Learn to Transfer Statistical Models from-and-to Populations

Chafik SAMIR

UCA, LIMOS

Al Seminar

April, 2024

Outline

- Introduction
 - Applications
 - Overview and Motivations
 - From Vectors to Manifolds
- The case of Probability Measures
 - The Manifold Structure
 - Geometric Tools
- Transfer of Learned Models
 - Linear Regression
 - Logistic Regression
 - Principal Component Analysis (PCA)
 - Examples and Illustrations
- 4 Concluding remarks

Task-based Learning: Traditional configurations

Some key steps in traditional learning:

Steps	Task 1	Task 2,			
1-	Load data D_1' for T_1	Load data D_2' for T_2			
2-	D_1 : Representation	D ₂ : Representation			
3-	Choose and train M_1	Choose and train M_2			
4-	μ_1 for optimal \hat{M}_1 ?	μ_2 for optimal \hat{M}_2 ?			

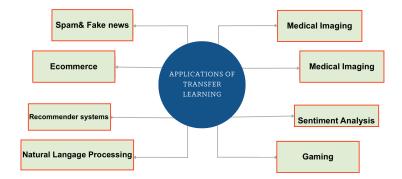
Table: We have different configurations (D_i, T_i, M_i, μ_i) .

In common classification problems with $T_1 = T_2$:

- D_1 and D_2 belong to the same space: $D_1=D_2$, $(D_1,D_2\sim\mathbb{P})$, etc.
- M_1 and M_2 share the same search space M (hyperparameter Θ , loss functions)
- ullet Usually the same evaluation (Precision-Recall) μ

Introduction Applications

Some Applications of Transfer Learning



Introduction Applications

TL Example: Object Detection

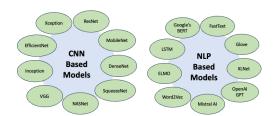
An example of boosting the performance of object detection systems with CNN-based models:

- Load data and required libraries
- Select a pre-trained model on large datasets
- Remove or modify the output layer (or few)
- Freeze the pre-trained layers (hyperparameter Θ)
- **5** Fine tuning (start close to the optimum $\hat{\Theta}$?)
- Evaluate and adjust (available with TensorFlow and PyTorch)

Introduction Applications

More and more tools

- It speeds up the learning process
- ② It "reduces" the amount of required data (Similarity?)
- It can provide efficient models as they can be trained "elsewhere" with large datasets
- Ready to use tools in some applications



An Overview of reusable knowledge

Before the electric era: Adapt the basic skill of balancing

• Build a **prior** to improve the optimization process

 Transport data (domain) or models from and to "statistical" populations

(a) Domain

(b) Distribution

(c) Atlas

(d) Populations

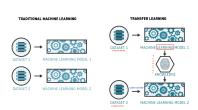
Definitions

A general definition

Given a source $(\mathcal{D}_s, \mathcal{M}_s, \mathcal{T}_s)$, and a target $(\mathcal{D}_t, \mathcal{M}_t, \mathcal{T}_t)$, the transfer aims to improve the learning from target using the learned knowledge (as a prior) from the source.

Context for a fixed task (classification, regression)

Given a large population \mathcal{P}_L and a small (labeled or poorly labeled) population \mathcal{P}_S , transfer the learned model M_L to be applicable on \mathcal{P}_S .



8 / 34

TL on Manifolds: Motivations

- TL can assist us in reusing a well trained model or existing observations to build/improve a new one
- ullet TL was successfully applied for \mathbb{R}^d -valued data
- Limitations due to the intrinsic structure from manifold-valued data

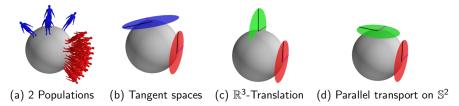


Figure: Illustration of transfer learning on S^2 (Freifeld et al, 2014).

Problem Formulation: TL on Manifolds

To reach such goal, we need some tools:

- Intrinsic distance: Geodesic
- Statistical populations : Mean, variance, covariance, distribution, etc.
- Tangent space at each point
- Parallel transport

Figure: Generalization of machine learning models for "non-linear" data.

