Graph and Mean-Field Limits for Interacting Particle Systems on Weighted Deterministic and Random Graphs

Nathalie Ayi

Laboratoire Jacques-Louis Lions, Sorbonne Université INRIA Paris, ANGE Team

Conférence Turbulent · e · s

École Polytechnique 23 May 2024

In collaboration with N. Pouradier Duteil, D. Poyato

Collective dynamics models

Social dynamics model

$$\frac{d}{dt}x_i(t) = \frac{1}{N}\sum_{j=1}^N a_{ij}(x_j(t) - x_i(t)),$$

where:

- $x_i \in \mathbb{R}^d$ is the state variable (opinion, position)
- $a_{ij} \in \mathbb{R}$ is the interaction coefficient.

Collective dynamics models

Social dynamics model

$$\frac{d}{dt}x_i(t) = \frac{1}{N}\sum_{j=1}^N a_{ij}(x_j(t) - x_i(t)),$$

where:

- $x_i \in \mathbb{R}^d$ is the state variable (opinion, position)
- $a_{ij} \in \mathbb{R}$ is the interaction coefficient.

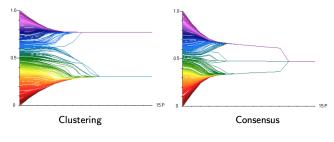
Hegselmann-Krause dynamics

$$\frac{d}{dt}x_i = \frac{1}{N}\sum_{j=1}^N \mathsf{a}(\|x_i - x_j\|)(x_j - x_i), \quad x_i \in \mathbb{R}^d, \quad i \in \{1, \dots, N\}$$
(HK)

with $a_{ij} = a(||x_i - x_j||)$ where $a : \mathbb{R}^+ \to \mathbb{R}^+$ is the *influence function*.

Two types of questions

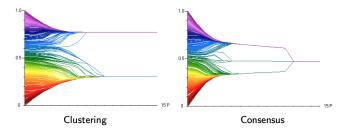
• Self-organization: emergence of well organized group patterns.



[Hegselmann and Krause, '02]

Two types of questions

• Self-organization: emergence of well organized group patterns.



[Hegselmann and Krause, '02]

• Large Population Limit: *N* the number of agents goes to infinity.

The classical approach : The mean-field limit

- No longer follow each agent's individual trajectory,
- the population is represented by its probability density,
- the limit measure $\mu_t(x)$ represents the density of agents with opinion x at time t.

The classical approach : The mean-field limit

- No longer follow each agent's individual trajectory,
- the population is represented by its probability density,
- the limit measure $\mu_t(x)$ represents the density of agents with opinion x at time t.

HK model: macroscopic

$$\partial_t \mu_t + \nabla \cdot (V[\mu_t]\mu_t) = 0$$
 $V[\mu_t](x) = \int_{\mathbb{R}^d} a(\|x-y\|)(y-x)d\mu_t(y).$

The classical approach : The mean-field limit

- No longer follow each agent's individual trajectory,
- the population is represented by its probability density,
- the limit measure $\mu_t(x)$ represents the density of agents with opinion x at time t.

HK model: macroscopic

$$\partial_t \mu_t + \nabla \cdot (V[\mu_t]\mu_t) = 0$$
 $V[\mu_t](x) = \int_{\mathbb{R}^d} a(\|x-y\|)(y-x)d\mu_t(y).$

• Limitation: Indistinguishability of the particles \Rightarrow reduces the span of models that can be studied.

The new approach : The graph limit

The l-nearest-neighbor interactions model

$$\frac{d}{dt}x_i = \frac{1}{N}\sum_{j=i-\ell}^{i+\ell} (x_j - x_i) \quad \text{with } \ell = \lfloor rN \rfloor, r \in [0,1] \quad (\ell\text{-nearest})$$

The new approach : The graph limit

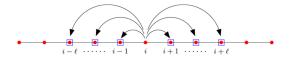
The *l*-nearest-neighbor interactions model

$$\frac{d}{dt}x_i = \frac{1}{N}\sum_{j=i-\ell}^{i+\ell} (x_j - x_i) \quad \text{with } \ell = \lfloor rN \rfloor, r \in [0,1] \quad (\ell\text{-nearest})$$

• (ℓ -nearest) : system of ODE on graph $G_N = \langle V(G_N), E(G_N) \rangle$ with

$$V(G_N) = \{1, 2, \dots, N\} \qquad E(G_N) = \{(i, j) \in \{1, 2, \dots, N\}^2 | \ 0 < dist(i, j) \le \ell\}$$

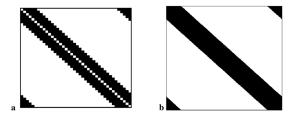
where $dist(i, j) = \min\{|i - j|, N - |i - j|\}.$



Scheme of the *l*-nearest-neighbor interactions [Biccari, Ko, Zuazua, '19]

• Let
$$w^{G_N} : [0,1]^2 \to \{0,1\}$$

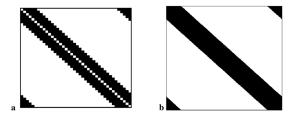
$$w^{G_N}(\xi,\zeta) = 1$$
 if $(i,j) \in E(G_N)$ and $(\xi,\zeta) \in \left[\frac{i-1}{N}, \frac{i}{N}\right) \times \left[\frac{j-1}{N}, \frac{j}{N}\right)$.



Plot of the support of the function w^{G_N} representing the adjacency matrix of the ℓ -nearest-neighbor graph (a) and that of its limit W (b) [Medvedev, '13].

• Let
$$w^{G_N} : [0,1]^2 \rightarrow \{0,1\}$$

$$w^{G_N}(\xi,\zeta) = 1$$
 if $(i,j) \in E(G_N)$ and $(\xi,\zeta) \in \left[\frac{i-1}{N}, \frac{i}{N}\right) \times \left[\frac{j-1}{N}, \frac{j}{N}\right)$.



Plot of the support of the function w^{G_N} representing the adjacency matrix of the ℓ -nearest-neighbor graph (a) and that of its limit W (b) [Medvedev, '13].

• $\{w^{G_N}\}$ converges to the $\{0,1\}$ -valued function $w(\xi,\zeta) = \chi_{[0,r]}(|\xi-\zeta|)$.

The graph limit (or the continuum limit)

Let I = [0, 1], $I_1^N := [0, \frac{1}{N})$ and $\forall i \in \{1, \dots, N\}$, $I_i^N := [\frac{i-1}{N}, \frac{i}{N})$. Let $w : I^2 \to \mathbb{R}$ a graphon on I^2 .

