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The Journey of this project

Question: What happens to the free energy of spherical spin glasses
near the critical temperature threshold?

Recent breakthroughs for Spherical Sherrington-Kirkpatrick model
Baik, Lee (2016)

Landon (2022)

Johnstone, Klochkov, Onatski, Pavlyshyn (2022)

Our goal: Obtain similar results to bipartite spherical spin glasses

Missing ingredient: CLT for a certain statistic of random matrix
eigenvalues

Today’s talk:

Spin glass background

Our result for bipartite spin glasses

Random matrix project we did along the way
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Background on Spin Glass models

The Sherrington-Kirkpatrick model has the following set-up:

Particles are labeled {1, 2, 3, ...,N}.

Each particle is assigned a spin, either +1 or −1.

A spin configuration σ is the vector of spins:

σ = (σ1, σ2, ..., σN) ∈ {±1}N

The Hamiltonian is

H(σ) = 1
2
√
N

N∑
i,j=1

Jijσiσj

where the “interaction coefficients” Jij are Gaussian and
independent up to symmetry (Jij = Jji ).

Notice: H is maximized when the signs of σi , σj agree for Jij > 0
but disagree for Jij < 0.
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Background on Spin Glass models

For ease of notation, we rewrite the Hamiltonian

H(σ) =
1

2
√
N

N∑
i,j=1

Jijσiσj =
1

2
σTMσ, where Mij =

1√
N
Jij

M is a GOE matrix (Gaussian Orthogonal Ensemble).

It is symmetric.

Its entries are Gaussian and independent up to symmetry.

In the Spherical Sherrington Kirkpatrick (SSK) model, σ no
longer takes discrete values but rather

σ ∈ SN−1, the sphere of radius
√
N in RN .

SSK is similar to the SK model but some analyses are easier due to
its continuous nature.

Example: H(σ) is maximized when σ aligns with the leading
eigenvector of M. This vector is almost surely not in {±1}N .
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Free Energy

The free energy of the model is

FN(β) :=
1

N
logZN , ZN =

∫
SN−1

e
β
2 σTMσdωN(σ)

β > 0 is the inverse temperature parameter

Note: Integrand in ZN is maximized when σ aligns with u1, the
eigenvector of λ1 (largest eigenvalue of M).

The effect of temperature (heuristic observations):

At high temperature, β gets closer to 0,
the integrand approaches a constant function.

At low temperature, β becomes large,
the integrand has spikes at σ = ±u1, with height depending on λ1.

We might guess that

At very high temperatures, FN depends on all eigenvalues

At very low temperatures, FN depends mostly on λ1
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Background on free energy

The limiting free energy of SSK as N → ∞ is

FN(β) → F(β) :=

{
1
4β

2 β ≤ 1 (high temp)

β − 1
2 log β − 3

4 β ≥ 1 (low temp)

Kosterlitz, Thouless, Jones (1976) proposed the SSK model and
computed F(β).

Parisi (1980) and Crisanti, Sommers (1992) computed F(β) in more
generalized settings.

Talagrand (2006) rigorously proved the formulas of Parisi and
Crisanti, Sommers.

What can be said about the fluctuations of FN(β)?
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Free energy fluctuations

Baik and Lee (2016) obtained the fluctuations of F(β)

N
(
FN(β)−F(β)

)
→ N (µβ , σ

2
β) β < 1 (high temp)

N2/3
(
FN(β)−F(β)

)
→ β−1

2 TW1 β > 1 (low temp)

Fluctuations have different magnitudes
(N−1 at high temp vs. N−2/3 at low temp)

High temp: Gaussian, depending on all eigenvalues

Low temp: Tracy-Widom, depending on largest eigenvalue

Conjecture of Baik and Lee (critical temp window):
When |β − 1| = O(N−1/3

√
logN), fluctuations have order N−1

√
logN.

