,
> not a block cipher!

¢’ = A%Fg(P) = Fx (A(P))

AN

18/33

(Fully) Homomorphic Encryption

“Advanced” Protocols: the Reason Behind

FHE
Goal
Allow a third party to perform some operations on encrypted ciphertext that correspond to
meaningful operations on the corresponding plaintext. A form of commutation
Alice Bob
C = Fx(P) Fy is a homomorphic cipher,

~

not a block cipher!

¢’ = A%Fg(P) = Fx (A(P))

\
An example of (not F)HE

XOR-ing a constant to a ciphertext obtained using a stream cipher XORs the same constant in
the plaintext:
(et=(PeK)dt=(PRt)dK

18/33

(Fully) Homomorphic Encryption

Multi-Party Computations

dge

One Approach to Rule Them All (?): Arithmetization

“Advanced” Protocols: the Reason Behind Some Changes

Zero-Knov

The Symmetric Crypto They Need: Transciphering

Computation Result Server

Kene & Kene Computation Result

‘ .
‘ .

| : : ?
| S | (c, k) ! _ : !
| Kom € Kom : = (BN d=Hie) |
1 c= Bk, (p) ' ! i
1 1 I _ H _ |
'k = Hippe (Ksym) ! E e=A"(d) = Hrue(Ap)) }
| | i _____o '
| | e |

P=Hyl () P = Ap)

Fig. 1: The principle of transciphering, where E is a symmetric cipher (with
secret key Kgm sampled from the space Ksym), H is a fully homomorphic cipher
(with private key Krpe sampled from the space Krng), Ef is a homomorphic
evaluation of E, A corresponds to some arbitrary operations, and A to their
homomorphic evaluation.

source: Transistor: a TFHE-friendly Stream Cipher
https://eprint.iacr.org/2025/282

19/33

https://eprint.iacr.org/2025/282

(Fully) Homomorphic Encryption

On Symmetric Primitives
“Advanced” Protocols: the Reason Behind Some Changes

A Revolution?

The Symmetric Crypto They Need: Transciphering

Computation Result Server

$
Krue < Krue

| A |

o Kom & Ko !) vd=(BF) () | d= Hree(p)

o= Erl) ; R | . .

e = Hicep (Koym) : P e=ATd) o= Hrne(AW))| A symmetric encryption
‘» : R RS EEEE e : algorithm with a
LY = Hge) P =Ap) e ' 28

R EEEEEEEEEEES ' high throughput when
Fig. 1: The principle of transciphering, where E is a symmetric cipher (with evaluated

secret key Kgm sampled from the space Ksym), H is a fully homomorphic cipher .

(with private key Kpue sampled from the space Krng), E* is a homomorphic homomorphlcally

evaluation of E, A corresponds to some arbitrary operations, and A to their
homomorphic evaluation.

source: Transistor: a TFHE-friendly Stream Cipher
https://eprint.iacr.org/2025/282

19/33

https://eprint.iacr.org/2025/282

(Fully) Homomorphic Encryption

On Symmetric Primitives
“Advanced” Protocols: the Reason Behind Some Changes

A Revolution?

The case of TFHE

Operates on Z/mZ, where m can be anything, though: more efficient if m is smaller.

20/33

(Fully) Homomorphic Encryption

on
“Advanced” Protocols: the Reason Behind

The case of TFHE

Operates on Z/mZ, where m can be anything, though: more efficient if m is smaller.

Operations allowed

Linear Combinations Z,. a;xj, where the o are constant while x; is input/key dependent.

m Costs almost nothing in terms of time/communication complexity...
m But noise increases

20/33

(Fully) Homomorphic Encryption

Or
“Advanced” Protocols: the Reason Behin

The case of TFHE

Operates on Z/mZ, where m can be anything, though: more efficient if m is smaller.
Operations allowed

Linear Combinations), cx;, where the o are constant while x; is input/key dependent.

m Costs almost nothing in terms of time/communication complexity...
m But noise increases

PBS (Programmable BootStrap) y < S(x)

m Very time consuming...
m .. But resets the noise to a base level

20/33

G (Fully) Homomorphic Encryption

“Advanced” Protocols: the Reason Behind S

The case of TFHE

Operates on Z/mZ, where m can be anything, though: more efficient if m is smaller.
Operations allowed

Linear Combinations), cx;, where the o are constant while x; is input/key dependent.
m Costs almost nothing in terms of time/communication complexity...
m But noise increases
PBS (Programmable BootStrap) y < S(x)

m Very time consuming...
m .. But resets the noise to a base level
m Can be composed with arbritrary table lookups!

20/33

G (Fully) Homomorphic Encryption

“Advanced” Protocols: the Reason Behind S

The case of TFHE

Operates on Z/mZ, where m can be anything, though: more efficient if m is smaller.
Operations allowed

Linear Combinations), cx;, where the o are constant while x; is input/key dependent.

m Costs almost nothing in terms of time/communication complexity...
m But noise increases

PBS (Programmable BootStrap) y < S(x)

m Very time consuming...
m .. But resets the noise to a base level
m Can be composed with arbritrary table lookups!

(not T)FHE operates differently, but noise is still present

20/33

(Fully) Homomorphic Encryption
Multi-Party Computations

“Advanced” Protocols: the Reason Behind Some Changes

One Approach to Rule Them All (?): Arithmetization

Examples of stream ciphers for transciphering

Elisabeth-4 [CHMS22]

g=2% Canbe linearized [GBJR23]

v *?(PRNG

G

’ Key register K ‘

ciphertext

Fig. 1: The group filter permutator design

21/33

(Fully) Homomorphic Encryption

On Symmetric Primitives
“Advanced” Protocols: the Reason Behind S hanges

A Revolution?

Examples of stream ciphers for transciphering

Elisabeth-4 [CHMS22] - ASTA

= 2 or large prime
qg= 2* Can be linearized [GBJR23] 4 .

v *?(PRNG

=1
sl I

Figure 2: Generation of i-th block of DASTA.

Many, many variants (Rasta, Dasta, Pasta, Masta)

‘ Key register K’ ‘

v

source: Dasta — Alternative Linear Layer for Rasta

ciphertext

Fig. 1: The group filter permutator design

21/33

(Fully) Homomorphic Encryption

on
“Advanced” Protocols: the Reason Behind Some Chang

Examples of stream ciphers for transciphering

Elisabeth-4 [CHMS22] - ASTA

= 2 or large prime
qg= 2* Can be linearized [GBJR23] 4 .

v *?(PRNG

=1
sl I

Figure 2: Generation of i-th block of DASTA.

