Resurgence and Irregular singular ODEs

Veronica Fantini IHES

Equations différentielles motiviques et au-delà 05 April 2024

Irregular singular ODEs

d−1 ∑ *pj* $(z)Y^{(j)} = 0$

DEFINITION: A homogeneous differential equation has a regular singularity at $z = a$ if $p_{n-j}(z)$ has a pole of order at most j at $a.$ Otherwise $z = a$ is an irregular singularity $Y^{(d)}$ + *j*=0

If the equation is non-homogeneous we refer to its singular behaviour as to the one of its homogeneous part.

Examples

1.
$$
Y' = Y + \frac{1}{z}
$$
 irregular singular at $z = \infty$
\n2. $Y'' - Y + \frac{1}{z}Y' + \left(\frac{m}{n}\right)^2 \frac{1}{z^2}Y = 0$ irregular singular at $z = \infty$, $m, n \in \mathbb{Z}$

3.
$$
\zeta(1-\zeta)y'' + 3\left(\frac{1}{2}-\zeta\right)y' + \left[1-\left(\frac{m}{n}\right)^2\right]y = 0
$$
 regular singular at $\zeta = 0,1,\infty$

Some features of irregular ODEs

Irregular singular ODEs Regular singular ODEs

Monodromy + Stokes data Monodromy data

Formal divergent solutions The Formal convergent solutions

Formal divergent solutions Ansatz: $\sum a_n z^{-n+\alpha}$, $\alpha \in \mathbf{Q}$ and determine the coefficients a_n solving order by order ∞ ∑ $n=0$ $a_n z^{-n+\alpha}$, $\alpha \in \mathbf{Q}$ and determine the coefficients a_n 1. $Y' = Y +$ 2. *Y*′′− *Y* + Ansatz: $\sum a_n \zeta^{n+\alpha}$, 3. $\zeta(1-\zeta)y''+3$ 1 *z* 1 *z Y*′+ (*m ⁿ*) ² 1 *z*2 $Y = 0$ ∞ ∑ $n=0$ *anζn*+*^α α* ∈ ℚ 1 $\frac{1}{2}$ −*ζ*) *y'* + [1 − (*m ⁿ*) 2 $y = 0$

$$
=\sum_{n=0}^{\infty}n!z^{-n-1}
$$

$$
\qquad \qquad \Rightarrow \qquad \qquad \searrow \qquad \qquad
$$

$$
\frac{m}{n}\bigg)^{2}\bigg]y = 0 \qquad \Rightarrow \qquad y = \sum_{k=0}^{\infty} \frac{\left(1 - \frac{m}{n}\right)\left(\frac{1}{2} + \frac{m}{n}\right)}{\left(\frac{1}{2}\right)_{k}}
$$
\n
$$
\frac{a}{n}\bigg|_{s} = \frac{\Gamma(a+1)}{\Gamma(a)} \qquad \qquad k : \left(\frac{1}{2}\right)_{k}
$$

Formal divergent solutions ∞ ∑ $n=0$ $a_n z^{-n+\alpha}$, $\alpha \in \mathbf{Q}$ and determine the coefficients a_n

In Example 1. gives a non trivial solution, but in Example 2. gives zero! $Poincaré Ansatz:$ $e^{\lambda z}$ $\sum a_n z^{-n+\alpha}$, $\alpha \in \mathbb{Q}$, ∞ ∑ $n=0$ *anz*[−]*n*+*^α α* ∈ ℚ *λ* ∈ ℂ

Example 2.

 $Y = e^{-z} = \frac{-1}{2} \sum_{k=0}^{\infty}$

Ansatz: $\sum a_n z^{-n+\alpha}$, $\alpha \in \mathbf{Q}$ and determine the coefficients a_n solving order by order

 k

$$
\frac{\left(\frac{1}{2}-\frac{m}{n}\right)_{k}\left(\frac{1}{2}+\frac{m}{n}\right)_{k}}{2^{k}k!}
$$

with P a degree d polynomial, Q_j a degree $d-j$ polynomial and R holomorphic, **then the ansatz will be**