1TW1 denotes the GOE Tracy-Widom distribution (i.e. the rescaled fluctuations of
the largest eigenvalue of GOE).
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Free Energy - Temperature transition

The transitional regime conjectured by Baik and Lee was analyzed in two
recent papers (independently)

Landon (2022)

Johnstone, Klochkov, Onatski, Pavlyshyn (2022)

Theorem (Johnstone, Klochkov, Onatski, Pavlyshyn (2022))

Given an SSK model with inverse temperature β = 1 + bN−1/3
√
logN

for constant b ∈ R, the free energy has the following convergence:

N√
1
6 logN

(
FN(β)−F(β) + logN

12N

)
d−→ N (0, 1) +

√
3
2b+TW1

where TW1 is a GOE Tracy-Widom distribution, independent from
N (0, 1), and b+ = max{0, b}.

Fluctuations have order N−1
√
logN throughout critical window

High temp side: Gaussian

Low temp side: Gaussian + Tracy-Widom (independent)
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Extending the result to bipartite spin glasses (C-W, Le)

SSK is a mean field model (N particles, all pairs interact)

H(σ) =
1

2
√
N

N∑
i,j=1

Jijσiσj , σ ∈ SN−1

Bipartite SSK has two “species” of sizes n,m and particles only
interact with those from the other species

H(σ, τ ) =
1√

n +m

n∑
i=1

m∑
j=1

Aijσiτj , σ ∈ Sn−1, τ ∈ Sm−1

Matrix A is n ×m with i.i.d. Gaussian entries.

Why study this model?

It is a step away from the mean field model

Has some applications (e.g. in biology and neural networks)

Free energy fluctuations of bipartite model - Baik, Lee (2018)

Gaussian at high temp, Tracy-Widom at low temp

Critical inverse temp is not β = 1 but β = βc := (m
n
)1/4

√
1 + n

m
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Temperature transition in bipartite model

Theorem (C-W, Le (2023))

Let Fn,m(β) denote the free energy of a bipartite spherical model with
species sizes n,m and let β = βc + bn−1/3

√
log n. Then, as n,m → ∞

with fixed ratio n/m = r + O(n−1) for 0 < r ≤ 1, the free energy has
the convergence:

n+m√
1
6 log n

(
Fn,m(β)−Fr (β) +

log n
12n

)
d−→ N (0, 1) + Crb+TW1

where Fr (β) denotes the limiting free energy, b+ = max{0, b}, and
N (0, 1),TW1 denote independent Gaussian and Tracy-Widom terms.

Theorem (Johnstone, Klochkov, Onatski, Pavlyshyn (2022))

Given an SSK model with β = 1 + bN−1/3
√
logN for constant b ∈ R,

N√
1
6 logN

(
FN(β)−F(β) + logN

12N

)
d−→ N (0, 1) +

√
3
2b+TW1
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Key ingredients in proof

Contour integral representation of ZN

Due to specific properties of these models, one can simplify their
partition functions

SSK spherical form: ZN =
∫
SN−1

eβH(σ)dωN(σ)

contour form: ZN = CN

∫ γ+i∞
γ−i∞ eNGβ(z)dz

Bipartite spherical form: Zn,m =
∫
Sm−1

∫
Sn−1

eβH(σ,τ )dωn(σ)dωm(τ )

contour form: Zn,m = Cn,m

∫ γ1+i∞
γ1−i∞

∫ γ2+i∞
γ2−i∞ enGβ(z1,z2)dz2dz1

CN ,Cn,m are constants, Gβ(z),Gβ(z1, z2) depend on eigenvalues of M:

M is GOE (rescaled interaction matrix) for SSK

M is Wishart (M := 1
mAAT where A is interaction) for bipartite

Steepest descent analysis

Note: G is a random function so it’s saddle point is also random.

Properties of random matrices (eigenvalue rigidity) enable analysis.
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Key ingredients in proof

Asymptotic expression for free energy (obtained using contour
integral and steepest descent analysis)

Fn,m(β) = cβ,n,m − 1
n+m

∑n
j=1 log |d+ − λj |+ (β − βc)+(λ1 − d+)

where d+ is upper edge of limiting spectral measure.

1
n+m

∑n
j=1 log |d+ − λj | has Gaussian fluctuations, order n−1

√
log n.