Many, many variants (Rasta, Dasta, Pasta, Masta)

‘ Key register K’ ‘

v

source: Dasta — Alternative Linear Layer for Rasta

ciphertent Shameless plug

Fig. 1: The group filter permutator design Be sure to check the talk of Nicolas Bon this
afternoon! 21/3

On Synr
“Advanced” Protocols: the Reason Behind

Multi-Party Computations

Plan of this Section

“Advanced” Protocols: the Reason Behind Some Changes

m Multi-Party Computations

21/33

On Sy
“Advanced” Protocols: the Reason Behin

Multi-Party Computations

Multi-Party Computations

Goal

Allow multiple parties to evaluate a function together even if some parties are not trustworthy.

22/33

Multi-Party Computations

“Advanced” Protocols: the Reason Behin

Multi-Party Computations

Goal

Allow multiple parties to evaluate a function together even if some parties are not trustworthy.

Example
Shamir's secret sharing: n 4 1 points are necessary to interpolate a degree n function.

22/33

0
“Advanced” Protocols: the Reason Behind S

Multi-Party Computations

Multi-Party Computations

Goal

Allow multiple parties to evaluate a function together even if some parties are not trustworthy.

Example
Shamir's secret sharing: n 4 1 points are necessary to interpolate a degree n function.

Applications

m Masking (the side-channel attack counter-measure)
m MPC-in-the-head paradigm (e.g. for Picnic signatures)
m Trojan resilience

22/33

(Fully) Homomorphic Encryption
“Advanced” Protocols: the Reason Behind Some Changes Malrtl‘_fa:tyl C:mputatwons
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

The SymCry They Need: a Lot of Different Things

Masking-friendly (Tweakable) BCs. Low number of multiplications in the underlying field.
Examples: small-pSquare [GM MT24b], Fantomas [GLSV15],...

23/33

On Symmetric Primitives
“Advanced” Protocols: the Reason Behind Some Changes

Multi-Party Computations
A Revolutio

The SymCry They Need: a Lot of Different Things

Masking-friendly (Tweakable) BCs. Low number of multiplications in the underlying field.
Examples: small-pSquare [GM MT24b], Fantomas [GLSV15],...

Picnic-friendly BCs. Low number of multiplications, security only for a single query.
Example: LowMC [GRRT16]

23/33

On Symmetr
“Advanced” Protocols: the Reason Behind So

Multi-Party Computations

The SymCry They Need: a Lot of Different Things

Masking-friendly (Tweakable) BCs. Low number of multiplications in the underlying field.

Examples: small-pSquare [GM MT24b], Fantomas [GLSV15],...

Picnic-friendly BCs. Low number of multiplications, security only for a single query.
Example: LowMC [GRRT16]

Trojan Resilient BCs Reliance only on linear operations (but over different ring/fields).

23/33

On Symmetr
“Advanced” Protocols: the Reason Behind So

Multi-Party Computations

The SymCry They Need: a Lot of Different Things

Masking-friendly (Tweakable) BCs. Low number of multiplications in the underlying field.
Examples: small-pSquare [GM MT24b], Fantomas [GLSV15],...

Picnic-friendly BCs. Low number of multiplications, security only for a single query.
Example: LowMC [GRRT16]

Trojan Resilient BCs Reliance only on linear operations (but over different ring/fields).
Example: MOE [BFL™T21]

23/33

Multi-Party Computations

“Advanced” Protocols: the Reason Be

The SymCry They Need: a Lot of Different Things

Masking-friendly (Tweakable) BCs. Low number of multiplications in the underlying field.
Examples: small-pSquare [GM MT24b], Fantomas [GLSV15],...

Picnic-friendly BCs. Low number of multiplications, security only for a single query.
Example: LowMC [GRRT16]

Trojan Resilient BCs Reliance only on linear operations (but over different ring/fields).
Example: MOE [BFL™T21]

Pseudo-random Correlated Functions Very low degree evaluation; no chosen plaintext attack
allowed; only low data complexity.
Examples: Crypto DarkMatter [BIPT18], VDLPN [BCGT20]

23/33

On Synr
“Advanced” Protocols: the Reason Behind

Zero-Knowledge

Plan of this Section

“Advanced” Protocols: the Reason Behind Some Changes

m Zero-Knowledge

23/33

On Symmetric Primitives
“Advanced” Protocols: the Reason Behind Some Changes

A Revolution? Zero-Knowledge

Zero-Knowledge

Principle

| want to convince you | know a secret without revealing it

24/33

On Sy
“Advanced” Protocols: the Reason Behin

Zero-Knowledge

Zero-Knowledge

Principle

| want to convince you | know a secret without revealing it

A generic goal

To be able to prove/argue that a function was evaluated correctly without revealing its input.

24/33

0On Sy

“Advanced” Protocols: the Reason Behin
o Zero-Knowledge

Zero-Knowledge

Principle

| want to convince you | know a secret without revealing it

A generic goal
To be able to prove/argue that a function was evaluated correctly without revealing its input.
Ex: Sudoku time!

24/33

“Advanced” Protocols: the Reason Behin

Zero-Knowledge

Zero-Knowledge

Principle

| want to convince you | know a secret without revealing it

A generic goal
To be able to prove/argue that a function was evaluated correctly without revealing its input.
Ex: Sudoku time!

Applications

m Offload computation to untrusted 3rd parties
m Electronic vote (mixnets)

m Signatures (e.g. with Solid)

24/33

0
“Advanced” Protocols: the Reason Behind S

Zero-Knowledge

Zero-Knowledge

Principle

| want to convince you | know a secret without revealing it

A generic goal

To be able to prove/argue that a function was evaluated correctly without revealing its input.
Ex: Sudoku time!

Applications

m Offload computation to untrusted 3rd parties

m Electronic vote (mixnets)

Signatures (e.g. with Solid)
m BLOCKCHAIN!T!

24/33

(Fully) Homomorphic Encryption
q Multi-Party Computatio
“Advanced” Protocols: the Reason Behind Some Changes uti-rarty Lomputations
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

The SymCry They Need: Easily Verifiable Hash Functions

(what follows is a simplification)

They want hash functions where the round function has a...

Low Degree Verification

25/33

On Sy
“Advanced” Protocols: the Reason Behind

Zero-Knowledge

The SymCry They Need: Easily Verifiable Hash Functions

(what follows is a simplification)
They want hash functions where the round function has a...
Low Degree Verification

A function F : F; — [F, admits a low degree verification if there exists a low degree function
G:F,® — F,such that

F(xX)—z=0 < G(x,z2)=0.

25/33

On Sy
“Advanced” Protocols: the Reason Behind

Zero-Knowledge

The SymCry They Need: Easily Verifiable Hash Functions

(what follows is a simplification)
They want hash functions where the round function has a...
Low Degree Verification

A function F : F; — [F, admits a low degree verification if there exists a low degree function
G:F,® — F,such that

F(xX)—z=0 < G(x,z2)=0.

