La régression PLS est une méthode statistique permettant de traiter le cas de la grande dimension. Cette méthode projette les données sur un sous-espace bien choisi, considérant les corrélations successives avec la variable à expliquer dans le but d'améliorer la qualité de prédiction.Nous nous focaliserons sur le cas d'une composante, qui fournit un cadre utile pour comprendre le mécanisme sous-jacent.Nous fournissons une borne non asymptotique sur la perte quadratique en prédiction avec grande probabilité dans un contexte de régression en haute dimension. Ensuite, nous étendons ces résultats à l'approche Sparse PLS (sPLS). En particulier, nous présentons des bornes supérieures similaires à celles obtenues avec l'algorithme LASSO, avec une contrainte supplémentaire sur les valeurs propres restreintes de la matrice de design.