Problem Formulation: TL on Manifolds

To reach such goal, we need some tools:

- Intrinsic distance: Geodesic
- Statistical populations : Mean, variance, covariance, distribution, etc.
- Tangent space at each point
- Parallel transport

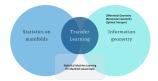
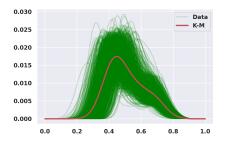


Figure: Generalization of machine learning models for "non-linear" data.

Illustration and applications: Explore the geometry of \mathcal{P}_+ and develop a transfer learning algorithm for some statistical models.

The Manifold of Probability Measures



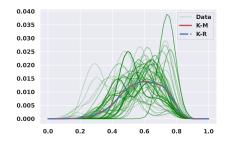


Figure: An illustration with P_I left and P_S right.

Manifold structure

Let $I = \{1, ..., n, n + 1\}, n \in \mathbb{N}$.

• The space of strictly positive probability measures:

$$\mathcal{P}_{+}(I) = \left\{ \mu = \sum_{i \in I} \mu_i \delta^i \mid \mu_i > 0, \quad \forall i \in I, \text{ and } \sum_{i \in I} \mu_i = 1 \right\}.$$

Tangent space:

$$T_{\mu}\mathcal{P}_{+}(I) = \{\mu\} \times \mathcal{S}_{0}(I), \text{ where } \mathcal{S}_{0}(I) = \left\{\mu = \sum_{i \in I} \mu_{i} \delta^{i} \mid \sum_{i \in I} \mu_{i} = 0\right\}$$

Fisher-Rao metric:

$$\mathfrak{g}_{\mu}(X,Y) = \sum_{i \in I} \frac{X_i Y_i}{\mu_i}, \forall X = \sum_{i \in I} X_i \delta^i, \quad X = \sum_{i \in I} Y_i \delta^i \in T_{\mu} \mathcal{P}_+(I).$$

Riemannian calculus on \mathcal{P}_+

• The Fisher Rao distance d^{FR} : Given $\mu, \nu \in \mathcal{P}_+(I)$, we have

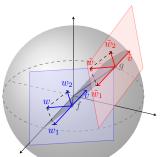
$$d^{FR}(\mu, \nu) = 2 \arccos \left(\sum_{i \in I} \sqrt{\mu_i \nu_i} \right).$$

Riemannian calculus on \mathcal{P}_+

• The Fisher Rao distance d^{FR} : Given $\mu, \nu \in \mathcal{P}_+(I)$, we have

$$d^{FR}(\mu,
u) = 2 \arccos\left(\sum_{i \in I} \sqrt{\mu_i
u_i}
ight).$$

 \Rightarrow Isometry: By the map $\Phi(\mu) = 2\sum_{i \in I} \sqrt{\mu_i} e_i$, $\mathcal{P}_+(I)$ is isometric to the sphere $\mathbb{S}^+_{(0,2)}(I) = \left\{ f \in \mathbb{R}^{n+1} \mid f^i > 0, \forall i \in I \text{ and } \sum_{i \in I} (f^i)^2 = 4 \right\}$



Riemannian calculus on \mathcal{P}_+

• Geodesic path: Starting at μ with direction X.

$$\alpha_i(t) = \left(\cos\frac{t}{2} + \frac{\dot{\alpha}_i(0)}{\alpha_i(0)}\sin\frac{t}{2}\right)^2 \mu_i, \quad \alpha(t) = \sum_{i \in I} \alpha_i(t)\delta^i$$

• Log map: From \mathcal{P}_+ to tangent space

$$\log_{\mu}(\nu) = \frac{1}{\sin\frac{1}{2}} \sum_{i \in I} \left(\sqrt{\frac{d\nu}{d\mu}}(i) - \sum_{j \in I} \sqrt{\frac{d\nu}{d\mu}}(j)\mu(j) \right) \mu_i \delta^i.$$

ullet Exponential map: From tangent space to \mathcal{P}_+

$$\exp_{\mu}(X) = \sum_{i \in I} \left(\cos \frac{\|X\|_{\mu}}{2} + \frac{X_i}{\mu_i \|X\|_{\mu}} \sin \frac{\|X\|_{\mu}}{2} \right)^2 \mu_i \delta^i, \quad \forall (\mu, X) \in \varepsilon,$$