Direct evaluation if F has a low degree, we are fine: G(x,z) = F(x) — z

25/33

On Sy
“Advanced” Protocols: the Reason Behind

Zero-Knowledge

The SymCry They Need: Easily Verifiable Hash Functions

(what follows is a simplification)
They want hash functions where the round function has a...
Low Degree Verification

A function F : F; — [F, admits a low degree verification if there exists a low degree function
G:F,® — F,such that

F(xX)—z=0 < G(x,z2)=0.

Direct evaluation if F has a low degree, we are fine: G(x,z) = F(x) — z

Indirect evaluation if F~' has a low degree, then G(x,z) = x — F'(2)

25/33

On Sy
“Advanced” Protocols: the Reason Behind

Zero-Knowledge

The SymCry They Need: Easily Verifiable Hash Functions

(what follows is a simplification)

They want hash functions where the round function has a...
Low Degree Verification

A function F : F; — [F, admits a low degree verification if there exists a low degree function
G:F,® — F,such that
F(xX)—z=0 < G(x,z2)=0.

Direct evaluation if F has a low degree, we are fine: G(x,z) = F(x) — z
Indirect evaluation if F~' has a low degree, then G(x,z) = x — F'(2)

Generalization it is sufficient that F is CCZ-equivalent to a low degree function.

25/33

On Symmetric Prim
“Advanced” Protocols: the Reason Behind

One Approach to Rule Them All (?): Arithmetization

Plan of this Section

“Advanced” Protocols: the Reason Behind Some Changes

m One Approach to Rule Them All (?): Arithmetization

25/33

“Advanced” Protocols: the Reason Behin

One Approach to Rule Them All (?): Arithmetization

A Basic Example of Arithmetization

Verifying if y = c(ax + b)'® + x in R1CS

26/33

On Symmetric Primitives
“Advanced” Protocols: the Reason Behind Some Changes

A Revolution?

A Basic Example of Arithmetization

Verifying if y = c(ax + b)'® + x in R1CS

B to = ax

Ht=t+b
th=1t Xt
th=t Xt

One Approach to Rule Them All (?): Arithmetization

t, = t3 X t3
Bt=txt
tg = cts

B y=ts+x

26/33

On Symmetric Primitives
“Advanced” Protocols: the Reason Behind Some Changes

A Revolution? . R
1o One Approach to Rule Them All (?): Arithmetization

A Basic Example of Arithmetization

Verifying if y = c(ax + b)'® + x in R1CS

1] X Bt =t Xt3
A t=tXxt,
B t=txt

At=tXxt 8] X

26/33

On Synr
“Advanced” Protocols: the Reason Behind

One Approach to Rule Them All (?): Arithmetization

A Basic Example of Arithmetization

Verifying if y = c(ax + b)'® + x in R1CS

1] X Bt =t Xt3
A t=tXxt,
B t=txt

At=tXxt 8] X

This verification costs 4 R1CS constraints

26/33

On Sy
“Advanced” Protocols: the Reason Behin

One Approach to Rule Them All (?): Arithmetization

A Basic Example of Arithmetization

Verifying if y = c(ax + b)'® + x in R1CS

X Bt=txt
A t=tXxt,
B t=txt

At=tXxt 8] X

This verification costs 4 R1CS constraints

m How to turn a computation into an arithmetic circuit depends on the operations allowed

m Its cost is also arithmetization-dependent—though low degree is usually welcome!

26/33

On Sy
“Advanced” Protocols: the Reason Behin

One Approach to Rule Them All (?): Arithmetization

A Basic Example of Arithmetization

Verifying if y = c(ax + b)'® + x in R1CS

X Bt=txt
A t=tXxt,
B t=txt

At=tXxt 8] X

This verification costs 4 R1CS constraints

m How to turn a computation into an arithmetic circuit depends on the operations allowed
m Its cost is also arithmetization-dependent—though low degree is usually welcome!

m Arithmetization over a field of odd size — nonbinary ciphers

26/33

(Fully) Homomorphic Encryption
Multi-Party Computations
“Advanced” Protocols: the Reason Behind Some Changes [M‘T“:‘ l Jl (; mputation
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

A not basic at all example of arithmetization

The cost of each operation depends on the arithmetization!
Plonk # R1CS

27/33

https://eprint.iacr.org/2025/058.pdf

On Symmetric Primitives
“Advanced” Protocols: the Reason Behind Some Changes

A Revolution? . R
1o One Approach to Rule Them All (?): Arithmetization

A not basic at all example of arithmetization

The cost of each operation depends on the arithmetization!
Plonk # R1CS

e | 0= Bifro +21-X) mod p | = Bilao+ 1 X) modp ‘

Figure 3: The Bar layer B : Fyu — Fy for n = 2 in detail, including the decomposition,
the rotation, the S-box, and the composition.

source: Skyscraper: Fast Hashing on Big Primes,
https://eprint.iacr.org/2025/058.pdf

27/33

https://eprint.iacr.org/2025/058.pdf

On Symmetric Primitives
“Advanced” Protocols: the Reason Behind S

One Approach to Rule Them All (?): Arithmetization

A not basic at all example of arithmetization

The cost of each operation depends on the arithmetization!
Plonk # R1CS

e | 0= Bifro +21-X) mod p | = Bilao+ 1 X) modp ‘

Figure 3: The Bar layer B : Fyu — Fy for n = 2 in detail, including the decomposition,
the rotation, the S-box, and the composition.

source: Skyscraper: Fast Hashing on Big Primes,
https://eprint.iacr.org/2025/058.pdf

Shameless plug
Be sure to check the talks of Antoine Bak and Guilhem Jazeron tomorrow morning!

27/33

https://eprint.iacr.org/2025/058.pdf

(Fully) Homomorphic Encryption
Multi-Party Computations

“Advanced” Protocols: the Reason Behind Some Changes

Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK

28/33

(Fully) Homomorphic Encryption
Multi- »mputations
“Advanced” Protocols: the Reason Behind Some Changes [M‘T“:‘ owl (; mputation
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK

Masking BGV R1CS
MPC-in-the-head Fv AIR
(signatures..)
PCF TFHE Plonk
VDF

28/33

On Sy
“Advanced” Protocols: the Reason Behind

One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK

low degree Arithmetization-Oriented

Masking BGV R1CS

MPC-in-the-head FV AIR
(signatures..)