Define a sequence of weighted graphs $G_N = <\{1, \ldots, N\}, \{1, \ldots, N\}^2, \bar{w}^N >$ with:

$$ar{w}_{ij}^N = N^2 \iint_{l_i^N imes l_j^N} w(\xi,\zeta) d\xi \, d\zeta.$$

The graph limit (or the continuum limit)

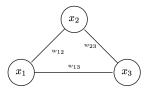
Let I = [0, 1], $I_1^N := [0, \frac{1}{N})$ and $\forall i \in \{1, \dots, N\}$, $I_i^N := [\frac{i-1}{N}, \frac{i}{N})$. Let $w : I^2 \to \mathbb{R}$ a graphon on I^2 .

Define a sequence of weighted graphs $G_N = <\{1, \ldots, N\}, \{1, \ldots, N\}^2, \bar{w}^N >$ with:

$$\bar{w}_{ij}^N = N^2 \iint_{I_i^N \times I_j^N} w(\xi,\zeta) d\xi d\zeta.$$

The nonlinear heat equation on G_N

$$rac{d}{dt} x_i = rac{1}{N} \sum_{j=1}^N (ar w^N)_{ij} \phi(x_j - x_i), \quad x_i \in \mathbb{R}^d, \quad i \in \{1, \dots, N\}$$



with
$$w_{ij} = (\bar{w}^N)_{ij}$$
.

Nathalie Ayi

The graph limit (or the continuum limit)

Let I = [0, 1], $I_1^N := [0, \frac{1}{N})$ and $\forall i \in \{1, \dots, N\}$, $I_i^N := [\frac{i-1}{N}, \frac{i}{N})$. Let $w : I^2 \to \mathbb{R}$ a graphon on I^2 .

Define a sequence of weighted graphs $G_N = < \{1, ..., N\}, \{1, ..., N\}^2, \bar{w}^N >$ with:

$$ar{w}_{ij}^N = N^2 \iint_{I_i^N imes I_j^N} w(\xi,\zeta) d\xi \, d\zeta.$$

The nonlinear heat equation on G_N

$$rac{d}{dt}x_i = rac{1}{N}\sum_{j=1}^N (ar w^N)_{ij}\phi(x_j-x_i), \quad x_i\in \mathbb{R}^d, \quad i\in\{1,\ldots,N\}$$

Theorem [Medvedev, '13]: Graph Limit

If $w \in L^{\infty}(I)$, it holds

$$\|x - x_N\|_{C([0, T]; L^2(I))} \xrightarrow[N \to +\infty]{} 0$$

where x is the solution to the integro-differential equation

$$\partial_t x(t,\xi) = \int_I w(\xi,\zeta) \phi(x(t,\zeta) - x(t,\xi)) d\zeta.$$

The mean-field limit

♦ The exchangeable particle system

$$\frac{d}{dt}x_i = \frac{1}{N}\sum_{j=1}^N \phi(x_j - x_i)$$

The exchangeable mean-field limit

$$\partial_t \mu_t(x) + \nabla_x \cdot \left(\left(\int_{\mathbb{R}^d} \phi(y - x) \mu_t(dy) \right) \mu_t(x) \right) = 0$$

The mean-field limit

♦ The non-exchangeable particle system

$$rac{d}{dt} x_i = rac{1}{N} \sum_{j=1}^N oldsymbol{w}_{ij} \phi(x_j - x_i)$$

The mean-field limit

♦ The non-exchangeable particle system

$$rac{d}{dt} x_i = rac{1}{N} \sum_{j=1}^N oldsymbol{w}_{ij} \phi(x_j - x_i)$$

The non-exchangeable mean-field limit

$$\partial_t \mu_t^{\xi}(x) + \nabla_x \cdot \left(\left(\int_I \int_{\mathbb{R}^d} w(\xi, \zeta) \phi(y - x) \mu_t^{\zeta}(dy) d\zeta \right) \mu_t^{\xi}(x) \right) = 0$$

- Kaliuzhnyi-Verbovetskyi, Medvedev, '18
- Chiba, Medvedev, '19
- Gkogkas, Kuehn, 20
- Kuehn, Xu, 21
- Jabin, Poyato, Soler, '22
- Bet, Copini, Nardi, '23

The mean-field limit

◊ The non-exchangeable particle system

$$rac{d}{dt}x_i = rac{1}{N}\sum_{j=1}^N oldsymbol{w}_{ij}\phi(x_j-x_i)$$

The non-exchangeable mean-field limit

$$\partial_t \mu_t^{\xi}(x) + \nabla_x \cdot \left(\left(\int_I \int_{\mathbb{R}^d} w(\xi, \zeta) \phi(y - x) \mu_t^{\zeta}(dy) d\zeta \right) \mu_t^{\xi}(x) \right) = 0$$

- Kaliuzhnyi-Verbovetskyi, Medvedev, '18
- Chiba, Medvedev, '19
- Gkogkas, Kuehn, 20
- Kuehn, Xu, 21
- Jabin, Poyato, Soler, '22
- Bet, Copini, Nardi, '23

Over the second seco

 \Rightarrow **Review paper** (A., Pouradier Duteil, '24)

The different systems/equations

• The microscopic dynamics:

$$\frac{d}{dt}x_i = \frac{1}{N}\sum_{j=1}^N w_{ij}\phi(x_j - x_i)$$

• The graph limit equation:

$$\partial_t x(t,\xi) = \int_I w(\xi,\zeta) \phi(x(t,\zeta) - x(t,\xi)) d\zeta.$$

• The non-exchangeable mean-field limit equation:

$$\partial_t \mu_t^{\xi}(x) + \nabla_x \cdot \left(\left(\int_I \int_{\mathbb{R}^d} w(\xi, \zeta) \phi(y - x) \mu_t^{\zeta}(dy) d\zeta \right) \mu_t^{\xi}(x) \right) = 0$$

From one system/equation to another

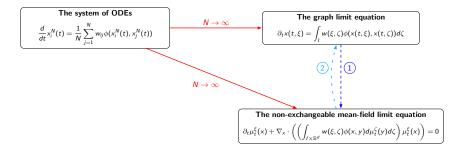


Figure: Links between the different equations.

From one system/equation to another

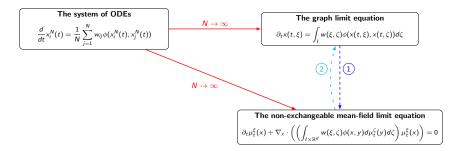


Figure: Links between the different equations.

• The red arrows corresponds to large population limits, respectively graph limit and non-exchangeable mean-field limit.

