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Conférence Turbulent·e·s
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Introduction

Collective dynamics models

Social dynamics model

d

dt
xi (t) =

1

N

N∑
j=1

aij (xj(t)− xi (t)),

where:

xi ∈ Rd is the state variable (opinion, position)

aij ∈ R is the interaction coefficient.

Hegselmann-Krause dynamics

d

dt
xi =

1

N

N∑
j=1

a(‖xi − xj‖)(xj − xi ), xi ∈ Rd , i ∈ {1, . . . ,N} (HK)

with aij = a(‖xi − xj‖) where a : R+ → R+ is the influence function.
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Introduction

Two types of questions

• Self-organization: emergence of well organized group patterns.

[Hegselmann and Krause, ’02]

• Large Population Limit: N the number of agents goes to infinity.
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Introduction

The classical approach : The mean-field limit

No longer follow each agent’s individual trajectory,

the population is represented by its probability density,

the limit measure µt(x) represents the density of agents with opinion x at time t.

HK model: macroscopic

∂tµt +∇ · (V [µt ]µt) = 0 V [µt ](x) =

∫
Rd

a(‖x − y‖)(y − x)dµt(y).

Limitation: Indistinguishability of the particles ⇒ reduces the span of models that
can be studied.
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Introduction

The new approach : The graph limit

The `-nearest-neighbor interactions model

d

dt
xi =

1

N

i+∑̀
j=i−`

(xj − xi ) with ` = brNc, r ∈ [0, 1] (`-nearest)

• (`-nearest) : system of ODE on graph GN =< V (GN),E(GN) > with

V (GN) = {1, 2, . . . ,N} E(GN) = {(i , j) ∈ {1, 2, . . . ,N}2| 0 < dist(i , j) ≤ `}

where dist(i , j) = min{|i − j |,N − |i − j |}.

Scheme of the `-nearest-neighbor interactions [Biccari, Ko, Zuazua, ’19]
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Introduction

• Let wGN : [0, 1]2 → {0, 1}

wGN (ξ, ζ) = 1 if (i , j) ∈ E(GN) and (ξ, ζ) ∈
[
i − 1

N
,
i

N

)
×
[
j − 1

N
,
j

N

)
.

Plot of the support of the function wGN representing the adjacency matrix of the
`-nearest-neighbor graph (a) and that of its limit W (b) [Medvedev, ’13].

• {wGN } converges to the {0, 1}-valued function w(ξ, ζ) = χ[0,r ](|ξ − ζ|).
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Introduction

The graph limit (or the continuum limit)

Let I = [0, 1] , IN1 := [0, 1
N

) and ∀i ∈ {1, . . . ,N}, INi := [ i−1
N
, i
N

). Let w : I 2 → R a
graphon on I 2.

Define a sequence of weighted graphs GN =< {1, . . . ,N}, {1, . . . ,N}2, w̄N > with:

w̄N
ij = N2

∫∫
INi ×INj

w(ξ, ζ)dξ dζ.
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w̄N
ij = N2

∫∫
INi ×INj

w(ξ, ζ)dξ dζ.

The nonlinear heat equation on GN

d

dt
xi =

1

N

N∑
j=1

(w̄N)ijφ(xj − xi ), xi ∈ Rd , i ∈ {1, . . . ,N}

with wij = (w̄N)ij .
Nathalie Ayi GL and MFL for interacting particle systems Turbulent·e·s 2024 7 / 55



Introduction

The graph limit (or the continuum limit)
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ij = N2

∫∫
INi ×INj

w(ξ, ζ)dξ dζ.

The nonlinear heat equation on GN

d

dt
xi =

1

N

N∑
j=1

(w̄N)ijφ(xj − xi ), xi ∈ Rd , i ∈ {1, . . . ,N}

Theorem [Medvedev, ’13]: Graph Limit

If w ∈ L∞(I ), it holds
‖x − xN‖C([0,T ];L2(I )) −−−−−→

N→+∞
0

where x is the solution to the integro-differential equation

∂tx(t, ξ) =

∫
I

w(ξ, ζ)φ(x(t, ζ)− x(t, ξ))dζ.
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Introduction

The mean-field limit

� The exchangeable particle system

d

dt
xi =

1

N

N∑
j=1

φ(xj − xi )

The exchangeable mean-field limit

∂tµt(x) +∇x ·
((∫

Rd

φ(y − x)µt(dy)

)
µt(x)

)
= 0

The non-exchangeable mean-field limit

∂tµ
ξ
t (x) +∇x ·

((∫
I

∫
Rd

w(ξ, ζ)φ(y − x)µζt (dy)dζ

)
µξt (x)

)
= 0

Kaliuzhnyi-Verbovetskyi, Medvedev, ’18
Chiba, Medvedev, ’19
Gkogkas, Kuehn, 20
Kuehn, Xu, 21
Jabin, Poyato, Soler, ’22
Bet, Copini, Nardi, ’23

� More details and links between the two approaches
⇒ Review paper (A., Pouradier Duteil, ’24)
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Introduction

The different systems/equations

The microscopic dynamics:

d

dt
xi =

1

N

N∑
j=1

wijφ(xj − xi )

The graph limit equation:

∂tx(t, ξ) =

∫
I

w(ξ, ζ)φ(x(t, ζ)− x(t, ξ))dζ.