PCF TFHE Plonk

VDF

28/33

On Sy
“Advanced” Protocols: the Reason Behind

One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK
low degree Arithmetization-Oriented
e AQ evaluation
: Masking BGV ! R1CS
i MPC-in-the-head 2Y . AIR
: (signatures...) :
L oo o oo oo oo oo oo e e e o e o e o e o e o e o e o e o e o e o e o e o 1
PCF TFHE Plonk
VDF

28/33

On Sy
“Advanced” Protocols: the Reason Behind

One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK
low degree Arithmetization-Oriented
e e e AQ evaluation - AQ verification_
: Masking BGV ! : R1CS :
! MPC-in-the-head FV ' : AIR :
' (signatures...) ' : :
L et bttt f e e, e e, e, e, e e, e, e, ,,,,r,,, e, e, e, e, 1 1 1
PCF TFHE : Plonk
vor

28/33

On Sy
“Advanced” Protocols: the Reason Behind

One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK
low degree Arithmetization-Oriented
e e e AQ evaluation - AQ verification_
: Masking BGV ! : R1CS :
! MPC-in-the-head FV ' : AIR :
' (signatures...) ' : :
L et bttt f e e, e e, e, e, e e, e, e, ,,,,r,,, e, e, e, e, 1 1 1
PCF TFHE : Plonk
vor

28/33

On Sy
“Advanced” Protocols: the Reason Behind

One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK
low degree Arithmetization-Oriented
e e e AQ evaluation - AQ verification_
: Masking BGV ! : R1CS :
! MPC-in-the-head FV ' : AIR :
' (signatures...) ' : :
L et bttt f e e, e e, e, e, e e, e, e, ,,,,r,,, e, e, e, e, 1 1 1
PCF TFHE : Plonk
vor

28/33

“Advanced” Protocols: the Reason Behind Some Changes

(Fully) Homomorphic Encryption
Multi-P
Zero-Knowledge

One Approach to Rule Them All (?): Arithmetization

Computations

Symmetric Techniques for Advanced Protocols

MPC FHE ZK
low degree Arithmetization-Oriented
| e e e AQ evaluation - -AQ verification _
: Masking BGV ! : R1CS :
! MPC-in-the-head FV ' : AIR :
' (signatures...) ' : :
L et bttt f e e, e e, e, e, e e, e, e, ,,,,r,,, e, e, e, e, 1 1 1
PCF TFHE Plonk
) -5) A ——

28/33

(Fully) Homomorphic Encryption
Multi-Party Computations
“Advanced” Protocols: the Reason Behind Some Changes [M‘T“:‘ l Jl (; mputation
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK
low degree Arithmetization-Oriented
e AQ evaluation - -AQ verification _
: Masking IF5; IF, BGV ' : R1CS '
! MPC-in-the-head FV ' : AIR :
' (signatures...) ' : :
L et bttt f e e, e e, e, e, e e, e, e, ,,,,r,,, e, e, e, e, 1 1 1
PCF TFHE : Plonk
) -5) A ——

28/33

(Fully) Homomorphic Encryption
Multi-Party Computations
“Advanced” Protocols: the Reason Behind Some Changes [M‘T“:‘ l Jl (; mputation
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK
low degree Arithmetization-Oriented
e AQ evaluation - -AQ verification _
: Masking IF5; IF, BGV ' : R1CS '
\ MPC-in-the-head FV ' : AIR :
' (signatures...) q ' : :
L et bttt f e e, e e, e, e, e e, e, e, ,,,,r,,, e, e, e, e, 1 1 1
PCF TFHE Plonk
) -5) A ——

28/33

(Fully) Homomorphic Encryption
Multi-Party Computations
“Advanced” Protocols: the Reason Behind Some Changes [M‘T“:‘ l Jl (; mputation
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK
low degree Arithmetization-Oriented
e AQ evaluation - -AQ verification _
: Masking IF5; IF, BGV ' : R1CS '
\ MPC-in-the-head FV ' : AIR :
' (signatures...) q ' : :
L et bttt f e e, e e, e, e, e e, e, e, ,,,,r,,, e, e, e, e, 1 1 1
PCF I TFHE : Plonk
) -5) A ——

28/33

(Fully) Homomorphic Encryption
Multi-Party Computations
“Advanced” Protocols: the Reason Behind Some Changes [M‘T“:‘ l Jl (; mputation
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK
low degree Arithmetization-Oriented

e AQ evaluation - AQ verification _
: Masking IF5; IF, BGV ' : R1CS '
\ MPC-in-the-head FV ' : AIR :
' (signatures...) q ' : :
L et bttt f e e, e e, e, e, e e, e, e, ,,,,r,,, e, e, e, e, 1 1 1
PCF I TFHE : Plonk

28/33

(Fully) Homomorphic Encryption
Multi-Party Computations
“Advanced” Protocols: the Reason Behind Some Changes [M‘T“:‘ l Jl (; mputation
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK
low degree Arithmetization-Oriented

e e e AQ evaluation .. -AQ verification_
: Masking IF5; IF, BGV ' : R1CS '
\ MPC-in-the-head FV : : AIR :
' (signatures...) q ' : :
L et bttt f e e, e e, e, e, e e, e, e, ,,,,r,,, e, e, e, e, 1 1 1
PCF Il TFHE : Plonk

28/33

(Fully) Homomorphic Encryption
Multi-Party Computations
“Advanced” Protocols: the Reason Behind Some Changes [M‘T“:‘ l Jl (; mputation
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK
low degree Arithmetization-Oriented

e e e AQ evaluation .. -AQ verification_
: Masking IF5; IF, BGV ' : R1CS '
\ MPC-in-the-head FV : : AIR :
' (signatures...) q ' : :
L et bttt f e e, e e, e, e, e e, e, e, ,,,,r,,, e, e, e, e, 1 1 1
PcF [TFHE Z/mZ ' Plonk E

28/33

(Fully) Homomorphic Encryption
Multi-Party Computations
“Advanced” Protocols: the Reason Behind Some Changes [M‘T“:‘ l Jl (; mputation
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

Symmetric Techniques for Advanced Protocols

MPC FHE ZK
low degree Arithmetization-Oriented

e e e AQ evaluation .. -AQ verification_
: Masking IF5; IF, BGV ' : R1CS '
\ MPC-in-the-head FV : : AIR :
' (signatures...) q ' : Fp, Fon
L et bttt f e e, e e, e, e, e e, e, e, ,,,,r,,, e, e, e, e, 1 1 1
PcF [TFHE Z/mZ E Plonk E

28/33

(Fully) Homomorphic Encryption
. Multi-Party Co tat 3
“Advanced” Protocols: the Reason Behind Some Changes uti-rarty Lomputations
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

A Cambrian Explosion

credit: Clémence Bouvier [Bou23]

FHE

// https://stap-zoo.com/
A

ZK

29/33

https://stap-zoo.com/

(Fully) Homomorphic Encryption
q Multi-Party Co tatio
“Advanced” Protocols: the Reason Behind Some Changes uti-rarty Lomputations
Zero-Knowledge
One Approach to Rule Them All (?): Arithmetization

A Cambrian Explosion

credit: Clémence Bouvier [Bou23]

FHE

= ==

ZK

https://stap-zoo.com/

An increased diversity of
design criteria leads to a
Cambrian explosion of new
symmetric primitives!