• Levi-Civita parallel transport:

$$\Gamma_{\mu \mapsto \nu}(X) = \sum_{i \in I} \sqrt{\nu_i} \left(-C\sqrt{\mu_i} \left(2\sin\frac{1}{2} - 2\frac{\tau_i}{\mu_i} \cos\frac{1}{2} \right) \right)$$

Mean and Variance

• The intrinsic mean on \mathcal{P}_+ Using Riemannian geodesic distance, the Riemannian mean of a set of probability measures $\{\mu_i\}_{i=1}^N$ on $\mathcal{P}_+(I)$ is by the minimizer of the Fréchet variance:

$$\mu^* = \operatorname{argmin}_{\mu} \sum_{i=1}^{N} d^{FR}(\mu, \mu_i)^2$$
 (1)



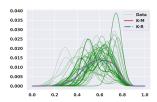


Figure: An illustration with P_L left, P_S right, and their corresponding means in red.

Transfer of Learned Models

Formulation

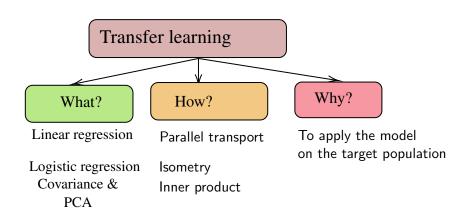
Population $P_1 = P_I$

- $P_{N_1} = \{\mu_i\}_{i=1}^{N_1}$
- dim $P_1 = N_1$.
- $m{\Phi}_1^* = \sup_{\mu_1} \sum_{i=1}^{N_1} d^{FR}(\mu, \mu_i)^2$.
- $a_i = \log_{\mu_1^*}(\mu_i) \in T_{\mu_1^*} \mathcal{P}_+(I)$.
- Statistical model S_1 on $T_{\mu_1^*}\mathcal{P}_+(I)$.

Population $P_2 = P_S$

- $P_{N_2} = \{\mu_i\}_{i=1}^{N_2}$
- dim $P_2 = N_2$, $N_2 \ll N_1$.
- $\mu_2^* = \arg\min_{\mu} \sum_{i=1}^{N_2} d^{FR}(\mu, \mu_i)^2$.
- $b_i = \log_{\mu_2^*}(\mu_i) \in T_{\mu_2^*} \mathcal{P}_+(I)$.
- Statistical model S_2 on $T_{\mu_2^*}\mathcal{P}_+(I)$

Knowledge as a Model



• Project the set of probability measure P_{N_1} to the tangent space $T_{\mu_1^*}\mathcal{P}_+(I)$. Similarly, lift the set of probability measure P_{N_2} to the tangent space $T_{\mu_2^*}\mathcal{P}_+(I)$.

- **9** Project the set of probability measure P_{N_1} to the tangent space $T_{\mu_1^*}\mathcal{P}_+(I)$. Similarly, lift the set of probability measure P_{N_2} to the tangent space $T_{\mu_2^*}\mathcal{P}_+(I)$.
- 2 Learn a statistical model S_1 on $T_{\mu_1^*}\mathcal{P}_+(I)$. Similarly, learn a statistical model S_2 on $T_{\mu_2^*}\mathcal{P}_+(I)$.

- Project the set of probability measure P_{N_1} to the tangent space $T_{\mu_1^*}\mathcal{P}_+(I)$. Similarly, lift the set of probability measure P_{N_2} to the tangent space $T_{\mu_2^*}\mathcal{P}_+(I)$.
- ② Learn a statistical model S_1 on $T_{\mu_1^*}\mathcal{P}_+(I)$. Similarly, learn a statistical model S_2 on $T_{\mu_2^*}\mathcal{P}_+(I)$.
- **9** Parallel transport S_1 to $T_{\mu_2^*}\mathcal{P}_+(I)$ along the geodesic curve α by computing $S_T = \Gamma_{\mu_1^* \to \mu_2^*}(S_1)$.