The non-exchangeable mean-field limit equation:

∂tµ
ξ
t (x) +∇x ·

((∫
I

∫
Rd

w(ξ, ζ)φ(y − x)µζt (dy)dζ

)
µξt (x)

)
= 0

Nathalie Ayi GL and MFL for interacting particle systems Turbulent·e·s 2024 9 / 55



Introduction

From one system/equation to another

The system of ODEs

d

dt
xNi (t) =

1

N

N∑
j=1

wijφ(xNi (t), xNj (t))

The graph limit equation

∂tx(t, ξ) =

∫
I
w(ξ, ζ)φ(x(t, ξ), x(t, ζ))dζ

The non-exchangeable mean-field limit equation

∂tµ
ξ
t (x) +∇x ·

((∫
I×Rd

w(ξ, ζ)φ(x , y)dµζt (y)dζ

)
µξt (x)

)
= 0

N →∞

N →∞

12

Figure: Links between the different equations.

• The red arrows corresponds to large population limits, respectively graph limit and
non-exchangeable mean-field limit.
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Introduction

From graph limit to non-exchangeable limit (A., Pouradier Duteil, ’24)

• Let x(t, ξ) denote the solution to the graph limit equation. Let µt denote a
“continuous” empirical measure defined by

µt(ξ, x) =

∫
I

δx(t,ζ)(x)δζ(ξ)dζ.

• For all test functions f ∈ C∞(I × Rd),

d

dt

∫
I×Rd

f (ξ, x)dµt(ξ, x)dξ =
d

dt

∫
I

f (ξ, x(t, ξ))dξ

=

∫
I

∇x f (ξ, x(t, ξ)) ·
(∫

I

w(ξ, ζ)φ(x(t, ξ), x(t, ζ))dζ

)
dξ

=

∫
I×Rd

∇x f (ξ, x) ·
(∫

I×Rd

w(ξ, ζ)φ(x , y)dµt(ζ, y)dζ

)
dµt(ξ, x)dξ,

=⇒ µt(ξ, x) solution of the Vlasov equation

∂tµ
ξ
t (x) +∇x ·

((∫
I×Rd

w(ξ, ζ)φ(x , y)dµζt (y)dζ

)
µξt (x)

)
= 0
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Introduction

From the non-exchangeable mean-field limit to the graph limit (d=1)

We denote

x̄(t, ξ) :=

∫
R
x dµξt (x).

Then,

∂t x̄(t, ξ) =∂t

∫
R
x dµξt (x) =

∫
R
∂x(x)

(∫
I×R

w(ξ, ζ)φ(x , y)dµζt (y)dζ

)
dµξt (x)

=

∫
R

(∫
I×R

w(ξ, ζ)φ(x , y)dµζt (y)dζ

)
dµξt (x).

Hypothesis

We suppose that
φ(x , y) = (λ1x + λ2y),

with (λ1, λ2) ∈ R2.

Example: the original Hegselmann-Krause for which the interation corresponds to
w(ξ, ζ)(y − x).

Nathalie Ayi GL and MFL for interacting particle systems Turbulent·e·s 2024 12 / 55
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Introduction

We obtain

∂t x̄(t, ξ) =

∫
R

(∫
I×R

w(ξ, ζ)(λ1x + λ2y)dµζt (y)dζ

)
dµξt (x)

=

∫
I

w(ξ, ζ)

(
λ1

∫
R
xdµξt (x) + λ2

∫
R
ydµζt (y)

)
dζ

=

∫
I

w(ξ, ζ) (λ1x̄(t, ξ) + λ2x̄(t, ζ)) dζ

=

∫
I

w(ξ, ζ)φ(x̄(t, ξ), x̄(t, ζ))dζ.

• Obtaining a closed equation in the general (nonlinear) case: still open (for further
comments, see Paul, Trélat, ’22).
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Introduction

Purpose of the talk

Discussion around three variants of the previous model:

adaptive dynamical networks,

random weighted graphs,

higher-order interactions.

References:

- Mean-field and graph limits for collective dynamics models with time-varying
weights, A., Pouradier Duteil, ’21,

- Graph limit for interacting particle systems on weighted random graphs, A.,
Pouradier Duteil, ’23,

- Large-population limits of non-exchangeable particle systems, A., Pouradier Duteil,
’24,

- Mean-field limit of non-exchangeable multi-agent system over hypergraphs with
unbounded rank, A., Pouradier Duteil, Poyato, ’24.
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Adaptive dynamical network

Adaptive dynamical network

• Real-life interactions: not only are relationships influence our opinions, but our
opinions also exert a reciprocal effect, inducing alterations in the network structure of
our relationships.

=⇒ the connectivity of the network evolves over time and this evolution can depend
on the states of the system itself.

Definition

We will say that a network is adaptive if the evolution of the edge (i , j) explicitly
depends on the states of the nodes i and j .