 $Y_{\lambda}(z) = e^{\lambda z}$

Poincaré formal solutions I**f the equation is in the form** $P(\partial_z)$ + *d*−1 ∑ *j*=1 1 *zj*

with $P(\lambda) = 0$ and $\alpha = -\frac{Q_1(-\lambda)}{P(\lambda-1)}$. *P*′(−*λ*)

$$
Q_j(\partial_z) + \frac{1}{z^2}R(z^{-1})\bigg]Y = 0
$$

Frame of solutions A frame of (formal) solutions of an irregular singular ODE would be given by transmonomial of the form $\Phi_\lambda(z)=e^{\lambda z}$, $A_nz^{-n+\alpha}$, $\alpha\in\mathbb{Q}$, $\lambda\in\mathbb{C}$ for different values $\lambda.$ Different Φ_{λ} will be dominant in different sectors at infinity. Then a frame of analytic solutions $\Phi_\lambda(z)$ would be characterised by being asymptotic to Φ_{λ} as $z\rightarrow\infty$ in a given sector at infinity. $\tilde{\Phi}_{\lambda}(z) = e^{\lambda z}$ ∞ ∑ $n=0$ $a_n z^{-n+\alpha}$, $\alpha \in \mathbb{Q}$, $\lambda \in \mathbb{C}$ for different values λ $\bf \tilde{I}$ *λ* $\bf \tilde{I}$ $λ$ *as* $z \rightarrow ∞$

Stokes data

Stokes data consists of Stokes rays, i.e. the rays that separate two sectors where the the asymptotic behaviour of a frame of solutions changes, and Stokes matrices which encode the jump of the solutions

Some features of irregular ODEs

Irregular singular ODEs Regular singular ODEs

Monodromy + Stokes data Monodromy data

Formal divergent solutions The Formal convergent solutions

Formal divergent solutions — Resurgence

Having formal divergent solutions makes irregular singular ODEs good candidates to

test predictions of resurgence.

The theory of resurgence introduced by Écalle in '80 is the theory of divergent

power series.

Resurgence — Stokes data

output the so called *resurgent structure:* $\tilde{\Phi} \in \mathbb{C}[\![z^{-1}]\!]$ resurgent $\longrightarrow \{\omega, S_{\omega}, \tilde{\phi}\}$

In a nutshell, resurgence take as input *resurgent* formal power series and gives as

- The position of singularities *ω* ∈ ℂ*^ζ*
- The Stokes constants $S_\omega \in \mathbb{C}$
- New convergent power series *ϕ* $\boldsymbol{\tilde{b}}$

 $\Phi \in \mathbb{C}[\![z^{-1}]\!]$ resurgent $\longrightarrow \{\omega, S_\omega, \phi_\omega\}$ resurgent structure $\boldsymbol{\tilde{b}}$ *ω*}

where *resurgent structure* consists of the following data:

^ω ∈ ℂ{*ζ*}

and then extend by *countably* linearity

Furthermore, one can define $\mathscr{B}[1] := \delta$ where δ is the convolution unit.

DEFINITION: the Borel transform is a formal map ℬ: ℂ[[*z*−¹]] → ℂ*δ* + ℂ[[*ζ*]] $\mathscr{B}\left[z^{-n-1}\right] :=$ *ζn n*!

How does it work? Borel transform and analytic continuation

∞

∑

n=0

 \mathscr{B}

$$
a_n z^{-n-1} := \sum_{n=0}^{\infty} a_n \frac{\zeta^n}{n!}
$$

And then extend by *countably* linearity

$\mathsf{DEFINITION:~the~Borel~transform~is~a~formal~map~\mathscr{B}: z^a\mathbb{C}[\![z^{-1}]\!] \rightarrow \zeta^{-a}\mathbb{C}[\![\zeta]\!],$ $\mathscr{B}[z^{-n-1+\alpha}] :=$ *ζn*−*^α* $\Gamma(n+1-\alpha)$ *α* ∈ ℚ∖ℤ

How does it work? Borel transform and analytic continuation

DEFINITION: A formal series $\Phi \in \mathbb{C}[\![z^{-1}]\!]$ is 1-Gevrey if its coefficients a_{n} grow as . REMARK: if $\Phi\in\mathbb{C}[\![z^{-1}]\!]_1$ i.e., then $\phi:=\mathscr{B}\Phi\in\mathbb{C}\{\zeta\}.$ Thus it is possible to study \mathbb{I} is 1-Gevrey if its coefficients a_n $n!$, $C, A > 0$ \mathbb{I}_1 $:= \mathscr{B}\Phi$ $\mathbf{\tilde{f}}$ ∈ ℂ{*ζ*}

