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Introduction

Task-based Learning: Traditional configurations

Some key steps in traditional learning:

Steps Task 1 Task 2, . . .
1- Load data D ′

1 for T1 Load data D ′
2 for T2

2- D1: Representation D2: Representation

3- Choose and train M1 Choose and train M2

4- µ1 for optimal M̂1? µ2 for optimal M̂2?

Table: We have different configurations (Di ,Ti ,Mi , µi ).

In common classification problems with T1 = T2:

D1 and D2 belong to the same space: D1 = D2, (D1,D2 ∼ P), etc.
M1 and M2 share the same search space M (hyperparameter Θ, loss
functions)

Usually the same evaluation (Precision-Recall) µ
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Introduction Applications

Some Applications of Transfer Learning
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Introduction Applications

TL Example: Object Detection

An example of boosting the performance of object detection systems with
CNN-based models:

1 Load data and required libraries

2 Select a pre-trained model on large datasets

3 Remove or modify the output layer (or few)

4 Freeze the pre-trained layers (hyperparameter Θ)

5 Fine tuning (start close to the optimum Θ̂?)

6 Evaluate and adjust (available with TensorFlow and PyTorch)
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Introduction Applications

More and more tools

1 It speeds up the learning process

2 It ”reduces” the amount of required data (Similarity?)

3 It can provide efficient models as they can be trained ”elsewhere”
with large datasets

4 Ready to use tools in some applications
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Introduction Overview and Motivations

An Overview of reusable knowledge

Before the electric era: Adapt the basic skill of balancing

Build a prior to improve the optimization process

Transport data (domain) or models from and to ”statistical”
populations

(a) Domain (b) Distribution (c) Atlas (d) Populations
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Introduction Overview and Motivations

Definitions

A general definition

Given a source (Ds ,Ms , Ts), and a target (Dt ,Mt , Tt), the transfer aims
to improve the learning from target using the learned knowledge (as a
prior) from the source.

Context for a fixed task (classification, regression)

Given a large population PL and a small (labeled or poorly labeled)
population PS , transfer the learned model ML to be applicable on PS .
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Introduction Overview and Motivations

TL on Manifolds: Motivations

TL can assist us in reusing a well trained model or existing
observations to build/improve a new one

TL was successfully applied for Rd -valued data

Limitations due to the intrinsic structure from manifold-valued data

(a) 2 Populations (b) Tangent spaces (c) R3-Translation (d) Parallel transport on S2

Figure: Illustration of transfer learning on S2 (Freifeld et al, 2014).
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Introduction From Vectors to Manifolds

Problem Formulation: TL on Manifolds

To reach such goal, we need some tools:

Intrinsic distance: Geodesic

Statistical populations : Mean, variance, covariance, distribution, etc.

Tangent space at each point

Parallel transport

Figure: Generalization of machine learning models for ”non-linear” data.

Illustration and applications: Explore the geometry of P+ and develop a
transfer learning algorithm for some statistical models.
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The Manifold of Probability Measures

Figure: An illustration with PL left and PS right.



The case of Probability Measures The Manifold Structure

Manifold structure

Let I = {1, . . . , n, n + 1}, n ∈ N.
The space of strictly positive probability measures:

P+(I ) =

{
µ =

∑
i∈I

µiδ
i | µi > 0, ∀i ∈ I , and

∑
i∈I

µi = 1

}
.

Tangent space:

TµP+(I ) = {µ} × S0(I ), where S0(I ) =

{
µ =

∑
i∈I

µiδ
i |
∑
i∈I

µi = 0

}
.

Fisher-Rao metric:

gµ(X ,Y ) =
∑
i∈I

XiYi

µi
, ∀X =

∑
i∈I

Xiδ
i , X =

∑
i∈I

Yiδ
i ∈ TµP+(I ).
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The case of Probability Measures The Manifold Structure

Riemannian calculus on P+

The Fisher Rao distance dFR : Given µ, ν ∈ P+(I ), we have

dFR(µ, ν) = 2 arccos

(∑
i∈I

√
µiνi

)
.