29/33

https://stap-zoo.com/

What Is and Isn't Specific to STAPs
A Revolution? Conelusion

Plan of this Section

A Revolution?

29/33

What Is and Isn’t Specific to STAPs

Plan of this Section

A Revolution?
m What Is and Isn’t Specific to STAPs

29/33

Symmetric Primiti

‘Advanced” Protocols: the Reason Behind Some C

What Is and Isn’t Specific to STAPs

A Revolution?

Design Process

Once upon a time, a symmetric cryptographer designed a new symmetric primitive

30/33

What Is and Isn’t Specific to STAPs

Design Process

Once upon a time, a symmetric cryptographer designed a new symmetric primitive

m Long initial phase to figure out what operations are the most efficient

30/33

What Is and Isn’t Specific to STAPs

Design Process

Once upon a time, a symmetric cryptographer designed a new symmetric primitive
m Long initial phase to figure out what operations are the most efficient

m New tricks for the initial security analysis

30/33

What Is and Isn’t Specific to STAPs

Design Process

Once upon a time, a symmetric cryptographer designed a new symmetric primitive
m Long initial phase to figure out what operations are the most efficient
m New tricks for the initial security analysis

m Tight collaboration with implementers = the people doing the cryptanalysis

30/33

What Is and Isn’t Specific to STAPs

Design Process

Once upon a time, a symmetric cryptographer designed a new symmetric primitive
m Long initial phase to figure out what operations are the most efficient
m New tricks for the initial security analysis
m Tight collaboration with implementers = the people doing the cryptanalysis

m Multiple iterations during the design to maximize efficiency

30/33

What Is and Isn’t Specific to STAPs

Design Process

Once upon a time, a symmetric cryptographer designed a new symmetric primitive
m Long initial phase to figure out what operations are the most efficient
m New tricks for the initial security analysis
m Tight collaboration with implementers = the people doing the cryptanalysis

m Multiple iterations during the design to maximize efficiency

Dear audience, which specific primitive am | talking about?

30/33

What Is and Isn’t Specific to STAPs

Design Process

Once upon a time, a symmetric cryptographer designed a new symmetric primitive
m Long initial phase to figure out what operations are the most efficient
m New tricks for the initial security analysis
m Tight collaboration with implementers = the people doing the cryptanalysis

m Multiple iterations during the design to maximize efficiency

Dear audience, which specific primitive am | talking about?
all of them!

Opinion 1

STAPs are nothing special: we (symmetric people) need to do what we always did.

30/33

What Is and Isn’t Specific to STAPs
Conclusion
A Revolution? onclusion

Underlying Alphabet

[F, and [} are not the same!

31/33

What Is and Isn’t Specific to STAPs
Conclusion
A Revolution? onclusion

Underlying Alphabet

[F, and [} are not the same!

m Indeed.

31/33

What Is and Isn’t Specific to STAPs

Underlying Alphabet

F, and [F7 are not the same!

m Indeed. In particular, g prime means no Frobenius automorphisms, meaning linear
operations are only constant multiplications.

31/33

What Is and Isn’t Specific to STAPs

Underlying Alphabet

F, and [F7 are not the same!
m Indeed. In particular, g prime means no Frobenius automorphisms, meaning linear

operations are only constant multiplications.

m Protocol flexibility means STAPs are often in fact primitives generators, i.e., algorithms
generating primitives.

31/33

What Is and Isn’t Specific to STAPs

Underlying Alphabet

F, and [F7 are not the same!

m Indeed. In particular, g prime means no Frobenius automorphisms, meaning linear
operations are only constant multiplications.

m Protocol flexibility means STAPs are often in fact primitives generators, i.e., algorithms
generating primitives.

m Low degree arithmetization implies low degree algebraic modeling
beware of algebraic attacks!

31/33

What Is and Isn’t Specific to STAPs

Underlying Alphabet

F, and [F7 are not the same!

m Indeed. In particular, g prime means no Frobenius automorphisms, meaning linear
operations are only constant multiplications.

m Protocol flexibility means STAPs are often in fact primitives generators, i.e., algorithms
generating primitives.

m Low degree arithmetization implies low degree algebraic modeling
beware of algebraic attacks!

(there already was a mass extinction event, the Freelunch attack
(shameless plug: check out Aurélien’s talk later this morning)

31/33

What Is and Isn’t Specific to STAPs

Underlying Alphabet

F, and [F7 are not the same!

m Indeed. In particular, g prime means no Frobenius automorphisms, meaning linear
operations are only constant multiplications.

m Protocol flexibility means STAPs are often in fact primitives generators, i.e., algorithms
generating primitives.

m Low degree arithmetization implies low degree algebraic modeling
beware of algebraic attacks!

(there already was a mass extinction event, the Freelunch attack
(shameless plug: check out Aurélien’s talk later this morning)

Opinion 2

Working over [F, (especially if low degree arithmetizations are needed) and the need for
primitive generators introduce new cryptanalysis vectors

31/33

What Is and Isn’t Specific to STAPs

Underlying Alphabet

F, and [F7 are not the same!

m Indeed. In particular, g prime means no Frobenius automorphisms, meaning linear
operations are only constant multiplications.

m Protocol flexibility means STAPs are often in fact primitives generators, i.e., algorithms
generating primitives.

m Low degree arithmetization implies low degree algebraic modeling
beware of algebraic attacks!

(there already was a mass extinction event, the Freelunch attack
(shameless plug: check out Aurélien’s talk later this morning)

Opinion 2
Working over [F, (especially if low degree arithmetizations are needed) and the need for
primitive generators introduce new cryptanalysis vectors, but design approaches will rely on

tried and true methods.
31/33

What Is and Isn’t Specific to STAPs

A Revolution? Conclusion

Primitive Overdose

Cryptanalysis has not followed the design
explosion

credit: Diego Delso, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=108259695

32/33

https://commons.wikimedia.org/w/index.php?curid=108259695

What Is and Isn’t Specific to STAPs

A Revolution? Conclusion

Primitive Overdose

Cryptanalysis has not followed the design
explosion

Potential Explanations

m Not all primitives are designed to
ease analysis

= So many (too many) minor variants...

credit: Diego Delso, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=108259695

32/33

https://commons.wikimedia.org/w/index.php?curid=108259695

What Is and Isn’t Specific to STAPs

A Revolution? Conelusion

Primitive Overdose

Cryptanalysis has not followed the design
explosion

Potential Explanations

m Not all primitives are designed to
ease analysis

= So many (too many) minor variants...

credit: Diego Delso, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=108259695

Opinion 3

We need more cryptanalysis!