General form:
d

dt
xi (t) = fi (xi (t), t) +

N∑
j=1

wij(t)φ (xi (t), xj(t), t) for all i ∈ {1, · · · ,N},

d

dt
wij(t) = hij(w

N(t), xN(t), t),

where xN = (xi )1≤i≤N and wN = (wij)1≤i,j≤N
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Adaptive dynamical network

Weight-varying opinion dynamics (A. Pouradier Duteil, ’21)

Opinion dynamics with time-varying influence
d

dt
xi (t) =

1

N

N∑
j=1

mj(t)φ(xj(t)− xi (t))

d

dt
mi (t) = ψi (m(t), x(t))

(DN)

where:

xi ∈ Rd is the state variable (opinion, position)

mi ∈ R+ is the agent’s weight

N =
∑N

i=1 mi (0) is the (initial) total weight of the system

φ is the interaction function (often, φ(xj − xi ) = a(‖xi (t)− xj(t)‖)(xj(t)− xi (t)))

ψi dictate the weight dynamics. We suppose
∑

i ψi ≡ 0.
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Adaptive dynamical network Graph Limit

The model viewed on a graph


d

dt
xi (t) =

1

N

N∑
j=1

mj(t)φ(xj(t)− xi (t))

d

dt
mi (t) = ψi (m(t), x(t))

The edge weights depend on time mi (t).

Their evolution is coupled with the evolution of the nodes xi (t).
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Adaptive dynamical network Graph Limit

Continuous model: well-posedness

Hypothesis (H1)

The interaction function φ satisfies φ(0) = 0 and φ ∈ Lip(Rd ;R), with ‖φ‖Lip = Lφ.

Hypothesis (H2){
‖ψ(·, x1,m1)− ψ(·, x2,m1)‖L2(I ) ≤ Lψ‖x1 − x2‖L2(I )

‖ψ(·, x1,m1)− ψ(·, x1,m2)‖L2(I ) ≤ Lψ‖m1 −m2‖L2(I ).

and
|ψ(ξ, x ,m)| ≤ Cψ(1 + ‖m‖L∞(I )).

Theorem [A., Pouradier Duteil, ’21]

Let x0 ∈ L∞(I ;Rd) and m0 ∈ L∞(I ;R). Then for any T > 0, there exists a unique
solution (x ,m) ∈ C([0,T ]; L∞(I ;Rd × R)) to the Graph Limit Equation ∂tx(ξ, t) =

∫
I

m(ζ, t)φ(x(ξ, t)− x(ζ, t))dζ; x(·, 0) = x0

∂tm(ξ, t) = ψ(ξ, x(·, t),m(·, t)); m(·, 0) = m0.
(GL)
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Adaptive dynamical network Graph Limit

From discrete to continuous

From (xN
i (t))i∈{1,...,N} and (mN

i (t))i∈{1,...,N}, we define{
xN(ξ, t) = PN

c (xN(t)) :=
∑N

i=1 x
N
i (t)1

[ i−1
N
, i
N

)
(ξ)

mN(ξ, t) = PN
c (mN(t)) :=

∑N
i=1 m

N
i (t)1

[ i−1
N
, i
N

)
(ξ).

𝑃!
"(𝑥#) 𝑃$"(𝑥#,")

Illustration of the transformation PN
c for N = 10 and x0,N ∈ R.
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Adaptive dynamical network Graph Limit

Key idea: equivalence of discrete and continuous formulations

Let x0 ∈ L∞(I ;Rd) and m0 ∈ L∞(I ;R) satisfying
∫
I
m0(s)ds = 1.

(xN ,mN) ∈ C([0,T ];Rd)N × C([0,T ];R)N satisfy


d

dt
xN
i (t) =

1

N

N∑
j=1

mN
j (t)φ(xN

j (t)− xN
i (t)),

d

dt
mN

i (t) = ψ
(N)
i (mN(t), xN(t)),

(DN)

with initial conditions xN
i (0) = PN

d (x0)i , mi (0) = PN
d (m0)i ,

if and only if xN = PN
c (xN) and mN = PN

c (mN) satisfy


∂txN(ξ, t) =

∫
I

mN(ζ, t)φ(xN(ζ, t)− xN(ξ, t)) dζ,

∂tmN(ξ, t) = N

∫ 1
N

(bξNc+1)

1
N
bξNc

ψ(ζ, xN(·, t),mN(·, t)) dζ,
(CN)

with initial conditions xN(·, 0) = PN
c (PN

d (x0)) and mN(·, 0) = PN
c (PN

d (m0)).

Nathalie Ayi GL and MFL for interacting particle systems Turbulent·e·s 2024 21 / 55



Adaptive dynamical network Link with the mean-field limit

Mean-field limit for the classical HK model

Being a solution to

d

dt
xN
i =

1

N

N∑
j=1

φ(xN
j − xN

i ), i ∈ {1, . . . ,N}. (HK)

is equivalent to the empirical measure

νN(t, x) :=
1

N

N∑
i=1

δ(x − xN
i (t)).

being a solution to the non-local transport equation

∂tνt(x) +∇ · (V [νt ]νt) = 0

where V [νt ] =

∫
Rd

φ(y − x)dνt(y).