- **9** Project the set of probability measure P_{N_1} to the tangent space $T_{\mu_1^*}\mathcal{P}_+(I)$. Similarly, lift the set of probability measure P_{N_2} to the tangent space $T_{\mu_2^*}\mathcal{P}_+(I)$.
- **2** Learn a statistical model S_1 on $T_{\mu_1^*}\mathcal{P}_+(I)$. Similarly, learn a statistical model S_2 on $T_{\mu_2^*}\mathcal{P}_+(I)$.
- **1** Parallel transport S_1 to $T_{\mu_2^*}\mathcal{P}_+(I)$ along the geodesic curve α by computing $S_T = \Gamma_{\mu_1^* \mapsto \mu_2^*}(S_1)$.
- **①** Compute the fused model on $T_{\mu_2^*}\mathcal{P}_+(I)$ using shrinkage estimation: $S_{\lambda} = \lambda S_{\mathcal{T}} + (1 \lambda)S_2, \ 0 \le \lambda \le 1.$

Comparing Two Populations of Manifold-valued Data

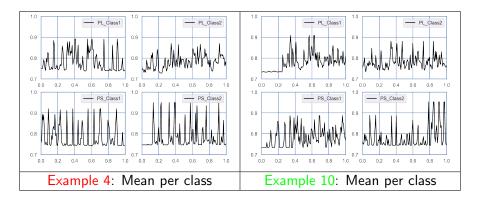


Table: Test statistics on different datasets

	1	2	3	4	5	6	7	8	9	10
d	1.5	1.3	1.9	2.2	1.8	2.2	1.9	1.5	2.0	2.6
σ_L	2.8	2.8	2.5	2.4	2.6	2.4	2.7	2.5	2.3	2.4
σ_S	3.2	3.4	3.2	3.2	2.8	2.6	3.2	3.1	2.9	2.8
p%	2	3	0	14	1	0	9	0	0	0

Linear Regression on $T_{\mu_1^*}\mathcal{P}_+(I)$

• Inner product on $T_{\mu_1^*}\mathcal{P}_+(I)$:

$$\mathfrak{g}_{\mu_1^*}: T_{\mu_1^*}\mathcal{P}_+(I) \times T_{\mu_1^*}\mathcal{P}_+(I) \to \mathbb{R}, (v, w) \to \mathfrak{g}_{\mu_1^*}(v, w) = v^T G_{\mu_1^*} w.$$

- Data: $\mathcal{D} = \{(a_i, t_i), i = 1, ..., N_1\}, a_i = \log_{\mu_1^*}(\mu_i), t_i \in \mathbb{R}.$
- Model: $y_i: T_{\mu_1^*}\mathcal{P}_+(I) \to \mathbb{R}$,

$$y_i = a_i^T \beta + \beta_0 = \mathfrak{g}_{\mu_1^*}(a_i, G_{\mu_1^*}^{-1} \beta) + \beta_0,$$

where $\beta_0 \in \mathbb{R}$, $\beta \in T_{\mu_1^*}\mathcal{P}_+(I)$.

• Least-squares estimation of β_0 and β :

$$(\widehat{\beta}_0, \widehat{\beta}) = \operatorname*{arg\,min}_{\beta \in T_{\mu_1^*} \mathcal{P}_+(I), \beta_0 \in \mathbb{R}} \sum_{i=1}^{N_1} I_i(a_i^T \beta + \beta_0).$$

where $l_i : \mathbb{R} \to \mathbb{R}_+, \ l_i(y_i) = (y_i - t_i)^2 = (a_i^T \beta + \beta_0 - t_i)^2$.