(β−βc)+(λ1−d+) has Tracy-Widom fluctuations, order n−1
√
log n

CLT for the sum of logs term:

This is delicate because d+ is right at the spectral edge.

SSK requires this CLT for GOE matrix
(Lambert, Paquette 2020 and Johnstone et al 2020)

Bipartite requires this CLT for Wishart matrix
(C-W, Le 2022 - second part of this talk)
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Key ingredients in proof

Fn,m(β) = cβ,n,m − 1
n+m

∑n
j=1 log |d+ − λj |︸ ︷︷ ︸

asymptotically Gaussian

+ (β − βc)+(λ1 − d+)︸ ︷︷ ︸
asymptotically Tracy-Widom

Asymptotic independence of sum and λ1

It has been demonstrated numerically (eg Edelman, Wang 2013)
that λ1 depends (asymptotically) only on a matrix minor of size
O(n1/3) in the tridiagonal form of the matrix.

Johnstone et al and C-W, Le verify this (for GOE and Wishart
matrices respectively) using recursive formulas on matrix minors.

Asymptotically, λ1 depends on a minor of size n1/3(log log n)3, while∑n
i=1 log |d+ − λi | is determined by the rest of the matrix.
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SECTION 2:
Edge CLT result for Wishart random matrices

GOAL: Given eigenvalues {λi} of a Wishart matrix, derive a CLT for

n∑
i=1

log |d+ − λi |

RESULT: We prove this CLT with the following generalizations:

Wishart matrices −→ Laguerre beta ensembles (LβE)∑
log |d+ − λi | −→

∑
log |γn − λi |

where γn = d+ or γn → d+ sufficiently fast

NOTE: This in not the same β from the spin glass theorems.
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Laguerre random matrices

Laguerre Orthogonal Ensemble (LOE) aka real Wishart matrix is
an n × n random matrix Mn,m constructed as

Mn,m :=
1

m
AAT

where A is an n ×m matrix (for n ≤ m) with i.i.d N (0, 1) entries.

Laguerre Beta Ensembles (LβE) are matrices with joint
eigenvalue distribution given by

p(λ1, λ2, ..., λn) = Cn,m,β

∏
i<j

|λi − λj |β
n∏

i=1

(
λ

β
2 (m−n+1)−1
i eλi/2

)
Remarks:

LOE is a special case of LβE with β = 1.

We focus on the case where n
m
→ r as n,m → ∞ for 0 < r ≤ 1.

Eigenvalues converge to the Marcenko-Pastur distribution which is
supported on the interval [d−, d+] where d± = (1±

√
r)2.
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Log determinants

We consider the quantity∑n
i=1 log |λi − γn| = log | det(Mn,m − γnIn)|

where γn approaches the upper edge of the spectrum of Mn,m.

CLT for linear eigenvalue statistics: In the case of fixed γn = γ
outside the spectral support (see Bai, Silverstein 2004):∑n

i=1 log |λi − γ| − n
∫
log |x − γ|dρMP(x) → N (µ, σ2)

for µ, σ2 not n-dependent and ρMP the Marchenko-Pastur measure.
*When γn approaches the spectral edge, this theorem does not apply.

Edge CLTs for the log determinant
Johnstone, Klochkov, Onatski, Pavlyshyn (2020) - Obtain such a
CLT for GβE and then extend to Wigner matrices.

Lambert, Paquette (2020) - Obtain such a CLT for GβE as a
corrollary of a more detailed result on the characteristic polynomial.

Collins-Woodfin, Le (2022) - Obtain such a CLT for LβE.
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Theorem (C-W, Le 2022)

Let Mn,m be LβE with n
m
= r + O(n−1) for 0 < r ≤ 1. Let γn = d+ + σnn

−2/3

where d+ is upper edge of Marchenko-Pastur measure. We take
(log log n)2 ≪ σn ≪ (log n)2. For β = 1, 2, allow −C < σn ≪ (log n)2 Then,

log
∣∣ det (Mn,m − γn)