Theorem: Convergence in Wasserstein distance

If ∃ν0 ∈ P(Rd) s. t. limN→∞W (νN0 , ν0) = 0, then ∀t ∈ [0,T ], limN→∞W (νNt , νt) = 0.
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Adaptive dynamical network Link with the mean-field limit

Generalization of the empirical measure

Consider our microscopic model with time-varying weights:


d

dt
xN
i (t) =

1

N

N∑
j=1

mN
j (t)φ(xN

j (t)− xN
i (t)),

d

dt
mN

i (t) = ψ
(N)
i (mN(t), xN(t)).

(DN)

We define a new empirical measure by

µN(t, x) :=
1

N

N∑
i=1

mN
i (t)δ(x − xN

i (t)).

Notice that µN is invariant by

relabeling of the indices,

grouping of the agents: for every (xN ,mN) ∈ (Rd)N × RN , for every J ⊂ {1, . . . ,N},
such that xN

i = xJ for all i ∈ J,

1

N

N∑
i=1

mN
i δ(x − xN

i ) =
1

N

(∑
i∈J

mN
i

)
δ(x − xJ) +

∑
i∈{1,...,N}\J

mN
i δ(x − xN

i )

 .
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Adaptive dynamical network Link with the mean-field limit

Indistinguishability (illustration)

x

m

(x1,m1)

(x2,m2)

(x3,m3)

(x4,m4)

(x5,m5)

0.5

1

1.5

y

p

(y1, p1)

(y2, p2) (y4, p4)

(y5, p5)

(y3, p3)

0.5

1

1.5

x

µ

0.1

0.2

0.3

Example: (x5,m5) and (y5, p5) correspond to the same empirical measure µ5 ∈ P(R).
Left: (x5,m5) with x5 = (0.5, 0.5, 1.5, 2.5, 3) and m5 = (1.5, 0.5, 1.25, 0.75, 1).
Center: (y5, p5) with y5 = (0.5, 0.5, 1.5, 2.5, 3) and p5 = (1.25, 0.75, 1.25, 0.75, 1).

Right: Empirical measure µ5 = 1
5

(2 δ0.5 + 1.25 δ1.5 + 0.75 δ2.5 + δ3).
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Adaptive dynamical network Link with the mean-field limit

Indistinguishability (definition)

Definition

We say that system (DN) preserves indistinguishability if for all J ⊂ {1, . . . ,N}, for all
initial conditions (x0,m0) ∈ RdN × RN and (y 0, p0) ∈ RdN × RN satisfying

x0
i = y 0

i = x0
j = y 0

j for all (i , j) ∈ J2

x0
i = y 0

i for all i ∈ {1, . . . ,N}
m0

i = p0
i for all i ∈ Jc∑

i∈J m
0
i =

∑
i∈J p

0
i ,

the solutions t 7→ (x(t),m(t)) and t 7→ (y(t), p(t)) to system (DN) with respective initial
conditions (x0,m0) and (y 0, p0) satisfy for all t ≥ 0,

xi (t) = yi (t) = xj(t) = yj(t) for all (i , j) ∈ J2

xi (t) = yi (t) for all i ∈ {1, . . . ,N}
mi (t) = pi (t) for all i ∈ Jc∑

i∈J mi (t) =
∑

i∈J pi (t).
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Adaptive dynamical network Link with the mean-field limit

Special class of weight dynamics and mean-field limit


d

dt
xN
i (t) =

1

N

N∑
j=1

mN
j (t)φ(xN

j (t)− xN
i (t)),

d

dt
mN

i (t) = miψ(xi , µN).

Let f ∈ C∞c (Rd),

d

dt

∫
f (x)dµN(x)

=
d

dt

[
1

N

N∑
i=1

mi f (xi )

]
=

1

N

N∑
i=1

d

dt
mi f (xi ) +

1

N

N∑
i=1

mi
d

dt
xi · ∇f (xi )

=
1

N

N∑
i=1

miψ(xi , µN)f (xi ) +
1

N2

N∑
i=1

N∑
j=1

mim
N
j (t)φ(xN

j (t)− xN
i (t)) · ∇f (xi )

=

∫
ψ(x , µN)f (x)dµN(x) +

∫ ∫
φ(y − x) · ∇f (x)dµN(x)dµN(y).

Hence the equation

∂tµt(x) +∇ · (V [µt ](x)µt(x)) = h[µt ](x)

with h[µ](x) = ψ(x , µ)µ(x) and V [µ](x) =
∫
φ(y − x)dµ(y).
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Adaptive dynamical network Link with the mean-field limit
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Adaptive dynamical network Link with the mean-field limit
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Adaptive dynamical network Link with the mean-field limit

Subordination of the Mean-Field Equation to the Graph Limit Equation

ψ
(N)
i (x ,m) = mi (t)

1

Nk

N∑
j1=1

· · ·
N∑

jk=1

mj1 (t) · · ·mjk (t)S(xi (t), xj1 (t), · · · xjk (t)). (S)

Proposition [A., Pouradier Duteil, ’21]

Let (x ,m) ∈ C([0,T ]; L2(I ;Rd))× C([0,T ]; L2(I ;R))such that ∂tx(ξ, t) =

∫
I

m(ζ, t)φ(x(ξ, t)− x(ζ, t))dζ

∂tm(ξ, t) = m(ξ)
∫
I k
m(ξ1) · · ·m(ξk) S(x(ξ), x(ξ1), · · · , x(ξk)) dξ1 · · · dξk

(GL)

Let µ̃ ∈ P(Rd) be defined by

µ̃t(x) :=

∫
I

m(ξ, t)δ(x − x(ξ, t))dξ.