Algorithm: Transfer of the linear regression model

- Input: $P_{N_1} = \{\mu_i\}_{i=1}^{N_1}$, $P_{N_2} = \{\mu_i\}_{i=1}^{N_2}$ with $N_2 \ll N_1$.
 - **① Compute** μ_1^* and μ_2^* from P_{N_1} and P_{N_2} .
 - **2 Project** P_{N_1} on $T_{\mu_1^*}\mathcal{P}_+(I)$ and $P_{N_2} = \{\mu_i\}_{i=1}^{N_2}$ on $T_{\mu_2^*}\mathcal{P}_+(I)$.
 - **§** Find $(\widehat{\beta}_0, \widehat{\beta})$ the least squares estimates parameters of the linear regression model on $T_{\mu_1^*}\mathcal{P}_+(I)$.
 - **§ Find** (η, η_0) the least squares estimates parameters of the linear regression model on $T_{\mu_2^*}\mathcal{P}_+(I)$.
 - **Apply** $\Gamma_{\mu_1^* \to \mu_2^*}$ to parallel transport tangent vectors a_i and $G_{\mu_1^*}^{-1}\beta$ to $T_{\mu_2^*}\mathcal{P}_+(I)$.
 - **© Compute** $\hat{\delta} = G_{\mu_2^*} \Gamma_{\mu_1^* \to \mu_2^*} (G_{\mu_1^*}^{-1} \widehat{\beta}).$ $(\hat{\delta}, \beta_0)$ is the solution of the linear regression model \tilde{y}_i on $T_{\mu_2^*} \mathcal{P}_+(I)$.

$$\widehat{\delta} = \operatorname*{arg\,min}_{\delta \in \mathcal{T}_{\mu_2^*} \mathcal{P}_+(I)} \sum_{i=1}^{N_2} I_i(\left(\Gamma_{\mu_1^* \rightarrowtail \mu_2^*}(a_i)\right)^T \delta + \beta_0)$$

• **Ouput:** The fused solution $\eta_{\lambda} = \lambda \hat{\delta} + (1 - \lambda) \hat{\eta}, \ 0 \le \lambda \le 1$.

Logistic Regression on $T_{\mu_1^*}\mathcal{P}_+(I)$

• Inner product on $T_{\mu_1^*}\mathcal{P}_+(I)$:

$$\mathfrak{g}_{\mu_1^*}: T_{\mu_1^*}\mathcal{P}_+(I) \times T_{\mu_1^*}\mathcal{P}_+(I) \to \mathbb{R}; (v,w) \to \mathfrak{g}_{\mu_1^*}(v,w) = v^{\mathsf{T}} \mathsf{G}_{\mu_1^*} w.$$

- Data: $\mathcal{D} = \{(a_i, t_i)\}_{i=1}^{N_1}$, $a_i = \log_{\mu_1^*}(\mu_i)$ and $t_i \in \{0, 1\}$.
- Model: The probability of t_i being in class 1, $P(t_i = 1|a_i)$ is

$$p(a_i) = \frac{1}{1 + e^{-\left(a_i^T \omega + \omega_0\right)}} = \frac{1}{1 + e^{-\left(g_{\mu_1^*}(a_i, G_{\mu_1^*}^{-1} \omega) + \omega_0\right)}}$$

• Maximum Likelihood Estimation (MLE): Let $\hat{\theta} = (\widehat{\omega}_0, \widehat{\omega})$ be the maximum likelihood estimators of $\theta = (\omega_0, \omega)$.

Covariance Matrices

- Let $A = [a_1, ..., a_{N_1}] \in T_{\mu_1^*} \mathcal{P}_+(I)$, with $a_i = \log_{\mu_1^*}(\mu_i)$ and let $B = [b_1, ..., b_{N_2}] \in T_{\mu_2^*} \mathcal{P}_+(I)$, with $b_i = \log_{\mu_1^*}(\mu_i)$.
- The covariance matrix estimator is defined as

$$C_{N_1} = \frac{1}{N_1 - 1} \sum_{i=1}^{N_1} \log_{\mu_1^*}(\mu_i) \log_{\mu_1^*}(\mu_i)^T = \frac{1}{N_1 - 1} \sum_{i=1}^{N_1} a_i a_i^T = \frac{1}{N_1 - 1} A A^T$$

and

$$C_{N_2} = \frac{1}{N_2 - 1} \sum_{i=1}^{N_2} \log_{\mu_2^*}(\mu_i) \log_{\mu_2^*}(\mu_i)^T = \frac{1}{N_2 - 1} \sum_{i=1}^{N_2} b_i b_i^T = \frac{1}{N_2 - 1} BB^T$$