How does it work? The space of 1-Gevrey series is denoted by $\mathbb{C}[\![z^{-1}]\!]_1.$ the analytic continuation of *ϕ* $\tilde{\Phi} \in \mathbb{C}[\![z^{-1}]\!]$ $|a_n| \leq CA^n$ $\tilde{\Phi} \in \mathbb{C}[\![z^{-1}]\!]$ \mathbb{J}_1 i.e., then ϕ $\boldsymbol{\tilde{b}}$ $\boldsymbol{\tilde{b}}$ Borel transform and analytic continuation

starts from $\zeta=0$ and avoids $\Omega_L.$ $\boldsymbol{\tilde{b}}$ $\boldsymbol{\tilde{b}}$ (*ζ*)

DEFINITION: A 1-Gevrey series $\Phi \in \mathbb{C}[\![z^{-1}]\!]_1$ is resurgent if its Borel transform is a resurgent function. $\tilde{\Phi} \in \mathbb{C}[\![z^{-1}]\!]$ \mathbb{J}_1 is resurgent if its Borel transform ϕ $\boldsymbol{\tilde{b}}$

DEFINITION: An analytic function $\phi(\zeta)\in \mathbb{C}\{\zeta\}$ is resurgent if it can be <u>endlessly</u> analytically continued, i.e. for every L>0 there exists a finite subset $\Omega_L\subset\mathbb{C}$ such that $\phi(\zeta)$ can be analytically continued along every path of length less than L which $(\zeta) \in \mathbb{C}\{\zeta\}$

Resurgent functions/series

2. $\sum_{n=1}^{\infty} a_n n! z^{-n-1} \in \mathbb{C}[\![z^{-1}]\!]_1$, where $a_n = \{\sum_{n=1}^{\infty} a_n n \in \mathbb{Z}^2 \}$ is NOT resurgent ∞ ∑ *n*=0 $a_n n! z^{-n-1} \in \mathbb{C} \mathbb{I} z^{-1} \mathbb{I}_1$, where $a_n = \{$ 1 if $n = 2^k$ 0 otherwise

Resurgent 1-Gevrey series ⊂ 1-Gevrey series

Examples

1. $\sum_{i=1}^{n} n! z^{-n-1} \in \mathbb{C}[[z^{-1}]]_1$ is resurgent ∞ ∑ $n=0$ *n*!*z*−*n*−¹ ∈ ℂ[[*z*−¹ \prod_1

Example 1. $\sum_{n=0}^{\infty} \frac{1}{n!} z^{-n-1}$ $M=0$ 8 $\hat{\phi} = \sum_{n=0}^{\infty} n! \sum_{n=1}^{n}$

Example 1. $\sum_{n=0}^{\infty} \frac{1}{n!} z^{-n-1}$ $M=0$ $\hat{\phi} = \sum_{n=0}^{\infty} \phi' \le \frac{n}{\gamma} \in C\{3\}$ **N** \bigwedge $\sqrt{1}$

Example 2. $\sum_{n=1}^{\infty} \frac{\infty}{a_n n!} z^{-n-1}$ $n = o$ $\begin{array}{c|c} & & \mathcal{E} & \mathcal{E} \ & \mathcal{E} & \mathcal{E} \ & \mathcal{E} & \mathcal{E} \end{array}$ $\gamma = \sum_{n=0}^{\infty} a_n n! \sum_{n=1}^{n}$

 $a_n = \begin{cases} 1 & n = 2^k \\ 0 & otherwise \end{cases}$

Example 2. $\sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{n} \sum_{n=1}^{\infty} a_n n! z^{-n-1}$ $a_n = \begin{cases} 1 & n=2^k \\ 0 & \text{otherwise} \end{cases}$ $n = o$ $\left| \delta \right|$ $\gamma = \sum_{n=0}^{\infty} a_n \gamma! \sum_{n=1}^{n}$ \sum Λ \leq $/4$

Example 2. $\sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{n} \frac{1}{n^2}$ $a_n = \begin{cases} 1 & n = 2^k \\ 0 & \text{otherwise} \end{cases}$ $n = o$ 8 $5^{\ell} = e^{2\pi i \ell / 2^{\kappa}}$ is a $\gamma = \sum_{n=0}^{\infty} a_n \gamma' \frac{1}{2\gamma'}$ り simgular point \forall le $Z, k \in \mathbb{Z}_{>0}$ $/4$ => can't malytically