From graph limit to non-exchangeable limit (A., Pouradier Duteil, '24)

• Let $x(t,\xi)$ denote the solution to the graph limit equation. Let $\overline{\mu}_t$ denote a "continuous" empirical measure defined by

$$\overline{\mu}_t(\xi, x) = \int_I \delta_{x(t,\zeta)}(x) \delta_{\zeta}(\xi) d\zeta.$$

From graph limit to non-exchangeable limit (A., Pouradier Duteil, '24)

• Let $x(t,\xi)$ denote the solution to the graph limit equation. Let $\overline{\mu}_t$ denote a "continuous" empirical measure defined by

$$\overline{\mu}_t(\xi, x) = \int_I \delta_{x(t,\zeta)}(x) \delta_{\zeta}(\xi) d\zeta.$$

• For all test functions $f \in C^{\infty}(I \times \mathbb{R}^d)$,

$$\begin{aligned} \frac{d}{dt} \int_{I \times \mathbb{R}^d} f(\xi, x) d\overline{\mu}_t(\xi, x) d\xi &= \frac{d}{dt} \int_I f(\xi, x(t, \xi)) d\xi \\ &= \int_I \nabla_x f(\xi, x(t, \xi)) \cdot \left(\int_I w(\xi, \zeta) \phi(x(t, \xi), x(t, \zeta)) d\zeta \right) d\xi \\ &= \int_{I \times \mathbb{R}^d} \nabla_x f(\xi, x) \cdot \left(\int_{I \times \mathbb{R}^d} w(\xi, \zeta) \phi(x, y) d\overline{\mu}_t(\zeta, y) d\zeta \right) d\overline{\mu}_t(\xi, x) d\xi, \end{aligned}$$

From graph limit to non-exchangeable limit (A., Pouradier Duteil, '24)

• Let $x(t,\xi)$ denote the solution to the graph limit equation. Let $\overline{\mu}_t$ denote a "continuous" empirical measure defined by

$$\overline{\mu}_t(\xi, \mathsf{x}) = \int_I \delta_{\mathsf{x}(t,\zeta)}(\mathsf{x}) \delta_{\zeta}(\xi) d\zeta.$$

• For all test functions $f \in C^{\infty}(I \times \mathbb{R}^d)$,

$$\begin{aligned} &\frac{d}{dt} \int_{I \times \mathbb{R}^d} f(\xi, x) d\overline{\mu}_t(\xi, x) d\xi = \frac{d}{dt} \int_I f(\xi, x(t, \xi)) d\xi \\ &= \int_I \nabla_x f(\xi, x(t, \xi)) \cdot \left(\int_I w(\xi, \zeta) \phi(x(t, \xi), x(t, \zeta)) d\zeta \right) d\xi \\ &= \int_{I \times \mathbb{R}^d} \nabla_x f(\xi, x) \cdot \left(\int_{I \times \mathbb{R}^d} w(\xi, \zeta) \phi(x, y) d\overline{\mu}_t(\zeta, y) d\zeta \right) d\overline{\mu}_t(\xi, x) d\xi, \end{aligned}$$

 $\Longrightarrow \overline{\mu}_t(\xi, x)$ solution of the Vlasov equation

$$\partial_t \mu_t^{\xi}(x) + \nabla_x \cdot \left(\left(\int_{I \times \mathbb{R}^d} w(\xi, \zeta) \phi(x, y) d\mu_t^{\zeta}(y) d\zeta \right) \mu_t^{\xi}(x) \right) = 0$$

From the non-exchangeable mean-field limit to the graph limit (d=1)

We denote

$$ar{x}(t,\xi) := \int_{\mathbb{R}} x \, d\mu_t^{\xi}(x).$$

From the non-exchangeable mean-field limit to the graph limit (d=1)

We denote

$$ar{x}(t,\xi) := \int_{\mathbb{R}} x \, d\mu_t^{\xi}(x).$$

Then,

$$\partial_t \bar{x}(t,\xi) = \partial_t \int_{\mathbb{R}} x \, d\mu_t^{\xi}(x) = \int_{\mathbb{R}} \partial_x(x) \left(\int_{I \times \mathbb{R}} w(\xi,\zeta) \phi(x,y) d\mu_t^{\zeta}(y) d\zeta \right) \, d\mu_t^{\xi}(x)$$
$$= \int_{\mathbb{R}} \left(\int_{I \times \mathbb{R}} w(\xi,\zeta) \phi(x,y) d\mu_t^{\zeta}(y) d\zeta \right) \, d\mu_t^{\xi}(x).$$

From the non-exchangeable mean-field limit to the graph limit (d=1)

We denote

$$ar{x}(t,\xi) := \int_{\mathbb{R}} x \, d\mu_t^{\xi}(x).$$

Then,

$$\partial_t \bar{x}(t,\xi) = \partial_t \int_{\mathbb{R}} x \, d\mu_t^{\xi}(x) = \int_{\mathbb{R}} \partial_x(x) \left(\int_{I \times \mathbb{R}} w(\xi,\zeta) \phi(x,y) d\mu_t^{\zeta}(y) d\zeta \right) \, d\mu_t^{\xi}(x)$$
$$= \int_{\mathbb{R}} \left(\int_{I \times \mathbb{R}} w(\xi,\zeta) \phi(x,y) d\mu_t^{\zeta}(y) d\zeta \right) \, d\mu_t^{\xi}(x).$$

Hypothesis

We suppose that

$$\phi(x,y)=(\lambda_1x+\lambda_2y),$$

with $(\lambda_1, \lambda_2) \in \mathbb{R}^2$.

Example: the original **Hegselmann-Krause** for which the interation corresponds to $w(\xi, \zeta)(y - x)$.

We obtain

$$\partial_t \bar{x}(t,\xi) = \int_{\mathbb{R}} \left(\int_{I \times \mathbb{R}} w(\xi,\zeta) (\lambda_1 x + \lambda_2 y) d\mu_t^{\zeta}(y) d\zeta \right) d\mu_t^{\xi}(x) \\ = \int_I w(\xi,\zeta) \left(\lambda_1 \int_{\mathbb{R}} x d\mu_t^{\xi}(x) + \lambda_2 \int_{\mathbb{R}} y d\mu_t^{\zeta}(y) \right) d\zeta \\ = \int_I w(\xi,\zeta) (\lambda_1 \bar{x}(t,\xi) + \lambda_2 \bar{x}(t,\zeta)) d\zeta \\ = \int_I w(\xi,\zeta) \phi(\bar{x}(t,\xi),\bar{x}(t,\zeta)) d\zeta.$$

We obtain

$$\partial_t \bar{x}(t,\xi) = \int_{\mathbb{R}} \left(\int_{I \times \mathbb{R}} w(\xi,\zeta) (\lambda_1 x + \lambda_2 y) d\mu_t^{\zeta}(y) d\zeta \right) d\mu_t^{\xi}(x)$$

= $\int_I w(\xi,\zeta) \left(\lambda_1 \int_{\mathbb{R}} x d\mu_t^{\xi}(x) + \lambda_2 \int_{\mathbb{R}} y d\mu_t^{\zeta}(y) \right) d\zeta$
= $\int_I w(\xi,\zeta) (\lambda_1 \bar{x}(t,\xi) + \lambda_2 \bar{x}(t,\zeta)) d\zeta$
= $\int_I w(\xi,\zeta) \phi(\bar{x}(t,\xi), \bar{x}(t,\zeta)) d\zeta.$

• **Obtaining a closed equation** in the general **(nonlinear)** case: **still open** (for further comments, see Paul, Trélat, '22).