Covariance Matrices

- Let $A = [a_1, ..., a_{N_1}] \in T_{\mu_1^*} \mathcal{P}_+(I)$, with $a_i = \log_{\mu_1^*}(\mu_i)$ and let $B = [b_1, ..., b_{N_2}] \in T_{\mu_2^*} \mathcal{P}_+(I)$, with $b_i = \log_{\mu_1^*}(\mu_i)$.
- The covariance matrix estimator is defined as

$$C_{N_1} = \frac{1}{N_1 - 1} \sum_{i=1}^{N_1} \log_{\mu_1^*}(\mu_i) \log_{\mu_1^*}(\mu_i)^T = \frac{1}{N_1 - 1} \sum_{i=1}^{N_1} a_i a_i^T = \frac{1}{N_1 - 1} A A^T$$

and

$$C_{N_2} = \frac{1}{N_2 - 1} \sum_{i=1}^{N_2} \log_{\mu_2^*}(\mu_i) \log_{\mu_2^*}(\mu_i)^T = \frac{1}{N_2 - 1} \sum_{i=1}^{N_2} b_i b_i^T = \frac{1}{N_2 - 1} BB^T$$

 $> C_{N_2}$ may be a poor estimate of the true covariance matrix of P_{N_2} .

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩♡

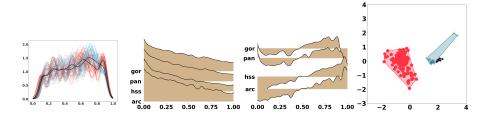
Transfer of covariance matrices and PCs

- Input: $P_{N_1} = \{\mu_i\}_{i=1}^{N_1}$, $P_{N_2} = \{\mu_i\}_{i=1}^{N_2}$ with $N_2 \ll N_1$.
 - **① Compute** μ_1^* and μ_2^* from P_{N_1} and P_{N_2} .
 - **2** Compute A and B by projecting P_{N_1} on $T_{\mu_1^*}\mathcal{P}_+(I)$ and P_{N_2} on $T_{\mu_2^*}\mathcal{P}_+(I)$.
 - **3** Compute covariance matrices C_{N_1} and C_{N_2} .
 - **Outpute** the SVD of A: $A = VDU^T$.
 - **5** Compute the eigen-value decomposition C_{N_1} : VD^2V^T .
 - **6 Parallel transport** C_{N_1} to $T_{\mu_2^*}\mathcal{P}_+(I)$: $\tilde{A} = \Gamma_{\mu_1^* \to \mu_2^*}(\{a_i\}_{i=1}^{N_1}) \in T_{\mu_2^*}\mathcal{P}_+(I),$ $\tilde{C}_{N_1} = \frac{1}{N_{N_1} 1}\tilde{A}\tilde{A}^T = \frac{1}{N_{N_2} 1}\tilde{V}D^2\tilde{V}^T.$
 - Fix $k_1 \in \mathbb{N}$, $k_1 < n$. Compute k_1 -dimensional PC as k_1 eigen-vectors of V and their corresponding k_1 eigen-values D.
 - **8** Compute k_1 -dimensional PC of \tilde{A} as k_1 eigen-vectors of \tilde{V} .
- Output $C_{\lambda} = \Pi^{r}(\lambda \tilde{C}_{N_1} + (1 \lambda)C_{N_2}), V, \tilde{V}, D.$

Transfer of TPCA

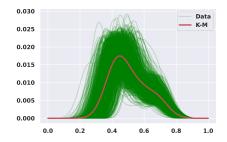
Also called geodesic PCA, for dimensionality reduction and visualization:

- $\overline{V} = [\overline{v}_1, ..., \overline{v}_n] \in \mathcal{R}^{n \times n}$ is the orthogonal matrix which the eigenvectors of BB^T .
- **②** $\{\tilde{v}_i\}_{i=1}^{k_1}$ and $\{D_{i,i}/\sqrt{N_1-1}\}_{i=1}^{k_1}$ as a PCA model on $T_{\mu_2^*}\mathcal{P}_+(I)$.
- **③** Fusion: A Gram-Schmidt Orthonormalisation of $\{\tilde{v}_i, \overline{v}_j\}$ and their corresponding eigen-values.



Experiments: Transfer of TPCA

Results on functional data: Populations P_L and P_S with $N_1 = 998$ and $N_2 = 100$ observations, respectively. Each sample belongs to $\mathcal{P}_+(I)$, with |I| = 100.