Then µ̃ satisfies the transport equation with source

∂tµt(x) +∇ · (V [µt ](x)µt(x)) = h[µt ](x). (MFL)
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Adaptive dynamical network Link with the mean-field limit

Theorem [A., Pouradier Duteil, ’21]

Let x0 ∈ L∞(I ;Rd) and m0 ∈ L∞(I ;Rd). Let (xN ,mN) ∈ C([0,T ];Rd)N × C([0,T ];R)N

satisfy the ODE system with initial condition x0,N = PN
d (x0) and m0,N = PN

d (m0) for the
special class of weight dynamics. Let µN be the empirical measure associated with
(xN ,mN), i.e. for all t ∈ [0,T ],

µN
t (x) :=

1

N

N∑
i=1

mN
i (t)δ(x − xN

i (t)).

Secondly, let (x ,m) be the solutions to the graph limit system for these weight
dynamics and initial conditions given by x(0, ·) = x0 and m(0, ·) = m0. Let

µ̃t(x) :=

∫
I

m(t, ξ)δ(x − x(t, ξ))dξ.

Then, for all test function ϕ ∈ C∞c (Rd), and all t ∈ [0,T ], it holds

lim
N→∞

∫
Rd

ϕ(x)(dµN
t (x)− d µ̃t(x)) = 0.
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Adaptive dynamical network Link with the mean-field limit

Idea

We have, for all test function ϕ ∈ C∞c (Rd),∫
Rd

ϕ(x)dµN
t (x) =

∫
Rd

ϕ(x)d µ̃N
t (x),

where µ̃N
t ∈ P(Rd) is the measure defined by

µ̃N
t (x) :=

∫
I

mN(t, ξ)δ(x − xN(t, ξ))dξ.
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Adaptive dynamical network Link with the mean-field limit

Example “The least influenced gain influence”

Denote by ej→i = mjφ(xi − xj) the influence of j on i . Let ei represent the total group
influence on i :

ei =
N∑
j=1

ej→i =
N∑
j=1

mj‖φ(xi − xj)‖.

Denoting by e the weighted average of the total group influence

e =
N∑

k=1

mk

N
ek =

N∑
k=1

N∑
j=1

mk

N
mj‖φ(xk − xj)‖,

we consider the mass dynamics:

ψi (x ,m) =
1

N
mi (e − ei ) =

1

N
mi

(
1

N

N∑
k=1

N∑
j=1

mkmj‖φ(xl − xj)‖ −
N∑
j=1

mj‖φ(xi − xj)‖

)
.
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Adaptive dynamical network Link with the mean-field limit

Example “The least influenced gain influence”: microscopic system
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Positions evolution weighted by the masses
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Evolution of opinions (left) and weights (right) for the microscopic model (DN) with N = 30 .
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Adaptive dynamical network Link with the mean-field limit

Example “The least influenced gain influence”: Graph Limit

Evolution of the solutions to (DN) and (GL) represented as functions from I = [0, 1] to R.
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Adaptive dynamical network Link with the mean-field limit

Example “The least influenced gain influence”: Mean-Field Limit

Evolution of the solutions to (DN), (GL) and (MFL) represented as measures on R.
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Adaptive dynamical network Link with the mean-field limit

Figure: Links between the different equations (A., Pouradier-Duteil, ’24)
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Adaptive dynamical network Link with the mean-field limit

Other results

The setting of Kuramoto-type model (Gkogkas, Kuehn, Xu, ’23)
d

dt
xi = ωi (xi , t) +

1

N

N∑
j=1

wijφ (xi , xj) for all i ∈ {1, · · · ,N}

d

dt
wij = −ε (wij + H(xi , xj))

Generalization of the evolving-weight dynamics (Throm, ’23)
d

dt
xi = ωi (x , t) +

1

N

N∑
j=1

wijφ (xi , xj) for all i ∈ {1, · · · ,N}

d

dt
wij = ψ

(N)
ij (x(t),w(t))

(1)
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Weighted random graphs
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Weighted random graphs

About random graphs

• Random graph: a graph which is generated by a random process.
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Weighted random graphs

About random graphs

• Random graph: a graph which is generated by a random process.

• Example 1: Erdos-Rényi graph: the edge between a pair of distinct nodes is inserted
with probability p.

Figure: Pixel pictures of the Erdos-Rényi graph with N = 40 and p = 0.5 (left), N = 600 and
p = 0.5 (right) [Medvedev, 2014]
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Weighted random graphs

About random graphs

• Random graph: a graph which is generated by a random process.

• Example 2 : Small world graph: replacing a random set of the local connections by
randomly chosen long-range ones.