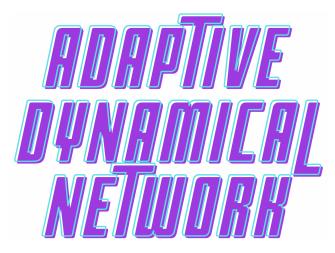
Purpose of the talk

Discussion around three variants of the previous model:

- adaptive dynamical networks,
- random weighted graphs,
- higher-order interactions.

References:

- Mean-field and graph limits for collective dynamics models with time-varying weights, A., Pouradier Duteil, '21,
- Graph limit for interacting particle systems on weighted random graphs, A., Pouradier Duteil, '23,
- Large-population limits of non-exchangeable particle systems, A., Pouradier Duteil, '24,
- Mean-field limit of non-exchangeable multi-agent system over hypergraphs with unbounded rank, A., Pouradier Duteil, Poyato, '24.



Adaptive dynamical network

• **Real-life interactions**: not only are **relationships influence our opinions**, but our opinions also exert a **reciprocal effect**, inducing **alterations in the network structure** of our relationships.

Adaptive dynamical network

• **Real-life interactions**: not only are **relationships influence our opinions**, but our opinions also exert a **reciprocal effect**, inducing **alterations in the network structure** of our relationships.

 \Longrightarrow the connectivity of the network evolves over time and this evolution can depend on the states of the system itself.

Adaptive dynamical network

• Real-life interactions: not only are relationships influence our opinions, but our opinions also exert a reciprocal effect, inducing alterations in the network structure of our relationships.

 \Longrightarrow the connectivity of the network evolves over time and this evolution can depend on the states of the system itself.

Definition

We will say that a network is **adaptive** if the **evolution of the edge** (i, j) explicitly **depends on the states of the nodes** i and j.

Adaptive dynamical network

• Real-life interactions: not only are relationships influence our opinions, but our opinions also exert a reciprocal effect, inducing alterations in the network structure of our relationships.

 \Longrightarrow the connectivity of the network evolves over time and this evolution can depend on the states of the system itself.

Definition

We will say that a network is **adaptive** if the **evolution of the edge** (i, j) explicitly **depends on the states of the nodes** i and j.

General form:

$$\begin{cases} \frac{d}{dt}x_i(t) = f_i(x_i(t), t) + \sum_{j=1}^N w_{ij}(t)\phi(x_i(t), x_j(t), t) & \text{ for all } i \in \{1, \cdots, N\}, \\ \frac{d}{dt}w_{ij}(t) = h_{ij}(w^N(t), x^N(t), t), \end{cases}$$

where $x^N = (x_i)_{1 \le i \le N}$ and $w^N = (w_{ij})_{1 \le i,j \le N}$

Weight-varying opinion dynamics (A. Pouradier Duteil, '21)

Opinion dynamics with time-varying influence

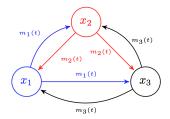
$$\begin{cases} \frac{d}{dt}x_i(t) = \frac{1}{N}\sum_{j=1}^N m_j(t)\phi(x_j(t) - x_i(t))\\ \frac{d}{dt}m_i(t) = \psi_i(m(t), x(t)) \end{cases}$$
(D_N)

where:

- $x_i \in \mathbb{R}^d$ is the state variable (opinion, position)
- $m_i \in \mathbb{R}^+$ is the agent's weight
- $N = \sum_{i=1}^{N} m_i(0)$ is the (initial) total weight of the system
- ϕ is the interaction function (often, $\phi(x_j x_i) = a(||x_i(t) x_j(t)||)(x_j(t) x_i(t)))$
- ψ_i dictate the weight dynamics. We suppose $\sum_i \psi_i \equiv 0$.

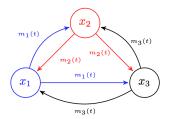
The model viewed on a graph

$$\begin{cases} \frac{d}{dt}x_i(t) = \frac{1}{N}\sum_{j=1}^N m_j(t)\phi(x_j(t) - x_i(t))\\ \frac{d}{dt}m_i(t) = \psi_i(m(t), x(t)) \end{cases}$$



The model viewed on a graph

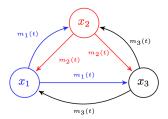
$$\begin{cases} \frac{d}{dt}x_i(t) = \frac{1}{N}\sum_{j=1}^N m_j(t)\phi(x_j(t) - x_i(t))\\ \frac{d}{dt}m_i(t) = \psi_i(m(t), x(t)) \end{cases}$$



• The edge weights depend on time $m_i(t)$.

The model viewed on a graph

$$\left\{egin{aligned} &rac{d}{dt} x_i(t) = rac{1}{N} \sum_{j=1}^N m_j(t) \phi(x_j(t) - x_i(t)) \ &rac{d}{dt} m_i(t) = \psi_i(m(t), x(t)) \end{aligned}
ight.$$



- The edge weights depend on time $m_i(t)$.
- Their evolution is coupled with the evolution of the nodes $x_i(t)$.

Continuous model: well-posedness

Hypothesis (H1)

The interaction function ϕ satisfies $\phi(0) = 0$ and $\phi \in \operatorname{Lip}(\mathbb{R}^d; \mathbb{R})$, with $\|\phi\|_{\operatorname{Lip}} = L_{\phi}$.

Hypothesis (H2)

$$\begin{cases} \|\psi(\cdot, x_1, m_1) - \psi(\cdot, x_2, m_1)\|_{L^2(I)} \leq L_{\psi} \|x_1 - x_2\|_{L^2(I)} \\ \|\psi(\cdot, x_1, m_1) - \psi(\cdot, x_1, m_2)\|_{L^2(I)} \leq L_{\psi} \|m_1 - m_2\|_{L^2(I)}. \end{cases}$$

and

$$|\psi(\xi, x, m)| \leq C_{\psi}(1 + ||m||_{L^{\infty}(I)}).$$

Theorem [A., Pouradier Duteil, '21]

ł

Let $x_0 \in L^{\infty}(I; \mathbb{R}^d)$ and $m_0 \in L^{\infty}(I; \mathbb{R})$. Then for any T > 0, there exists a unique solution $(x, m) \in C([0, T]; L^{\infty}(I; \mathbb{R}^d \times \mathbb{R}))$ to the *Graph Limit Equation*

$$\begin{cases} \partial_t x(\xi,t) = \int_I m(\zeta,t)\phi(x(\xi,t) - x(\zeta,t))d\zeta; & x(\cdot,0) = x_0 \\ \partial_t m(\xi,t) = \psi(\xi,x(\cdot,t),m(\cdot,t)); & m(\cdot,0) = m_0. \end{cases}$$
(GL)