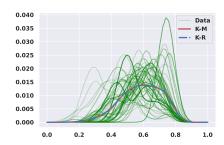


Figure: Some observations and their corresponding Karcher mean. for: Population 1(Left) and Population 2, (Right). In both cases. K-M denotes the Karcher Mean from original and K-R the Karcher Mean from reconstructions with 2 tangent TPCs.

Experiment: Results with transferred TPCA

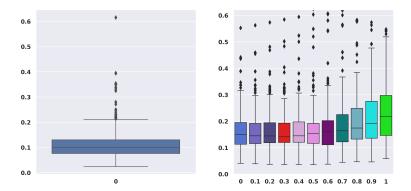


Figure: The reconstruction error (geodesic distance) on P_I (left) and on TP_S (right) for $\lambda \in \{0, 0.1, 0.2, ..., 1\}$.

Step-by-Step of Model Transfer

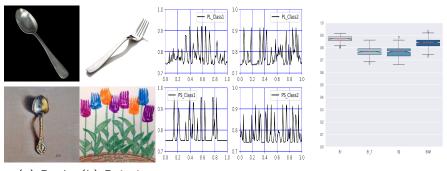
- Learn from P_L only:
 - **①** Compute μ^* and ν^*
 - ② Project the elements of P_L to $T_{\mu^*}\mathcal{P}_+(I)$.
 - **3** Project the elements P_S to $T_{\nu^*}\mathcal{P}_+(I)$.
 - **4** Learn a statistical model S_1 on $T_{\mu^*}\mathcal{P}_+(I)$.
 - § Parallel transport S_1 to $T_{\nu^*}\mathcal{P}_+(I)$ along the geodesic curve α by computing $S_T = \Gamma_{\mu^* \to \nu^*}(S_1)$.
- If P_S is informative, we can update the statistical model:
 - **1** Learn a statistical model S_2 on $T_{\nu^*}\mathcal{P}_+(I)$.
 - 2 Compute the fused model on $T_{\nu^*}\mathcal{P}_+(I)$
 - Fusion.

A simple example for shrinkage estimation if valid (Models' space):

$$S_{\lambda} = \lambda S_{T} + (1 - \lambda)S_{2}, \ 0 < \lambda < 1.$$

Example: Results with Logistic Regression

- Histograms (SIFT: scale invariant feature transform) from real and painting images¹
- \bullet $|P_L| = 1000$ and several $|P_S| = 86$ for test (total 260 and split 0.33) with 100 samplings.



(a) Real (b) Painting

(c) Means

(d) Boxplots

 1 https://www.hemanthdv.org/officeHomeDataset.html $_{\square}$ $_{\square}$ $_{\square}$ $_{\square}$ $_{\square}$

Conclusion

- Many successful solutions exist for vector spaces.
- A new framework for some manifolds.
- Model Transfer (MT) as Transfer Learning (TL) for probability measures.
- This framework can be adapted and extended using the analytic expression of the parallel transport (better, or approximations).
- The proposed methods enjoy several important benefits:
 - ullet The solution is designed for the space of probability measures $\mathcal{P}_+.$
 - ullet The analytic expressions \mathcal{P}_+ are easy to implement and escapes the computational requirement of Schild's Ladder approximation.
 - Can be applied for discrete PDFs, prior & posterior distributions (open problem).

Questions?

Joint works with Anis FRADI and Tien Tam TRAN

Thank you for your attention !!

Some references

- O. Freifeld, S. Hauberg, M. J. Black. Model Transport: Towards Scalable Transfer Learning on Manifolds, IEEE CVPR 2014.
- N.Jean, S. M. Xie, and S. Ermon. Semi-supervised deep kernel learning: Regression with unlabeled data by minimizing predictive variance. NIPS, 2018.
- D.Hafner, D.Tran, T. Lillicrap, A.Irpan, and J. Davidson. Noise contrastive priors for functional uncertainty. In Uncertainty in Artificial Intelligence, PMLR, 2020.
- A. G. Wilson and P. Izmailov. Bayesian deep learning and a probabilistic perspective of generalization. arXiv:2002.08791, 2020.
- R. Shwartz-Ziv, M. Goldblum, H. Souri, S. Kapoor, C. Zhu, Y. LeCun, A. G. Wilson. Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors, arXiv:2205.10279, 2022.