⇒ Isometry: By the map Φ(µ) = 2
∑

i∈I
√
µiei , P+(I ) is isometric to the

sphere S+(0,2)(I ) =
{
f ∈ Rn+1 | f i > 0,∀i ∈ I and

∑
i∈I (f

i )2 = 4
}

f

g

v
w

w1

w2

ṽw̃

w̃1

w̃2
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The case of Probability Measures Geometric Tools

Riemannian calculus on P+

Geodesic path: Starting at µ with direction X .

αi (t) =

(
cos

t

2
+

α̇i (0)

αi (0)
sin

t

2

)2

µi , α(t) =
∑
i∈I

αi (t)δ
i

Log map: From P+ to tangent space

logµ(ν) =
l

sin l
2

∑
i∈I

√dν

dµ
(i)−

∑
j∈I

√
dν

dµ
(j)µ(j)

µiδ
i .

Exponential map: From tangent space to P+

expµ(X ) =
∑
i∈I

(
cos

∥X∥µ
2

+
Xi

µi∥X∥µ
sin

∥X∥µ
2

)2

µiδ
i , ∀(µ,X ) ∈ ε,

Levi-Civita parallel transport:

Γµ↣ν(X ) =
∑
i∈I

√
νi

(
−C

√
µi

(
2 sin

l

2
− 2

τi
µi

cos
l

2

)
+

Xi√
µi

− 2C
τi√
µi

)
δi ,
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The case of Probability Measures Geometric Tools

Mean and Variance

The intrinsic mean on P+ Using Riemannian geodesic distance, the
Riemannian mean of a set of probability measures {µi}Ni=1 on P+(I )
is by the minimizer of the Fréchet variance:

µ∗ = argminµ

N∑
i=1

dFR(µ, µi )
2 (1)

Figure: An illustration with PL left, PS right, and their corresponding means in red.
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Transfer of Learned Models



Transfer of Learned Models

Formulation

Population P1 = PL

PN1 = {µi}N1
i=1

dimP1 = N1.

µ∗
1 =

argminµ
∑N1

i=1 d
FR(µ, µi )

2 .

ai = logµ∗
1
(µi ) ∈ Tµ∗

1
P+(I ).

Statistical model S1 on
Tµ∗

1
P+(I ).

Population P2 = PS

PN2 = {µi}N2
i=1

dimP2 = N2, N2 ≪ N1.

µ∗
2 =

argminµ
∑N2

i=1 d
FR(µ, µi )

2.

bi = logµ∗
2
(µi ) ∈ Tµ∗

2
P+(I ).

Statistical model S2 on
Tµ∗

2
P+(I )
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Transfer of Learned Models

Knowledge as a Model

Transfer learning

What?

Covariance &
PCA

How? Why?

To apply the model
on the target population

Linear regression

Logistic regression

Parallel transport

Isometry

Inner product
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Transfer of Learned Models

Step-by-Step TL

1 Project the set of probability measure PN1 to the tangent space
Tµ∗

1
P+(I ). Similarly, lift the set of probability measure PN2 to the

tangent space Tµ∗
2
P+(I ).

2 Learn a statistical model S1 on Tµ∗
1
P+(I ). Similarly, learn a statistical

model S2 on Tµ∗
2
P+(I ).

3 Parallel transport S1 to Tµ∗
2
P+(I ) along the geodesic curve α by

computing ST = Γµ∗
1↣µ∗

2
(S1).

4 Compute the fused model on Tµ∗
2
P+(I ) using shrinkage estimation:

Sλ = λST + (1− λ)S2, 0 ≤ λ ≤ 1.
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Transfer of Learned Models

Comparing Two Populations of Manifold-valued Data

Example 4: Mean per class Example 10: Mean per class

Table: Test statistics on different datasets

1 2 3 4 5 6 7 8 9 10
d 1.5 1.3 1.9 2.2 1.8 2.2 1.9 1.5 2.0 2.6
σL 2.8 2.8 2.5 2.4 2.6 2.4 2.7 2.5 2.3 2.4
σS 3.2 3.4 3.2 3.2 2.8 2.6 3.2 3.1 2.9 2.8
p% 2 3 0 14 1 0 9 0 0 0
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Transfer of Learned Models Linear Regression

Linear Regression on Tµ∗
1
P+(I )

Inner product on Tµ∗
1
P+(I ):

gµ∗
1
: Tµ∗

1
P+(I )× Tµ∗

1
P+(I ) → R, (v ,w) → gµ∗

1
(v ,w) = vTGµ∗

1
w .