From discrete to continuous

From $(x_i^N(t))_{i \in \{1,...,N\}}$ and $(m_i^N(t))_{i \in \{1,...,N\}}$, we define

$$\begin{cases} x_{N}(\xi, t) = P_{c}^{N}(x^{N}(t)) := \sum_{i=1}^{N} x_{i}^{N}(t) \mathbf{1}_{[\frac{i-1}{N}, \frac{i}{N}]}(\xi) \\ m_{N}(\xi, t) = P_{c}^{N}(m^{N}(t)) := \sum_{i=1}^{N} m_{i}^{N}(t) \mathbf{1}_{[\frac{i-1}{N}, \frac{i}{N}]}(\xi). \end{cases}$$

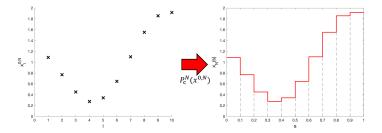


Illustration of the transformation P_c^N for N = 10 and $x^{0,N} \in \mathbb{R}$.

Key idea: equivalence of discrete and continuous formulations

Let $x_0 \in L^{\infty}(I; \mathbb{R}^d)$ and $m_0 \in L^{\infty}(I; \mathbb{R})$ satisfying $\int_I m_0(s) ds = 1$. $(x^N, m^N) \in \mathcal{C}([0, T]; \mathbb{R}^d)^N \times \mathcal{C}([0, T]; \mathbb{R})^N$ satisfy

$$\begin{cases} \frac{d}{dt} x_i^N(t) = \frac{1}{N} \sum_{j=1}^N m_j^N(t) \phi(x_j^N(t) - x_i^N(t)), \\ \frac{d}{dt} m_i^N(t) = \psi_i^{(N)}(m^N(t), x^N(t)), \end{cases}$$
(D_N)

with initial conditions $x_i^N(0) = P_d^N(x_0)_i$, $m_i(0) = P_d^N(m_0)_i$,

if and only if $x_N = P_c^N(x^N)$ and $m_N = P_c^N(m^N)$ satisfy

$$\begin{cases} \partial_t x_N(\xi, t) = \int_I m_N(\zeta, t) \,\phi(x_N(\zeta, t) - x_N(\xi, t)) \,d\zeta, \\ \partial_t m_N(\xi, t) = N \int_{\frac{1}{N} \lfloor \xi N \rfloor}^{\frac{1}{N} (\lfloor \xi N \rfloor + 1)} \psi(\zeta, x_N(\cdot, t), m_N(\cdot, t)) \,d\zeta, \end{cases}$$
(C_N)

with initial conditions $x_N(\cdot,0) = P_c^N(P_d^N(x_0))$ and $m_N(\cdot,0) = P_c^N(P_d^N(m_0))$.

Mean-field limit for the classical HK model

Being a solution to

$$\frac{d}{dt}x_{i}^{N} = \frac{1}{N}\sum_{j=1}^{N}\phi(x_{j}^{N} - x_{i}^{N}), \quad i \in \{1, \dots, N\}.$$
 (HK)

is equivalent to the *empirical measure*

$$\nu^{N}(t,x) := \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_{i}^{N}(t)).$$

being a solution to the non-local transport equation

$$\partial_t \nu_t(x) + \nabla \cdot (V[\nu_t]\nu_t) = 0$$

where
$$V[\nu_t] = \int_{\mathbb{R}^d} \phi(y-x) d\nu_t(y).$$

Mean-field limit for the classical HK model

Being a solution to

$$\frac{d}{dt}x_{i}^{N} = \frac{1}{N}\sum_{j=1}^{N}\phi(x_{j}^{N} - x_{i}^{N}), \quad i \in \{1, \dots, N\}.$$
 (HK)

is equivalent to the *empirical measure*

$$\nu^{N}(t,x) := \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_{i}^{N}(t)).$$

being a solution to the non-local transport equation

$$\partial_t \nu_t(x) + \nabla \cdot (V[\nu_t]\nu_t) = 0$$

where
$$V[\nu_t] = \int_{\mathbb{R}^d} \phi(y-x) d\nu_t(y).$$

Theorem: Convergence in Wasserstein distance

If $\exists \nu_0 \in \mathcal{P}(\mathbb{R}^d)$ s. t. $\lim_{N \to \infty} W(\nu_0^N, \nu_0) = 0$, then $\forall t \in [0, T], \lim_{N \to \infty} W(\nu_t^N, \nu_t) = 0$.

Generalization of the empirical measure

Consider our microscopic model with time-varying weights:

$$\begin{cases} \frac{d}{dt} x_i^N(t) = \frac{1}{N} \sum_{j=1}^N m_j^N(t) \phi(x_j^N(t) - x_i^N(t)), \\ \frac{d}{dt} m_i^N(t) = \psi_i^{(N)}(m^N(t), x^N(t)). \end{cases}$$
(D_N)

We define a new *empirical measure* by

$$\mu^{N}(t,x) := \frac{1}{N} \sum_{i=1}^{N} m_{i}^{N}(t) \delta(x - x_{i}^{N}(t)).$$

Generalization of the empirical measure

Consider our microscopic model with time-varying weights:

$$\begin{cases} \frac{d}{dt} x_i^N(t) = \frac{1}{N} \sum_{j=1}^N m_j^N(t) \phi(x_j^N(t) - x_i^N(t)), \\ \frac{d}{dt} m_i^N(t) = \psi_i^{(N)}(m^N(t), x^N(t)). \end{cases}$$
(D_N)

We define a new *empirical measure* by

$$\mu^N(t,x) := \frac{1}{N} \sum_{i=1}^N m_i^N(t) \delta(x-x_i^N(t)).$$

Notice that μ^N is invariant by

• relabeling of the indices,

Generalization of the empirical measure

Consider our microscopic model with time-varying weights:

$$\begin{cases} \frac{d}{dt} x_i^N(t) = \frac{1}{N} \sum_{j=1}^N m_j^N(t) \phi(x_j^N(t) - x_i^N(t)), \\ \frac{d}{dt} m_i^N(t) = \psi_i^{(N)}(m^N(t), x^N(t)). \end{cases}$$
(D_N)

We define a new *empirical measure* by

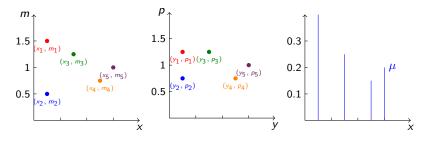
$$\mu^{N}(t,x) := \frac{1}{N} \sum_{i=1}^{N} m_{i}^{N}(t) \delta(x - x_{i}^{N}(t)).$$