Figure: Pixel pictures of the Small world graph, p starts at 0 and increases from left to right
[Medvedev, 2014]
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Weighted random graphs

Dynamical systems on W -random graph

• Let ξ = (ξ1, ξ2, ξ3, . . . ) and ξ
N

= (ξ1, ξ2, . . . , ξN) where ξi , i ∈ N are i.i.d. random
variables with L(ξ1) = U(I ).

Definition [Medvedev, ’14]

A W-random graph on N nodes generated by the random sequence ξ, denoted
GN = G(ξN ,W ) is such that the edges of GN are selected at random and

P((i , j) ∈ E(GN)) = W (ξi , ξj) for each (i , j) ∈ {1, . . . ,N}2 for i 6= j .

The decision wether to include a pair (i , j) ∈ {1, . . . ,N}2 is made independently as for
the decisions of other pairs.

Dynamical systems on W-random graph

d

dt
xN
i (t) =

1

N

N∑
j=1

σijφ(xN
j (t)− xN

i (t))

with L(σij |ξ) = B(W (ξi , ξj)).
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Weighted random graphs

Random graph limit

Dynamical systems on W-random graph

d

dt
xN
i (t) =

1

N

N∑
j=1

σijφ(xN
j (t)− xN

i (t)) (S̃r−r
N )

with L(σij |ξ) = B(W (ξi , ξj)).
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Weighted random graphs

Random graph limit

Dynamical systems on W-random graph

d

dt
xN
i (t) =

1

N

N∑
j=1

σijφ(xN
j (t)− xN

i (t)) (S̃r−r
N )

with L(σij |ξ) = B(W (ξi , ξj)).

Medvedev obtains the convergence to

The random graph limit equation

∂tx(ξ, t) =

∫
I

W (ξ, ζ)φ(x(ζ, t)− x(ξ, t))dζ. (C)
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Weighted random graphs

Random graph limit

Theorem [Medvedev, ’14]: Random Graph Limit

Suppose W ∈ W0, a class of symmetric measurable function on I 2 with values on I . φ is
a Lipschitz continuous function on R and g ∈ L∞(I ). Let T > 0 and suppose that the
solution of (C) x(ξ, ζ) satisfies the following inequality

min
t∈[0,T ]

∫
I

{∫
I

W (ξ, ζ)φ(x(ζ, t)− x(ξ, t))2dζ

−
(∫

I

W (ξ, ζ)φ(x(ζ, t)− x(ξ, t)dζ

)2
}
≥ c1

for some positive constant c1. Then, the solution of (S̃r−r
N ) and (C) satisfy the following

relation
lim

N→+∞
P{N1/2 sup

t∈[0,T ]

‖xN(t)− P
ξ
N x(ξ, t)‖2,N ≤ C} = 1

for some constant C > 0 with P
ξ
N x(ξ, t) = (x(ξN1 , t), x(ξN2 , t), . . . , x(ξNN , t)) and

(x , y)N :=
1

N

N∑
i=1

xiyi , and the corresponding norm ‖x‖2,N :=
√

(x , x)N .
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Weighted random graphs

Weighted random graph

Example [Garlaschelli, ’09]

A weighted random graph model in which the probability of drawing an edge of
discrete weight w ∈ N between vertices i and j is given by

P(σN
ij = w) = qij(w) = pw (1− p).

Lack of a general framework !

Definition [A., Pouradier Duteil, ’23]

A q-weighted random graph on N nodes generated by the random sequence ξ, denoted
GN , is such that the weight of an edge of GN is randomly attributed. More precisely, the
law for the weight of the edge (i , j) is q(ξi , ξj , .) where

q : I × I → P(R+)

(ξ, ζ) 7→ q(ξ, ζ; .).

The decision of the attribution of the weight of a pair (i , j) ∈ {1, . . . ,N}2 is made
independently from the decision for other pairs.

Nathalie Ayi GL and MFL for interacting particle systems Turbulent·e·s 2024 40 / 55



Weighted random graphs

Weighted random graph

Example [Garlaschelli, ’09]

A weighted random graph model in which the probability of drawing an edge of
discrete weight w ∈ N between vertices i and j is given by

P(σN
ij = w) = qij(w) = pw (1− p).

Lack of a general framework !

Definition [A., Pouradier Duteil, ’23]

A q-weighted random graph on N nodes generated by the random sequence ξ, denoted
GN , is such that the weight of an edge of GN is randomly attributed. More precisely, the
law for the weight of the edge (i , j) is q(ξi , ξj , .) where

q : I × I → P(R+)

(ξ, ζ) 7→ q(ξ, ζ; .).

The decision of the attribution of the weight of a pair (i , j) ∈ {1, . . . ,N}2 is made
independently from the decision for other pairs.

Nathalie Ayi GL and MFL for interacting particle systems Turbulent·e·s 2024 40 / 55



Weighted random graphs

Weighted random graph

Example [Garlaschelli, ’09]

A weighted random graph model in which the probability of drawing an edge of
discrete weight w ∈ N between vertices i and j is given by

P(σN
ij = w) = qij(w) = pw (1− p).

Lack of a general framework !