We must become better at handling primitive generators.

32/33

https://commons.wikimedia.org/w/index.php?curid=108259695

What Is and Isn't Specific to STAPs
A Revolution? Conclusion

Plan of this Section

A Revolution?

m Conclusion

32/33

Conclusion

What Have We Learnt?

m The shape of symmetric primitives has always been dictated by external constraints

33/33

Conclusion

What Have We Learnt?

m The shape of symmetric primitives has always been dictated by external constraints

m New advanced protocols intended to secure computations need symmetric primitives

33/33

Conclusion

What Have We Learnt?

m The shape of symmetric primitives has always been dictated by external constraints
m New advanced protocols intended to secure computations need symmetric primitives

m The constraints they impose on the designs imply an unusual look at first glance

33/33

Conclusion

What Have We Learnt?

m The shape of symmetric primitives has always been dictated by external constraints
m New advanced protocols intended to secure computations need symmetric primitives
m The constraints they impose on the designs imply an unusual look at first glance

m The constraints they impose vary, and we should be careful about lumping them together

33/33

Conclusion

What Have We Learnt?

The shape of symmetric primitives has always been dictated by external constraints

New advanced protocols intended to secure computations need symmetric primitives
The constraints they impose on the designs imply an unusual look at first glance

The constraints they impose vary, and we should be careful about lumping them together

A lot of new sets of constraints = a lof of new designs (Cambrian explosion)...

33/33

Conclusion

What Have We Learnt?

The shape of symmetric primitives has always been dictated by external constraints

New advanced protocols intended to secure computations need symmetric primitives
The constraints they impose on the designs imply an unusual look at first glance

The constraints they impose vary, and we should be careful about lumping them together
A lot of new sets of constraints = a lof of new designs (Cambrian explosion)...

.. but very little cryptanalysis.
We need more cryptanalysis!

33/33

Conclusion

What Have We Learnt?

The shape of symmetric primitives has always been dictated by external constraints

New advanced protocols intended to secure computations need symmetric primitives
The constraints they impose on the designs imply an unusual look at first glance

The constraints they impose vary, and we should be careful about lumping them together
A lot of new sets of constraints = a lof of new designs (Cambrian explosion)...

.. but very little cryptanalysis.
We need more cryptanalysis!

Design criteria dictate the work of symmetric cryptographers
they always have, and always will!

33/33

Conclusion

What Have We Learnt?

The shape of symmetric primitives has always been dictated by external constraints

New advanced protocols intended to secure computations need symmetric primitives
The constraints they impose on the designs imply an unusual look at first glance

The constraints they impose vary, and we should be careful about lumping them together
A lot of new sets of constraints = a lof of new designs (Cambrian explosion)...

.. but very little cryptanalysis.
We need more cryptanalysis!

Design criteria dictate the work of symmetric cryptographers
they always have, and always will!

Thank you!

33/33

ﬁ Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepieniec.
Design of symmetric-key primitives for advanced cryptographic protocols.
IACR Trans. Symm. Cryptol,, 2020(3):1-45, 2020.

@ MartinR. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael
Zohner.
Ciphers for MPC and FHE.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of
LNCS, pages 430-454, Sofia, Bulgaria, April 26-30, 2015. Springer Berlin Heidelberg,
Germany.

ﬁ Jules Baudrin, Sonia Belaid, Nicolas Bon, Christina Boura, Anne Canteaut, Gaétan Leurent,
Pascal Paillier, Léo Perrin, Matthieu Rivain, Yann Rotella, and Samuel Tap.
Transistor: a TFHE-friendly stream cipher.
Cryptology ePrint Archive, Paper 2025/282, 2025.

@ Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkoy, and Danny Willems.

0/6

New design techniques for efficient arithmetization-oriented hash functions: Anemoi
permutations and Jive compression mode.

In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part 1], volume 14083
of LNCS, pages 507-539, Santa Barbara, CA, USA, August 20—-24, 2023. Springer, Cham,
Switzerland.

ﬁ Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Correlated pseudorandom functions from variable-density lpn.
In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages
1069-1080. IEEE, 2020.

[olivier Bronchain, Sebastian Faust, Virginie Lallemand, Gregor Leander, Léo Perrin, and
Francgois-Xavier Standaert.
MOE: Multiplication operated encryption with trojan resilience.
IACR Trans. Symm. Cryptol., 2021(1):78-129, 2021.

ﬁ Dan Boneh, Yuval Ishai, Alain Passelégue, Amit Sahai, and David J. Wu.
Exploring crypto dark matter: New simple PRF candidates and their applications.
In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part /1, volume 11240 of LNCS,
pages 699-729, Panaji, India, November 11-14, 2018. Springer, Cham, Switzerland.

0/6

ﬁ Clémence Bouvier.
Cryptanalysis and design of symmetric primitives defined over large finite fields.
Theses, Sorbonne Université, November 2023.

@ Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancréde Lepoint, Maria Naya-Plasencia,
Pascal Paillier, and Renaud Sirdey.
Stream ciphers: A practical solution for efficient homomorphic-ciphertext compression.
In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages 313-333, Bochum,
Germany, March 20-23, 2016. Springer Berlin Heidelberg, Germany.

ﬁ Mingyu Cho, Woohyuk Chung, Jincheol Ha, Jooyoung Lee, Eun-Gyeol Oh, and Mincheol Son.
Frast: Tfhe-friendly cipher based on random s-boxes.
IACR Transactions on Symmetric Cryptology, 2024(3):1-43, Sep. 2024.

ﬁ Jihoon Cho, Jincheol Ha, Seongkwang Kim, ByeongHak Lee, Joohee Lee, Jooyoung Lee,
Dukjae Moon, and Hyojin Yoon.
Transciphering framework for approximate homomorphic encryption.
In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume 13092 of
LNCS, pages 640-669, Singapore, December 6-10, 2021. Springer, Cham, Switzerland.

@ Orel Cosseron, Clément Hoffmann, Pierrick Méaux, and Francois-Xavier Standaert.
Towards case-optimized hybrid homomorphic encryption - featuring the elisabeth stream
cipher.

In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part I, volume 13793 of
LNCS, pages 32-67, Taipei, Taiwan, December 5-9, 2022. Springer, Cham, Switzerland.

@ Christoph Dobraunig, Lorenzo Grassi, Anna Guinet, and Daniél Kuijsters.
Ciminion: Symmetric encryption based on Toffoli-gates over large finite fields.
In Anne Canteaut and Frangois-Xavier Standaert, editors, EUROCRYPT 2021, Part I1, volume
12697 of LNCS, pages 3—34, Zagreb, Croatia, October 17-21, 2021. Springer, Cham,
Switzerland.