Notice that μ^N is invariant by

- relabeling of the indices,
- grouping of the agents: for every (x^N, m^N) ∈ (ℝ^d)^N × ℝ^N, for every J ⊂ {1,..., N}, such that x_i^N = x_J for all i ∈ J,

$$\frac{1}{N}\sum_{i=1}^{N}m_{i}^{N}\delta(x-x_{i}^{N})=\frac{1}{N}\left[\left(\sum_{i\in J}m_{i}^{N}\right)\delta(x-x_{J})+\sum_{i\in\{1,\ldots,N\}\setminus J}m_{i}^{N}\delta(x-x_{i}^{N})\right].$$

Indistinguishability (illustration)



Example: (x^5, m^5) and (y^5, p^5) correspond to the same empirical measure $\mu^5 \in \mathcal{P}(\mathbb{R})$. Left: (x^5, m^5) with $x^5 = (0.5, 0.5, 1.5, 2.5, 3)$ and $m^5 = (1.5, 0.5, 1.25, 0.75, 1)$. Center: (y^5, p^5) with $y^5 = (0.5, 0.5, 1.5, 2.5, 3)$ and $p^5 = (1.25, 0.75, 1.25, 0.75, 1)$. Right: Empirical measure $\mu^5 = \frac{1}{5}(2\delta_{0.5} + 1.25\delta_{1.5} + 0.75\delta_{2.5} + \delta_3)$.

Indistinguishability (definition)

Definition

We say that system (D_N) preserves *indistinguishability* if for all $J \subset \{1, ..., N\}$, for all initial conditions $(x^0, m^0) \in \mathbb{R}^{dN} \times \mathbb{R}^N$ and $(y^0, p^0) \in \mathbb{R}^{dN} \times \mathbb{R}^N$ satisfying

$$\begin{cases} x_i^0 = y_i^0 = x_j^0 = y_j^0 & \text{for all } (i,j) \in J^2 \\ x_i^0 = y_i^0 & \text{for all } i \in \{1, \dots, N\} \\ m_i^0 = p_i^0 & \text{for all } i \in J^c \\ \sum_{i \in J} m_i^0 = \sum_{i \in J} p_i^0, \end{cases}$$

the solutions $t \mapsto (x(t), m(t))$ and $t \mapsto (y(t), p(t))$ to system (D_N) with respective initial conditions (x^0, m^0) and (y^0, p^0) satisfy for all $t \ge 0$,

$$\begin{cases} x_i(t) = y_i(t) = x_j(t) = y_j(t) & \text{for all } (i,j) \in J^2 \\ x_i(t) = y_i(t) & \text{for all } i \in \{1, \dots, N\} \\ m_i(t) = p_i(t) & \text{for all } i \in J^c \\ \sum_{i \in J} m_i(t) = \sum_{i \in J} p_i(t). \end{cases}$$

Special class of weight dynamics and mean-field limit

$$\left\{egin{aligned} &rac{d}{dt} \mathsf{x}_i^{N}(t) = rac{1}{N} \sum_{j=1}^{N} m_j^{N}(t) \phi(\mathsf{x}_j^{N}(t) - \mathsf{x}_i^{N}(t)), \ &rac{d}{dt} m_i^{N}(t) = m_i \psi(\mathsf{x}_i, \mu_N). \end{aligned}
ight.$$

Special class of weight dynamics and mean-field limit

$$\begin{cases} \frac{d}{dt} x_i^N(t) = \frac{1}{N} \sum_{j=1}^N m_j^N(t) \phi(x_j^N(t) - x_i^N(t)), \\ \frac{d}{dt} m_i^N(t) = m_i \psi(x_i, \mu_N). \end{cases}$$

Let $f \in \mathcal{C}^\infty_c(\mathbb{R}^d)$,

$$\begin{split} & \frac{d}{dt} \int f(x) d\mu_N(x) \\ &= \frac{d}{dt} \left[\frac{1}{N} \sum_{i=1}^N m_i f(x_i) \right] = \frac{1}{N} \sum_{i=1}^N \frac{d}{dt} m_i f(x_i) + \frac{1}{N} \sum_{i=1}^N m_i \frac{d}{dt} x_i \cdot \nabla f(x_i) \\ &= \frac{1}{N} \sum_{i=1}^N m_i \psi(x_i, \mu_N) f(x_i) + \frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N m_i m_j^N(t) \phi(x_j^N(t) - x_i^N(t)) \cdot \nabla f(x_i) \\ &= \int \psi(x, \mu_N) f(x) d\mu_N(x) + \int \int \phi(y - x) \cdot \nabla f(x) d\mu_N(x) d\mu_N(y). \end{split}$$

Special class of weight dynamics and mean-field limit

$$\begin{cases} \frac{d}{dt} x_i^N(t) = \frac{1}{N} \sum_{j=1}^N m_j^N(t) \phi(x_j^N(t) - x_i^N(t)), \\ \frac{d}{dt} m_i^N(t) = m_i \psi(x_i, \mu_N). \end{cases}$$

Let $f \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{d})$,

$$\begin{split} & \frac{d}{dt} \int f(x) d\mu_N(x) \\ &= \frac{d}{dt} \left[\frac{1}{N} \sum_{i=1}^N m_i f(x_i) \right] = \frac{1}{N} \sum_{i=1}^N \frac{d}{dt} m_i f(x_i) + \frac{1}{N} \sum_{i=1}^N m_i \frac{d}{dt} x_i \cdot \nabla f(x_i) \\ &= \frac{1}{N} \sum_{i=1}^N m_i \psi(x_i, \mu_N) f(x_i) + \frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N m_i m_j^N(t) \phi(x_j^N(t) - x_i^N(t)) \cdot \nabla f(x_i) \\ &= \int \psi(x, \mu_N) f(x) d\mu_N(x) + \int \int \phi(y - x) \cdot \nabla f(x) d\mu_N(x) d\mu_N(y). \end{split}$$

Hence the equation

 $\partial_t \mu_t(x) + \nabla \cdot (V[\mu_t](x)\mu_t(x)) = h[\mu_t](x)$ with $h[\mu](x) = \psi(x,\mu)\mu(x)$ and $V[\mu](x) = \int \phi(y-x)d\mu(y)$.