Data: D = {(ai , ti ), i = 1, ...,N1}, ai = logµ∗
1
(µi ), ti ∈ R.

Model: yi : Tµ∗
1
P+(I ) → R,

yi = aTi β + β0 = gµ∗
1
(ai ,G

−1
µ∗
1
β) + β0,

where β0 ∈ R, β ∈ Tµ∗
1
P+(I ).

Least-squares estimation of β0 and β:

(β̂0, β̂) = argmin
β∈Tµ∗

1
P+(I ),β0∈R

N1∑
i=1

li (a
T
i β + β0).

where li : R → R+, li (yi ) = (yi − ti )
2 = (aTi β + β0 − ti )

2.
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Transfer of Learned Models Linear Regression

Algorithm: Transfer of the linear regression model

Input: PN1 = {µi}N1
i=1, PN2 = {µi}N2

i=1 with N2 ≪ N1.
1 Compute µ∗

1 and µ∗
2 from PN1 and PN2 .

2 Project PN1 on Tµ∗
1
P+(I ) and PN2 = {µi}N2

i=1 on Tµ∗
2
P+(I ).

3 Find (β̂0, β̂) the least squares estimates parameters of the linear
regression model on Tµ∗

1
P+(I ).

4 Find (η, η0) the least squares estimates parameters of the linear
regression model on Tµ∗

2
P+(I ).

5 Apply Γµ∗
1 →µ∗

2
to parallel transport tangent vectors ai and G−1

µ∗
1
β to

Tµ∗
2
P+(I ).

6 Compute δ̂ = Gµ∗
2
Γµ∗

1 ↣µ∗
2
(G−1

µ∗
1
β̂). (δ̂, β0) is the solution of the linear

regression model ỹi on Tµ∗
2
P+(I ).

δ̂ = argmin
δ∈Tµ∗

2
P+(I )

N2∑
i=1

li (
(
Γµ∗

1 ↣µ∗
2
(ai )
)T

δ + β0)

Ouput: The fused solution ηλ = λδ̂ + (1− λ)η̂, 0 ≤ λ ≤ 1.
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Transfer of Learned Models Logistic Regression

Logistic Regression on Tµ∗
1
P+(I )

Inner product on Tµ∗
1
P+(I ):

gµ∗
1
: Tµ∗

1
P+(I )× Tµ∗

1
P+(I ) → R; (v ,w) → gµ∗

1
(v ,w) = vTGµ∗

1
w .

Data: D = {(ai , ti )}N1
i=1, ai = logµ∗

1
(µi ) and ti ∈ {0, 1}.

Model: The probability of ti being in class 1, P(ti = 1|ai ) is

p(ai ) =
1

1 + e−(a
T
i ω+ω0)

=
1

1 + e
−
(
gµ∗

1
(ai ,G

−1
µ∗
1
ω)+ω0

)

Maximum Likelihood Estimation (MLE): Let θ̂ = (ω̂0, ω̂) be the
maximum likelihood estimators of θ = (ω0, ω).
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Transfer of Learned Models Principal Component Analysis (PCA)

Covariance Matrices

Let A = [a1, ..., aN1 ] ∈ Tµ∗
1
P+(I ), with ai = logµ∗

1
(µi ) and let

B = [b1, ..., bN2 ] ∈ Tµ∗
2
P+(I ), with bi = logµ∗

2
(µi ).

The covariance matrix estimator is defined as

CN1 =
1

N1 − 1

N1∑
i=1

logµ∗
1
(µi ) logµ∗

1
(µi )

T =
1

N1 − 1

N1∑
i=1

aia
T
i =

1

N1 − 1
AAT

and

CN2 =
1

N2 − 1

N2∑
i=1

logµ∗
2
(µi ) logµ∗

2
(µi )

T =
1

N2 − 1

N2∑
i=1

bib
T
i =

1

N2 − 1
BBT

➣ CN2 may be a poor estimate of the true covariance matrix of PN2 .
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Transfer of Learned Models Principal Component Analysis (PCA)

Transfer of covariance matrices and PCs

Input: PN1 = {µi}N1
i=1, PN2 = {µi}N2

i=1 with N2 ≪ N1.
1 Compute µ∗

1 and µ∗
2 from PN1 and PN2 .