Definition [A., Pouradier Duteil, ’23]

A q-weighted random graph on N nodes generated by the random sequence ξ, denoted
GN , is such that the weight of an edge of GN is randomly attributed. More precisely, the
law for the weight of the edge (i , j) is q(ξi , ξj , .) where

q : I × I → P(R+)

(ξ, ζ) 7→ q(ξ, ζ; .).

The decision of the attribution of the weight of a pair (i , j) ∈ {1, . . . ,N}2 is made
independently from the decision for other pairs.

Nathalie Ayi GL and MFL for interacting particle systems Turbulent·e·s 2024 40 / 55



Weighted random graphs

Examples

W-random graph (Medvedev, ’14): Generate between any two nodes (ξ, ζ) an
edge (of weight 1) with probability W(ξ, ζ).

q(ξ, ζ; ·) = (1−W (ξ, ζ))δ0 + W (ξ, ζ)δ1, for all ξ, ζ ∈ R.

Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any
two nodes an edge with weight w ∈ N, with probability pw (1− p).

q(ξ, ζ; ·) = (1− p)
+∞∑
i=0

piδi , for all ξ, ζ ∈ R.
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Weighted random graphs

Weighted random graph limit

• Let ξ = (ξ1, ξ2, ξ3, . . . ) and ξ
N

= (ξ1, ξ2, . . . , ξN) where ξi , i ∈ N are i.i.d. random
variables with L(ξ1) = U(I ).

Dynamical systems on q-weighted random graph
d

dt
xN
i (t) =

1

N

N∑
j=1

σijφ(xN
j (t)− xN

i (t)),

xN
i (0) = g(ξNi ), i ∈ {1, . . . ,N}

(Sr−r
N )

with L(σij |ξ) = q(ξi , ξj ; ·).

We prove the convergence towards the continuum limit

The weighted random graph limit equation∂tx(ξ, t) =

∫
I

(∫
R+

wq(ξ, ζ; dw)

)
φ(x(ζ, t)− x(ξ, t))dζ

x(ξ, 0) = g(ξ), ξ ∈ I ,

(C2)
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Weighted random graphs

Weighted random graph limit
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Weighted random graphs

Our result

Hypothesis 1

Let φ ∈ L∞(R) be bounded and Lipschitz continuous, with ‖φ‖Lip := L and
‖φ‖L∞(R) := K .

Hypothesis 2

There exists M > 0 such that for all (ξ, ζ) ∈ I 2, for all k ∈ {1, · · · , 4},(∫
R+

w kq(ξ, ζ; dw)

)1/k

≤ M,

i.e. the first four moments of the probability measure q(ξ, ζ; ·) are bounded uniformly in
ξ and ζ.
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Weighted random graphs

Our result

Theorem [A., Pouradier Duteil, 2023]: Weighted Random Graph Limit

Let φ satisfy Hypothesis 1, let g ∈ L∞(I ) and let q be a weighted random graph law
satisfying Hypothesis 2. Then, as N goes to infinity, solution xN to the discrete system
(Sr−r

N ) converges to the solution x of the continuous model (C2). More precisely,

P

[
sup

t∈[0,T ]

‖xN(t)− P
ξ
N x(·, t)‖2,N ≥

C1(T )√
N

]
≤ C̃1

N

where the constants C1(T ) and C̃1 are respectively defined by

C1(T ) :=
√
T
√

1 + M2K 2e( 1
2

+4ML)T and C̃1 := 3M4K 4 + 6.
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Weighted random graphs

Numerical Illustration: the weighted Erdös-Rényi random graph

Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any
two nodes an edge with weight w ∈ N, with probability pw (1− p).

q(ξ, ζ; ·) = (1− p)
+∞∑
i=0

piδi , for all ξ, ζ ∈ R.

First moment given by:

w̄(ξ, ζ) =

∫
R+

wq(ξ, ζ; dw) = (1− p)
+∞∑
i=1

ipi =
p

1− p

Limit equation: ∂tx(ξ, t) = p
1−p

∫
I

φ(u(ζ, t)− u(ξ, t))dζ

x(ξ, 0) = g(ξ), ξ ∈ I .
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Weighted random graphs

Numerical Illustration: the weighted Erdös-Rényi random graph
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Weighted random graphs

Figure: Left and Centers: Random interaction matrices generated by deterministic sequences for
N = 20, N = 60 and N = 150, for the random weighted graphon (44), Right: Corresponding
graphon.
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Weighted random graphs

Figure: Convergence of supt∈[0,T ] ‖xN(t)− P
ξ
N x(·, t)‖2,N for different values of N, with 20 runs

for each value of N.
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Weighted random graphs

Numerical Illustration: Weighted “Small World” network

Model for a “small-world” network (Watts, Strogatz, ’98): Connect each node
with its k closest neighbors to form a ring lattice. Then, rewire each edge at
random with probability p.