Nathalie Ayi

Subordination of the Mean-Field Equation to the Graph Limit Equation

$$\psi_i^{(N)}(x,m) = m_i(t) \frac{1}{N^k} \sum_{j_1=1}^N \cdots \sum_{j_k=1}^N m_{j_1}(t) \cdots m_{j_k}(t) S(x_i(t), x_{j_1}(t), \cdots x_{j_k}(t)).$$
(S)

Subordination of the Mean-Field Equation to the Graph Limit Equation

$$\psi_i^{(N)}(x,m) = m_i(t) \frac{1}{N^k} \sum_{j_1=1}^N \cdots \sum_{j_k=1}^N m_{j_1}(t) \cdots m_{j_k}(t) S(x_i(t), x_{j_1}(t), \cdots x_{j_k}(t)).$$
(S)

Proposition [A., Pouradier Duteil, '21]

Let $(x, m) \in \mathcal{C}([0, T]; L^2(I; \mathbb{R}^d)) \times \mathcal{C}([0, T]; L^2(I; \mathbb{R}))$ such that

$$\begin{cases} \partial_t x(\xi,t) = \int_I m(\zeta,t)\phi(x(\xi,t) - x(\zeta,t))d\zeta \\ \partial_t m(\xi,t) = m(\xi)\int_{I^k} m(\xi_1)\cdots m(\xi_k) S(x(\xi), x(\xi_1), \cdots, x(\xi_k)) d\xi_1\cdots d\xi_k \end{cases}$$
(GL)

Let $\tilde{\mu} \in \mathcal{P}(\mathbb{R}^d)$ be defined by

$$\tilde{\mu}_t(x) := \int_I m(\xi, t) \delta(x - x(\xi, t)) d\xi.$$

Then $\tilde{\mu}$ satisfies the transport equation with source

$$\partial_t \mu_t(x) + \nabla \cdot (V[\mu_t](x)\mu_t(x)) = h[\mu_t](x).$$
 (MFL)

Theorem [A., Pouradier Duteil, '21]

Let $x_0 \in L^{\infty}(I; \mathbb{R}^d)$ and $m_0 \in L^{\infty}(I; \mathbb{R}^d)$. Let $(x^N, m^N) \in \mathcal{C}([0, T]; \mathbb{R}^d)^N \times \mathcal{C}([0, T]; \mathbb{R})^N$ satisfy the ODE system with initial condition $x^{0,N} = P_d^N(x_0)$ and $m^{0,N} = P_d^N(m_0)$ for the special class of weight dynamics. Let μ^N be the **empirical measure** associated with (x^N, m^N) , i.e. for all $t \in [0, T]$,

$$\mu_t^N(x) := \frac{1}{N} \sum_{i=1}^N m_i^N(t) \delta(x - x_i^N(t)).$$

Secondly, let (x, m) be the solutions to the graph limit system for these weight dynamics and initial conditions given by $x(0, \cdot) = x_0$ and $m(0, \cdot) = m_0$. Let

$$\tilde{\mu}_t(x) := \int_I m(t,\xi) \delta(x-x(t,\xi)) d\xi.$$

Then, for all test function $\varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{d})$, and all $t \in [0, T]$, it holds

$$\lim_{N\to\infty}\int_{\mathbb{R}^d}\varphi(x)(d\mu_t^N(x)-d\tilde{\mu}_t(x))=0.$$

Idea

We have, for all test function $\varphi \in \mathcal{C}^\infty_c(\mathbb{R}^d)$,

$$\int_{\mathbb{R}^d} \varphi(x) d\mu_t^N(x) = \int_{\mathbb{R}^d} \varphi(x) d\tilde{\mu}_t^N(x),$$

where $ilde{\mu}^{N}_{t} \in \mathcal{P}(\mathbb{R}^{d})$ is the measure defined by

$$\tilde{\mu}_t^N(x) := \int_I m_N(t,\xi) \delta(x-x_N(t,\xi)) d\xi.$$

Example "The least influenced gain influence"

Denote by $e_{j \to i} = m_j \phi(x_i - x_j)$ the influence of j on i. Let e_i represent the total group influence on i:

$$e_i = \sum_{j=1}^{N} e_{j \to i} = \sum_{j=1}^{N} m_j \|\phi(x_i - x_j)\|.$$

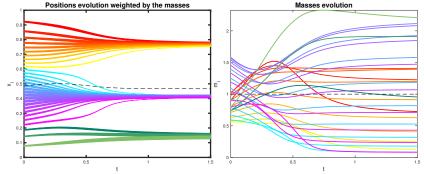
Denoting by \overline{e} the weighted average of the total group influence

$$\overline{e} = \sum_{k=1}^{N} \frac{m_k}{N} e_k = \sum_{k=1}^{N} \sum_{j=1}^{N} \frac{m_k}{N} m_j \|\phi(x_k - x_j)\|,$$

we consider the mass dynamics:

$$\psi_i(x,m) = \frac{1}{N} m_i \left(\overline{e} - e_i \right) = \frac{1}{N} m_i \left(\frac{1}{N} \sum_{k=1}^N \sum_{j=1}^N m_k m_j \| \phi(x_i - x_j) \| - \sum_{j=1}^N m_j \| \phi(x_i - x_j) \| \right)$$

Example "The least influenced gain influence": microscopic system

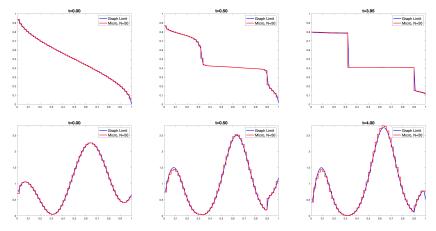


Evolution of opinions (left) and weights (right) for the microscopic model (D_N) with N = 30.

Example "The least influenced gain influence": Graph Limit

Evolution of the solutions to (D_N) and (GL) represented as functions from I = [0, 1] to \mathbb{R} .

Example "The least influenced gain influence": Graph Limit

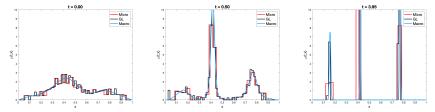


Evolution of the solutions to (D_N) and (GL) represented as functions from I = [0, 1] to \mathbb{R} .

Example "The least influenced gain influence": Mean-Field Limit

Evolution of the solutions to (D_N) , (GL) and (MFL) represented as measures on \mathbb{R} .

Example "The least influenced gain influence": Mean-Field Limit



Evolution of the solutions to (D_N) , (GL) and (MFL) represented as measures on \mathbb{R} .

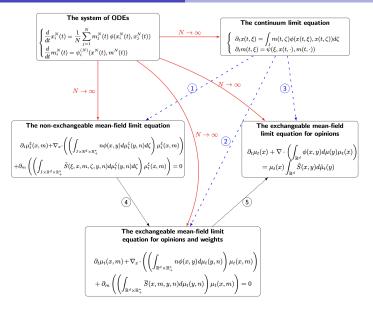


Figure: Links between the different equations (A., Pouradier-Duteil, '24)

Nathalie Ayi

Other results

• The setting of Kuramoto-type model (Gkogkas, Kuehn, Xu, '23)

$$\begin{cases} \frac{d}{dt}x_i = \omega_i(x_i, t) + \frac{1}{N}\sum_{j=1}^N w_{ij}\phi(x_i, x_j) & \text{ for all } i \in \{1, \cdots, N\} \\ \frac{d}{dt}w_{ij} = -\varepsilon(w_{ij} + H(x_i, x_j)) \end{cases}$$

Other results

• The setting of Kuramoto-type model (Gkogkas, Kuehn, Xu, '23)

$$\begin{cases} \frac{d}{dt}x_i = \omega_i(x_i, t) + \frac{1}{N}\sum_{j=1}^N w_{ij}\phi(x_i, x_j) & \text{ for all } i \in \{1, \cdots, N\} \\ \frac{d}{dt}w_{ij} = -\varepsilon \left(w_{ij} + H(x_i, x_j)\right) \end{cases}$$

• Generalization of the evolving-weight dynamics (Throm, '23)

$$\begin{cases} \frac{d}{dt}x_i = \omega_i(x,t) + \frac{1}{N}\sum_{j=1}^N w_{ij}\phi(x_i,x_j) & \text{ for all } i \in \{1,\cdots,N\}\\ \frac{d}{dt}w_{ij} = \psi_{ij}^{(N)}(x(t),w(t)) \end{cases}$$

$$(1)$$

About random graphs

• Random graph: a graph which is generated by a random process.