2 Compute A and B by projecting PN1 on Tµ∗
1
P+(I ) and PN2 on

Tµ∗
2
P+(I ).

3 Compute covariance matrices CN1 and CN2 .
4 Compute the SVD of A: A = VDUT .
5 Compute the eigen-value decomposition CN1 : VD

2V T .
6 Parallel transport CN1 to Tµ∗

2
P+(I ):

Ã = Γµ∗
1 →µ∗

2
({ai}N1

i=1) ∈ Tµ∗
2
P+(I ),

C̃N1 =
1

N1 − 1
ÃÃT =

1

N1 − 1
Ṽ D2Ṽ T .

7 Fix k1 ∈ N, k1 < n. Compute k1-dimensional PC as k1 eigen-vectors of
V and their corresponding k1 eigen-values D.

8 Compute k1-dimensional PC of Ã as k1 eigen-vectors of Ṽ .

Output Cλ = Πr (λC̃N1 + (1− λ)CN2), V , Ṽ , D.
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Transfer of Learned Models Principal Component Analysis (PCA)

Transfer of TPCA

Also called geodesic PCA, for dimensionality reduction and visualization:

1 V = [v1, ..., vn] ∈ Rn×n is the orthogonal matrix which the
eigenvectors of BBT .

2 {ṽi}k1i=1 and {Di ,i/
√
N1 − 1}k1i=1 as a PCA model on Tµ∗

2
P+(I ).

3 Fusion: A Gram-Schmidt Orthonormalisation of {ṽi , v j} and their
corresponding eigen-values.
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Transfer of Learned Models Examples and Illustrations

Experiments: Transfer of TPCA

Results on functional data: Populations PL and PS with N1 = 998 and
N2 = 100 observations, respectively. Each sample belongs to P+(I ), with
|I | = 100.

Figure: Some observations and their corresponding Karcher mean. for : Population 1(Left) and Population 2, (Right). In both
cases, K-M denotes the Karcher Mean from original and K-R the Karcher Mean from reconstructions with 2 tangent TPCs.
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Transfer of Learned Models Examples and Illustrations

Experiment: Results with transferred TPCA

Figure: The reconstruction error (geodesic distance) on PL (left) and on TPS (right) for λ ∈ {0, 0.1, 0.2, ..., 1}.
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Transfer of Learned Models Examples and Illustrations

Step-by-Step of Model Transfer

Learn from PL only:
1 Compute µ∗ and ν∗

2 Project the elements of PL to Tµ∗P+(I ).
3 Project the elements PS to Tν∗P+(I ).
4 Learn a statistical model S1 on Tµ∗P+(I ).
5 Parallel transport S1 to Tν∗P+(I ) along the geodesic curve α by

computing ST = Γµ∗↣ν∗(S1).

If PS is informative, we can update the statistical model:
1 Learn a statistical model S2 on Tν∗P+(I ).
2 Compute the fused model on Tν∗P+(I )
3 Fusion.

A simple example for shrinkage estimation if valid (Models’ space):
Sλ = λST + (1− λ)S2, 0 ≤ λ ≤ 1.
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Transfer of Learned Models Examples and Illustrations

Example: Results with Logistic Regression

Histograms (SIFT: scale invariant feature transform) from real and
painting images1

|PL| = 1000 and several |PS | = 86 for test (total 260 and split 0.33 )
with 100 samplings.

(a) Real (b) Painting (c) Means (d) Boxplots

1https://www.hemanthdv.org/officeHomeDataset.html
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Concluding remarks

Conclusion

1 Many successful solutions exist for vector spaces.

2 A new framework for some manifolds.

3 Model Transfer (MT) as Transfer Learning (TL) for probability
measures.

4 This framework can be adapted and extended using the analytic
expression of the parallel transport (better, or approximations).

5 The proposed methods enjoy several important benefits:

The solution is designed for the space of probability measures P+.
The analytic expressions P+ are easy to implement and escapes the
computational requirement of Schild’s Ladder approximation.
Can be applied for discrete PDFs, prior & posterior distributions (open
problem).
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Concluding remarks

Questions?

Joint works with Anis FRADI and Tien Tam TRAN

Thank you for your attention !!
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Concluding remarks
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