Refined model for a weighted “small-world” network: Connect two nodes with
an edge of weight 1 if they are among each other’s closest k neighbors, i.e. if

|ξi − ξj | ≤ r , where r := k
2N

. Then, with probability p =
|ξi−ξj |

r
, rewire each edge

at random, giving the new edge a weight drawn uniformly in the interval [0, 1].

q(ξ, ζ; dw) =

{
ρ(ξ,ζ)

r
dλ[0,1] + (1− ρ(ξ,ζ)

r
)δ1 if ρ(ξ − ζ) ≤ r

dλ[0,1] otherwise
(2)

where ρ(ξ, ζ) = min{|ξ − ζ|, |ξ − ζ − 1|, |ζ − ξ − 1|}.
First moment:

w̄(ξ, ζ) =

∫
R+

wq(ξ − ζ; dw) =

{
(1− ρ(ξ−ζ)

2r
) if ρ(ξ − ζ) ≤ r

1
2

otherwise.
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random with probability p.

Refined model for a weighted “small-world” network: Connect two nodes with
an edge of weight 1 if they are among each other’s closest k neighbors, i.e. if

|ξi − ξj | ≤ r , where r := k
2N

. Then, with probability p =
|ξi−ξj |

r
, rewire each edge

at random, giving the new edge a weight drawn uniformly in the interval [0, 1].

q(ξ, ζ; dw) =

{
ρ(ξ,ζ)

r
dλ[0,1] + (1− ρ(ξ,ζ)

r
)δ1 if ρ(ξ − ζ) ≤ r

dλ[0,1] otherwise
(2)

where ρ(ξ, ζ) = min{|ξ − ζ|, |ξ − ζ − 1|, |ζ − ξ − 1|}.
First moment:

w̄(ξ, ζ) =

∫
R+

wq(ξ − ζ; dw) =

{
(1− ρ(ξ−ζ)

2r
) if ρ(ξ − ζ) ≤ r

1
2

otherwise.
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Figure: Values of the random interaction matrices generated from a random sequence (left) and a
deterministic sequence (right) according to the random weighted graph law (2) for N = 60.
Right: Corresponding continuous graphon (ξ, ζ) 7→ w̄(ξ, ζ).
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Figure: Convergence of supt∈[0,T ] ‖xN(t)− P
ξ
N x(·, t)‖2,N for different values of N, with 20 runs

for each value of N. Case of the random weighted graph law (44).
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Hypergraphs

• Many existing models focus on binary interactions

6= real-life dynamics often involve
interactions within groups containing more than just two individuals (virtual group
chats, physical meetings . . . )

Figure: Higher-order group interactions in social context [Neuhauser et al, 2022]
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Hypergraphs

• Hypergraph H = (V ,E) where V are the vertices, E the hyperedges.

Figure: Pairwise and higher-order interactions [Battiston et al, 2021]
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The θ-nearest neighbor example

The unweighted unbounded ranked hypergraphon: for all ` ∈ N,

w`(ξ0, ξ1, · · · , ξ`) =

1 if max
i,j∈{0,··· ,`}

|ξi − ξj | ≤ θ

0 otherwise,

Figure: Pixel representation for ` = 1, 2 with θ = 0.3 and N = 20.
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Models of multi-agent dynamics on hypergraphs

Extension of the Kuramoto-Saraguchi model on hypergraphs (Skardal, Arenas, ’20)

d

dt
xi =

N∑
j1=1

wN,1
ij1

sin(xj1 − xi ) +
N∑

j1=1

N∑
j2=1

wN,2
ij1j2

sin(2xj1 − xj2 − xi )

+
N∑

j1=1

N∑
j2=1

N∑
j3=1

wN,3
ij1j2j3

sin(xj1 + xj2 − xj3 − xi )

Higher-order opinion dynamics on a uniform hypergraph of rank 2 (Neuhauser,
Lambiotte, Schaub ’22)

d

dt
xi =

N∑
j1=1

N∑
j2=1

wN,2
ij1j2

eλ|xj1−xj2 |
(xj1 + xj2

2
− xi

)
.
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Non-exchangeable mean-field limit for higher order case


dXN

i (t)

dt
=

N−1∑
`=1

N∑
j1,...,j`=1

w `,N
ij1···j` K`(X

N
i (t),XN

j1 (t), . . . ,XN
j` (t)),

XN
i (0) = XN

i,0, i ∈ {1, · · · ,N}.

Under some regularity assumptions on the kernel K`, scaling and symmetry
conditions on the weights, then the microscopic dynamics as N goes to ∞ is
characterized by the Vlasov equation:{

∂tµ
ξ
t + divx(Fw [µt ](·, ξ)µξt ) = 0, t ≥ 0, x ∈ Rd , ξ ∈ [0, 1],

µξt=0 = µξ0 .

where

Fw [µt ](x , ξ) :=
∞∑
`=1

∫
[0,1]`

w`(ξ, ξ1, . . . , ξ`)

×
(∫

Rd`

K`(x , x1, . . . , x`) dµ
ξ1
t (x1) · · · dµξ`t (x`)

)
dξ1, . . . dξ`.

Mean-field limit of non-exchangeable multi-agent systems over hypergraphs with
unbounded rank, A., Pouradier-Duteil, Poyato, In preparation
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Figure: Social graph (http://inicia.org.ar/blog/7-claves-para-hacer-networking/)

Thank you for your attention !
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