@ Henri Gilbert, Rachelle Heim Boissier, Jérémy Jean, and Jean-René Reinhard.
Cryptanalysis of elisabeth-4.
In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part Ill, volume 14440 of LNCS,
pages 256-284, Guangzhou, China, December 4-8, 2023. Springer, Singapore, Singapore.
[@ Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger, Roman Walch, and
Qingju Wang.

0/6

Horst meets fluid-SPN: Griffin for zero-knowledge applications.

In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part Ill, volume 14083
of LNCS, pages 573-606, Santa Barbara, CA, USA, August 20—24, 2023. Springer, Cham,
Switzerland.

Lorenzo Grassi, Reinhard Liiftenegger, Christian Rechberger, Dragos Rotaru, and Markus
Schofnegger.

On a generalization of substitution-permutation networks: The HADES design strategy.

In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12106 of LNCS,
pages 674—704, Zagreb, Croatia, May 10-14, 2020. Springer, Cham, Switzerland.

Vincent Grosso, Gaétan Leurent, Francois-Xavier Standaert, and Kerem Varici.
LS-designs: Bitslice encryption for efficient masked software implementations.

In Carlos Cid and Christian Rechberger, editors, FSE 2074, volume 8540 of LNCS, pages
18-37, London, UK, March 3-5, 2015. Springer Berlin Heidelberg, Germany.

Lorenzo Grassi, Loic Masure, Pierrick Méaux, Thorben Moos, and Francois-Xavier Standaert.

Generalized feistel ciphers for efficient prime field masking - full version.
Cryptology ePrint Archive, Report 2024/431, 2024.

0/6

FHE
Examples of Primitives MPC
ZK

@ Lorenzo Grassi, Loic Masure, Pierrick Méaux, Thorben Moos, and Francois-Xavier Standaert.

Generalized feistel ciphers for efficient prime field masking - full version.
Cryptology ePrint Archive, Paper 2024/431, 2024.

@ Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P. Smart.
MPC-friendly symmetric key primitives.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 430-443, Vienna, Austria, October 24-28, 2016. ACM
Press.

[@ Clément Hoffmann, Pierrick Méaux, and Frangois-Xavier Standaert.
The patching landscape of elisabeth-4 and the mixed filter permutator paradigm.
In Anupam Chattopadhyay, Shivam Bhasin, Stjepan Picek, and Chester Rebeiro, editors,
INDOCRYPT 2023, Part I, volume 14459 of LNCS, pages 134156, Goa, India, December 10-13,
2023. Springer, Cham, Switzerland.

0/6

Examples of Primitives

Plan of this Section

Examples of Primitives

0/6

FHE
Examples of Primitives

Plan of this Section

Examples of Primitives
m FHE

0/6

Examples of Primitives

TFHE: corresponding stream ciphers

Elisabeth-4 [CHMS22];q = 2*
Uses a constant key register on
which index-dependent non-linear
functions are applied.
Can be linearized [GBJR23]

FHE

v *>| PRNG ‘ ‘ Key register ' ’

G

ciphertext

Fig. 1: The group filter permutator design

source: Towards Case-Optimized Hybrid
Homomorphic Encryption Featuring the
Elisabeth Stream Cipher

1/6

FHE
Examples of Primitives

TFHE: corresponding stream ciphers

Elisabeth-4 [CHMS22];qg = 2% v H| PRNG ‘ ‘ Key register K ’
Uses a constant key register on
which index-dependent non-linear KJJ///

functions are applied.

Can be linearized [GBJR23]

Gabriel... [HMS23]
(Elisabeth-4 follow-ups)

ciphertext

Fig. 1: The group filter permutator design

source: Towards Case-Optimized Hybrid
Homomorphic Encryption Featuring the
Elisabeth Stream Cipher

FHE
Examples of Primitives

TFHE: corresponding stream ciphers

Elisabeth-4

Gabriel...

FRAST

[CHMS22]; g = 24 v H| PRNG ‘
Uses a constant key register on
which index-dependent non-linear KJJ///
functions are applied.

Can be linearized [GBJR23]

Key register I ’

[HMS23]
(Elisabeth-4 follow-ups)

[CCHT24]; g = 2% Ablock cipher
in a CTR-mode variant. ciphertext

See yOU at the rump SeSSiOn ‘D Fig. 1: The group filter permutator design

source: Towards Case-Optimized Hybrid
Homomorphic Encryption Featuring the
Elisabeth Stream Cipher

1/6

FHE
Examples of Primitives

TFHE: corresponding stream ciphers

Elisabeth-4 [CHMS22];qg = 2% v H| PRNG ‘ ‘ Key register K ’
Uses a constant key register on

which index-dependent non-linear (JJ///

s} —
functions are applied.

Can be linearized [GBJR23]

Gabriel... [HMS23]
(Elisabeth-4 follow-ups)

FRAST [CCHT24]; g = 2% Ablock cipher
in a CTR-mode variant. ciphertext

See yOU at the rump SeSSiOn D Fig. 1: The group filter permutator design

Transistor [BBB+25];q = 2% + 1 source: Towards Case-Optimized Hybrid
SNOW-like 'round structure Homomorphic Encryption Featuring the

See you at Anne’s invited talk :D Elisabeth Stream Cipher

1/6

FHE
Examples of Primitives

BGV/FV: corresponding stream ciphers

-ASTA g = 2 or large prime
Use very few rounds with a low
degree.

Rely on large, randomly generated,
nonce-dependent matrices.

Figure 2: Generation of i-th block of DASTA.

source:
Dasta — Alternative Linear Layer for Rasta

2/6

FHE
Examples of Primitives

BGV/FV: corresponding stream ciphers

-ASTA g = 2 or large prime
Use very few rounds with a low
degree.

Rely on large, randomly generated,
nonce-dependent matrices.

“Kreyvium” [CCFT16] g = 2
Basically Trivium!
Binary state updated with NLFSRs.

Figure 2: Generation of i-th block of DASTA.

source:
Dasta — Alternative Linear Layer for Rasta

2/6

FHE
Examples of Primitives

BGV/FV: corresponding stream ciphers

-ASTA g = 2 or large prime
Use very few rounds with a low
degree.

Rely on large, randomly generated,
nonce-dependent matrices.

“Kreyvium” [CCFT16] g = 2
Basically Trivium!
Binary state updated with NLFSRs.

HERA [CHK™'21] g large prime
Ablock cipherin a kind of
CTR-mode variant.