Resurgent structure

DEFINITION: A resurgent function $\phi \in \mathbb{C}\{\zeta\}$ is simple if it has simple poles or logarithmic singularities at *ω* ∈ ℂ*^ζ* $\boldsymbol{\tilde{b}}$ ∈ ℂ{*ζ*}

 $\phi(\zeta + \omega) =$

 $\phi(\zeta + \omega) =$ *Sω* 2*πi*

The set of singularities ω , the Stokes constants S_{ω} and ϕ_{ω} constitutes the resurgent structure of $\phi.$ $\boldsymbol{\tilde{b}}$

 $\boldsymbol{\tilde{b}}$ *ω*

$$
=\frac{S_{\omega}}{2\pi i\zeta}+reg.
$$

$$
\frac{1}{i}\log(\zeta)\tilde{\phi}_{\omega}(\zeta)+reg.
$$

Resurgent structure — Stokes data

of its Borel transform determines the Stokes data. $\tilde{\Phi} \in \mathbb{C}[\![z^{-1}]\!]$ \prod_1

Thinking in terms of Borel-Laplace summabilty…

If $\Phi \in \mathbb{C}[\![z^{-1}]\!]_1$ is a solution of an irregular singular ODE, the resurgent structure

WHY?

Laplace transform

a tubular neighbourhood of the ray $[0, +\infty)$,

 $\mathscr{L}\phi(z) :=$

and it is an holomorphic function in a half-plane $\Re z > A.$

<code>DEFINITION: let ϕ be an holomorphic function such that $|\,\phi\,| \leq Ce^{A|\zeta|}, A, C>0$ in</code>

 δ

Laplace transform along a ray in the direction *θ*

a tubular neighbourhood of the ray $[0,e^{i\theta}\infty)$

ℒ*^θ* $\phi(z) :=$

and it is an holomorphic function in a half–plane $\Re(e^{-i\theta}z) > A.$

<code>DEFINITION: let ϕ be an holomorphic function such that $|\,\phi\,| \leq Ce^{A|\zeta|}$, $A,C>0$ in</code>

 $\infty e^{i\theta}$ 0 *e*−*z^ζ ϕdζ*

 $\Phi \in \Theta(H_{\theta})$ \bigwedge $\boldsymbol{\lambda}$ \triangle SVM \overline{D} -5 $\overline{2}$ Λ H_{θ}

Example 1.

 $\mathcal{L}^{\theta} \overset{\wedge}{\phi} - \mathcal{L}^{\theta} \overset{\wedge}{\phi} = 2\pi i e^{-z}$ $malyti$ $\frac{y_{malytic}}{y_{malytic}}$

Example 1.

 $\mathcal{L}^{\theta} \overset{\wedge}{\phi} - \mathcal{L}^{\theta} \overset{\wedge}{\phi} = 2\pi i e^{-1z}$ $malyti'c
indyti'c
in H₀$ $\frac{y_{moly}f_{c}}{10}$

 $\boldsymbol{\theta}$

 $\omega = 1$ $S_{W} = 2\pi i$

2 11 $\left(\frac{m}{n}\right)$ *Y*′′ – *Y* + *Y*′ + $Y = 0$ *z*2 *z* $Y_1 = e^{-z} z^{-1/2} \sum_{k=0}^{\infty} (-1)^k (\frac{1}{2} - \frac{m}{n})_k (\frac{1}{2} + \frac{m}{n})_k$ z^{-k} \mathcal{E} $y_{1}(5+1) = 5^{1/2} \sum_{k=0}^{\infty} \frac{(\frac{1}{2} - \frac{m}{n})_{k} (\frac{1}{2} + \frac{m}{n})_{k}}{2^{k} k!} \frac{(-1)^{k}}{\Gamma(k+1)}$ $=\int^{1/2} \int_{2}^{1} (\frac{1}{2} - \frac{m}{n}) + \frac{1}{2} + \frac{m}{n} + \frac{1}{2} - \frac{5}{2})$ $\begin{array}{c} \omega_- \ 1 \\ \omega_- \ -1 \end{array}$

Example 2.