∣∣− µn,m√
2
3β

log n
→ N (0, 1),

µn,m =
(
(1− r−1) log(1 + r

1
2 ) + log(r

1
2 ) + r−

1
2

)
n

+ 1

r1/2(1+r1/2)
σnn

1/3 − 2

3r3/4(1+r1/2)2
σ3/2
n − 1

6

(
2
β
− ( 1

4
+ 3r1/2

2(r1/2+1)2
)
)
log n

Key take-away: This log determinant (which is order n) has Gaussian
fluctuations of order

√
log n

Note comparison to:

Sum of i.i.d variables – order
√
n fluctuations

Log-determinant with γn away from spectrum – order 1 fluctuations

This result is very similar to the one for GβE and our proof methods are
inspired by those of Johnstone et al.
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Proof Sketch (and cool RMT results we used en route)

1 Tridiagonal representation of LβE (Dumitriu, Edelman 2002) An
LβE matrix Mn,m has the same joint eigenvalue distribution as
1
mBBT for a bidiagonal matrix B satisfying

B =


a1
b1 a2

. . .
. . .

bn−1 an

 , BBT =


a21 a1b1

a1b1 a22 + b21
. . . an−1bn−1

an−1bn−1 a2n + b2n−1


where {ai}, {bi} are independent, χ-distributed, with

a2i ∼ 1
βχ

2
β(m−n+i), b2i ∼ 1

βχ
2
βi .

2 Recurrence on determinants of matrix minors:

We want to study det(BBT − γnmIn).

Definition: Di = det
(
i × i principal minor of (BBT − γnmIn)

)
Recurrence: Di = (a2i + b2

i−1 − γnm)Di−1 − a2i−1b
2
i−1Di−2
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Proof Sketch

1 Tridiagonal representation of LβE (Dumitriu, Edelman 2002)

2 Recurrence on determinants of matrix minors:

Di = (a2i + b2i−1 − γnm)Di−1 − a2i−1b
2
i−1Di−2

3 Transform to an approximately linear recurrence
For Ri , a suitable rescaled and shifted version of the ratio Di/Di−1,

Ri = ξi + ωiRi−1 + εi , where

ξi depends on ai , bi

ωi is deterministic with 0 < ωi < 1,

εi is small.

4 Analyze the recurrence on Ri , obtain CLT for logDn in the case
where (log log n)2 ≪ σn ≪ log2 n.

Involves concentration bounds on sub-gamma random variables,
Hanson-Wright tail bounds on quadratic forms, etc.
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Proof Sketch

1 Tridiagonal representation of LβE
2 Recurrence on determinants of matrix minors
3 Transform to an approximately linear recurrence
4 Analyze recurrence, obtain CLT for (log log n)2 ≪ σn ≪ log2 n.
5 Extend result to −C < σn ≪ log2 n in the case of β = 2

Relies on result specific to β = 2 (Götze, Tikhomorov 2005).
6 Obtain extension for β = 1 by relating LUE, LOE eigenvalues

Theorem (Forrester, Rains 2001): Let LOEn,m, LOEn+1,m+1, LUEn,m

denote the eigenvalue sets of independent matrices with the given
parameters. Then

even(LOEn,m ∪ LOEn+1,m+1) = LUEn,m

where the equality is in distribution.

How does this compare to the proof of Johnstone et al for GβE?
General approach is similar

LβE analysis is more complicated due to the more intricate
tridiagonal structure (dependence between adjacent entries,
non-identical distributions on the diagonal)
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Statistical application - critically spiked matrix models

Spiked matrix models
M = H + cxxT

H is a Gaussian or Wishart random matrix (“noise”).

x is a deterministic vector (xxT is “spike” or “signal”).

c is the spike magnitude.

BBP transition (Baik, Ben Arous, Péché)

For fixed c > d+, largest eigenvalue of M separates from the bulk.

For fixed c ≤ d+, largest eigenvalue does not separate
(spectrum resembles that of H)

In the case c ↓ d+, other methods are needed.

Role of edge CLTs

These results (Johnstone et al for GOE; C-W and Le for LOE) are
relevant to analyzing log-likelihood ratios for critically spiked models
(Gaussian, Wishart respectively).

The result for LOE is particularly of interest due to connection with
sample covariance matrices.
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Thank you for listening!
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