Figure 2: Generation of i-th block of DASTA.

source:
Dasta — Alternative Linear Layer for Rasta

2/6

Examples of Primitives MPC

Plan of this Section

Examples of Primitives

m MPC

2/6

Examples of Primitives MPC

Trojan Resilience

| ; 1
\. e 1
: / ! sub-circuit ™

M

1 round of encryption i

source: MOE: Multiplication Operated Encryption with Trojan Resilience
https://tosc.iacr.org/index.php/ToSC/article/view/8834

3/6

https://tosc.iacr.org/index.php/ToSC/article/view/8834

Examples of Primitives MPC

MPC-Friendly Encryption

LowMC [ARST15] g =2
SPN with partial layer of quadratic S-boxes.

Rely on large, randomly generated matrices.

Only one encryption/key; broken anyway

RlRL

Affine Lay

%%%%%%% %%%%%

ption

with LowMC.

Fig. 1. Depiction of

source:
Ciphers for MPC and FHE

Examples of Primitives MPC

MPC-Friendly Encryption

LowMC [ARST15] g =2
SPN with partial layer of quadratic S-boxes.
Rely on large, randomly generated matrices.

Only one encryption/key; broken anyway

Ciminion [DGGK21] no specific constraints on g # # # #
3-branch Feistel network with a single P
multiplication/round. %}% %H, %% % %% %ﬁ%

source:
Ciphers for MPC and FHE

Examples of Primitives MPC

MPC-Friendly Encryption

LowMC [ARST15] g =2
SPN with partial layer of quadratic S-boxes.
Rely on large, randomly generated matrices.

Only one encryption/key; broken anyway

Ciminion [DGGK21] no specific constraints on g
3-branch Feistel network with a single
multiplication/round.

small-pSquare [GMM™24a] p = q = 127
Generalized Feistel network with low degree round
function.

Optimized specifically for hardware masking.

Affine Layer

o W

Fig. 1. Depiction of one round of encryption with LowMC.
source:
Ciphers for MPC and FHE

4/6

Examples of Primitives MPC

MPC-Friendly Encryption

LowMC [ARST15] g =2
SPN with partial layer of quadratic S-boxes.
Rely on large, randomly generated matrices.
Only one encryption/key; broken anyway

Ciminion [DGGK21] no specific constraints on g
3-branch Feistel network with a single
multiplication/round.

small-pSquare [GMM™24a] p = q = 127
Generalized Feistel network with low degree round
function.

Optimized specifically for hardware masking.

MOE [BFLT21]1g =228 m =228
Dedicated structure with linear operations in IF; and
7./ qZ. Intended for hardware trojan resilience.

Affine Layer

o W

Fig. 1. Depiction of one round of encryption with LowMC.

source:
Ciphers for MPC and FHE

4/6

Examples of Primitives MPC

Pseudo-Correlated Functions

A new challenger!

At the start of some MPC protocols, it is necessary to share some bits that are correlated between the
participants.

Very low multiplicative depth -

5/6

Examples of Primitives MPC

Pseudo-Correlated Functions

A new challenger!

At the start of some MPC protocols, it is necessary to share some bits that are correlated between the
participants.

Very low multiplicative depth - Very low data complexity -

5/6

Examples of Primitives MPC

Pseudo-Correlated Functions

A new challenger!

At the start of some MPC protocols, it is necessary to share some bits that are correlated between the
participants.

Very low multiplicative depth - Very low data complexity - Only known plaintext, no chosen plaintext!

5/6

Examples of Primitives MPC

Pseudo-Correlated Functions

A new challenger!

At the start of some MPC protocols, it is necessary to share some bits that are correlated between the
participants.

Very low multiplicative depth - Very low data complexity - Only known plaintext, no chosen plaintext!

Crypto DarkMatter [BIP*18]

n—1 n—1
Fe(x) := <Z kix; mod 2 + Z kix; mod 3) mod 2, forx € {0,1}".
i=0 i=0

5/6

Examples of Primitives MPC

Pseudo-Correlated Functions

A new challenger!

At the start of some MPC protocols, it is necessary to share some bits that are correlated between the
participants.

Very low multiplicative depth - Very low data complexity - Only known plaintext, no chosen plaintext!

Crypto DarkMatter [BIP*18]

n—1 n—1
Fe(x) := <Z kix; mod 2 + Z kix; mod 3) mod 2, forx € {0,1}".
i=0 i=0

VDLPN [BCG120]

D w i

fu(x) = D D Nxise ® kije).

i=1 j=1 ¢=1

5/6

Examples of Primitives
ZK

Plan of this Section

Examples of Primitives

m ZK

5/6

Examples of Primitives
ZK

ZK-Friendly Hash Functions

Poseidon [GLRT20] no specific constraints g
SPN with partial layer of low degree
monomial S-boxes.

Full rounds - partial round - full rounds.

6/6

Examples of Primitives
ZK

ZK-Friendly Hash Functions

Poseidon

Rescue

[GLR™20] no specific constraints g
SPN with partial layer of low degree
monomial S-boxes.

Full rounds - partial round - full rounds.
[AABT20] g large prime

SPN with low degree monomials and their
inverses.

Most “AES-like” also most secure at this stage.

6/6

Examples of Primitives
ZK

ZK-Friendly Hash Functions

Poseidon

Rescue

Griffin

[GLR™20] no specific constraints g
SPN with partial layer of low degree
monomial S-boxes.

Full rounds - partial round - full rounds.
[AABT20] g large prime

SPN with low degree monomials and their
inverses.

Most “AES-like” also most secure at this stage.

[GHR™"23] g large prime
Feistel variant with multiplications instead.
Particularly vulnerable to algebraic attacks!

@{:N

s

source: Cryptanalysis and design of
symmetric primitives defined over
large finite fields, PhD thesis of C.
Bouvier

6/6

Examples of Primitives
ZK

ZK-Friendly Hash Functions

Poseidon

Rescue

Griffin

Anemoi

[GLR™20] no specific constraints g
SPN with partial layer of low degree
monomial S-boxes.

Full rounds - partial round - full rounds.
[AABT20] g large prime

SPN with low degree monomials and their
inverses.

Most “AES-like” also most secure at this stage.

[GHR™"23] g large prime

Feistel variant with multiplications instead.
Particularly vulnerable to algebraic attacks!
[BBCT23]g = 2" or large prime

Uses the “Flystel”, a high degree S-box
CCZ-equivalent to a function of low degree.

G{:N

s

source: Cryptanalysis and design of
symmetric primitives defined over
large finite fields, PhD thesis of C.
Bouvier

6/6

	On Symmetric Primitives
	How do we build symmetric primitives?
	On their Design Constraints

	``Advanced'' Protocols: the Reason Behind Some Changes
	(Fully) Homomorphic Encryption
	Multi-Party Computations
	Zero-Knowledge
	One Approach to Rule Them All (?): Arithmetization

	A Revolution?
	What Is and Isn't Specific to STAPs
	Conclusion

	Appendix
	Examples of Primitives
	FHE
	MPC
	ZK