1*Y*′′ – *Y* + *z* $Y_1(5+1) = 5^{1/2} \int_{2}^{1} (\frac{1}{2} - \frac{m}{n}) \frac{1}{2} + \frac{m}{n} \frac{1}{2} - \frac{3}{2})$ From the analytic continuation you get a new function y_{-1} (5) \propto (1+5)^{-1/2} $2\sqrt{1-\frac{m}{2}}$, $\frac{1}{2} + \frac{m}{1}$; $\frac{1}{2}$; $\frac{1+5}{2}$)

Y′ + $\left(\frac{m}{n}\right)$ 2 1*z*2 $Y = 0$

 $w=-2$ is a
log singulerity

Y′′ – *Y* + 1*z Y*′ + $\left(\frac{m}{n}\right)$ 2 1*z*2 $Y = 0$

 $Y_1(5+1) = 5^{1/2} \int_1^1 (1-\frac{1}{2}-\frac{1}{n}) + \frac{1}{2} + \frac{1}{n} + \frac{1}{2} - \frac{5}{2}$

 $Y_{-1}(5) \propto (1+y)^{1/2}$ ${}_2F_1\left(\frac{1}{2} - \frac{1}{2}, \frac{1}{2} + \frac{1}{2}, \frac{1}{2}; \frac{1+y}{2}\right)$ $3\frac{1}{2}$ and Y_2 is another solution!

 $w=-1$ is a
log singularity

Example 2.

Y′′− *Y* +

1

z

Formal frame using Poincaré ansatz *Y* $\tilde{Y}_1(z) = e^{-z}z^{-1/2}$ ∞ ∑ $k=0$ a_kz^{-k} *Y* $\tilde{Y}_2(z) = e^{z}z^{-1/2}$ ∞ ∑ $k=0$ (-1) $k_{a_k}z^{-k}$

Y′+ (*m ⁿ*) ² 1 *z*2 *Y* = 0

Then Borel-Laplace summation $\ Y_1, \ Y_2$ analytic solutions

Formal solution using Poincaré ansatz *Y* $\tilde{Y}_1(z) = e^{-z}z^{-1/2}$ ∞ ∑ $k=0$ a_kz^{-k}

Then resurgence $\hat{y}_1(\zeta)$ analytic away from the singularity ω ,

At ω , we see a new function $\hat{y}_2(\zeta)$ **ै**

Resurgence vs Borel-Laplace summation

 $\phi \in \mathbb{C}\{\zeta\}$ in the Borel plane $\boldsymbol{\tilde{b}}$ $\in \mathbb{C}\{\zeta\}$ in the Borel plane \mathbb{C}_{ζ}

- no need to check growth conditions to compute the Laplace transform.
- informations about the analytic continuation of $\phi.$

More generally, Écale introduced the Alien calculus and the formalism of singularities to compute the resurgent structure from the study of the *simple* resurgent germ

- Borel transform turns irregular singular ODEs into regular singular differential equations. Thus, one could use the theory of regular singular ODEs to extract $\boldsymbol{\tilde{b}}$

Geometric interpretation of the Stokes constants

Thimble integrals are solutions of irregular singular ODEs

In fact, I_λ can be turned into Laplace transform integrals, thus it is equivalently the Borel-Laplace sum of its asymptotics.

 $I_\lambda(z) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ *λ e*−*zf ν*

When f is regular enough, the Stokes constants can be computed by intersection numbers of thimbles ${\mathscr C}_\lambda.$ *λ*

$$
Y'' - Y + \frac{1}{z}Y' + \left(\frac{m}{n}\right)^2 \frac{1}{z^2}Y = 0
$$

$$
\zeta_1(1-\zeta_1)y_1'' + 3\left(\frac{1}{2}-\zeta_1\right)y_1' + \left[1-\left(\frac{m}{n}\right)^2\right]y_1 = 0
$$

$$
\zeta_1 = \frac{5}{2} - 1
$$

2 1 *m* $\zeta_2(1-\zeta_2)y_2''+3$ $\frac{1}{2}$ – ζ_2) y'_2 + $\left[1 - \left($ $y_2 = 0$ *ⁿ*) $52 = 5 + 1$ $\overline{\mathcal{L}}$

Example 2. and 3. : irregular vs regular

 \mathcal{B}

Y′′− *Y* + 1 *z Y*′+ (*m ⁿ*) ² 1 *z*2 $Y = 0$

Thank you for your attention