About random graphs

- Random graph: a graph which is generated by a random process.
- **Example 1: Erdos-Rényi graph**: the edge between a pair of distinct nodes is inserted with probability *p*.

Figure: Pixel pictures of the Erdos-Rényi graph with N = 40 and p = 0.5 (left), N = 600 and p = 0.5 (right) [Medvedev, 2014]

About random graphs

- Random graph: a graph which is generated by a random process.
- Example 2 : Small world graph: replacing a random set of the local connections by randomly chosen long-range ones.

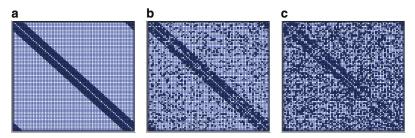


Figure: Pixel pictures of the Small world graph, p starts at 0 and increases from left to right [Medvedev, 2014]

Dynamical systems on W-random graph

• Let $\overline{\xi} = (\xi_1, \xi_2, \xi_3, ...)$ and $\overline{\xi}^N = (\xi_1, \xi_2, ..., \xi_N)$ where $\xi_i, i \in \mathbb{N}$ are i.i.d. random variables with $\mathcal{L}(\xi_1) = \mathcal{U}(I)$.

Definition [Medvedev, '14]

A **W-random graph** on *N* nodes generated by the random sequence $\overline{\xi}$, denoted $G_N = \mathbb{G}(\overline{\xi}_N, W)$ is such that the edges of G_N are selected at random and

$$\mathbb{P}((i,j) \in E(G_N)) = W(\xi_i,\xi_j) \text{ for each } (i,j) \in \{1,\ldots,N\}^2 \text{ for } i \neq j.$$

The decision wether to include a pair $(i, j) \in \{1, ..., N\}^2$ is made **independently** as for the decisions of other pairs.

Dynamical systems on W-random graph

• Let $\overline{\xi} = (\xi_1, \xi_2, \xi_3, ...)$ and $\overline{\xi}^N = (\xi_1, \xi_2, ..., \xi_N)$ where $\xi_i, i \in \mathbb{N}$ are i.i.d. random variables with $\mathcal{L}(\xi_1) = \mathcal{U}(I)$.

Definition [Medvedev, '14]

A W-random graph on N nodes generated by the random sequence $\overline{\xi}$, denoted $G_N = \mathbb{G}(\overline{\xi}_N, W)$ is such that the edges of G_N are selected at random and

$$\mathbb{P}((i,j) \in E(G_N)) = W(\xi_i,\xi_j)$$
 for each $(i,j) \in \{1,\ldots,N\}^2$ for $i \neq j$.

The decision wether to include a pair $(i, j) \in \{1, ..., N\}^2$ is made **independently** as for the decisions of other pairs.

Dynamical systems on W-random graph

$$rac{d}{dt} x^N_i(t) = rac{1}{N} \sum_{j=1}^N \sigma_{ij} \phi(x^N_j(t) - x^N_i(t)) \, ,$$

with $\mathcal{L}(\sigma_{ij}|\overline{\xi}) = \mathcal{B}(W(\xi_i,\xi_j)).$

Random graph limit

Dynamical systems on W-random graph

$$rac{d}{dt} x^{\mathcal{N}}_i(t) = rac{1}{\mathcal{N}} \sum_{j=1}^{\mathcal{N}} \sigma_{ij} \phi(x^{\mathcal{N}}_j(t) - x^{\mathcal{N}}_i(t))$$

with $\mathcal{L}(\sigma_{ij}|\overline{\xi}) = \mathcal{B}(W(\xi_i,\xi_j)).$

 (\tilde{S}_N^{r-r})

Random graph limit

Dynamical systems on W-random graph

$$rac{d}{dt} x^N_i(t) = rac{1}{N} \sum_{j=1}^N \sigma_{ij} \phi(x^N_j(t) - x^N_i(t))$$

with $\mathcal{L}(\sigma_{ij}|\overline{\xi}) = \mathcal{B}(W(\xi_i,\xi_j)).$

Medvedev obtains the convergence to

The random graph limit equation

$$\partial_t x(\xi,t) = \int_I W(\xi,\zeta) \phi(x(\zeta,t) - x(\xi,t)) d\zeta.$$
 (C)

 $(\tilde{S}_N^{\rm r-r})$

Random graph limit

Theorem [Medvedev, '14]: Random Graph Limit

Suppose $W \in W_0$, a class of symmetric measurable function on I^2 with values on I. ϕ is a **Lipschitz continuous function** on \mathbb{R} and $g \in L^{\infty}(I)$. Let T > 0 and suppose that the solution of $(C) \times (\xi, \zeta)$ satisfies the following inequality

$$\begin{split} \min_{t\in[0,T]} \int_I \left\{ \int_I W(\xi,\zeta) \phi(x(\zeta,t)-x(\xi,t))^2 d\zeta \\ &- \left(\int_I W(\xi,\zeta) \phi(x(\zeta,t)-x(\xi,t) d\zeta \right)^2 \right\} \geq c_1 \end{split}$$

for some positive constant c_1 . Then, the solution of (\tilde{S}_N^{r-r}) and (C) satisfy the following relation

$$\lim_{N \to +\infty} \mathbb{P}\{N^{1/2} \sup_{t \in [0,T]} \|x^N(t) - \mathbf{P}_{\overline{\xi}^N} x(\xi,t)\|_{2,N} \le C\} = 1$$

for some constant C > 0 with $\mathbf{P}_{\overline{\xi}^N} x(\xi, t) = (x(\xi_1^N, t), x(\xi_2^N, t), \dots, x(\xi_N^N, t))$ and

$$(x,y)_N := rac{1}{N}\sum_{i=1}^N x_i y_i$$
, and the corresponding norm $\|x\|_{2,N} := \sqrt{(x,x)_N}$.

Nathalie Ayi

Weighted random graph

Example [Garlaschelli, '09]

A weighted random graph model in which the probability of drawing an edge of discrete weight $w \in \mathbb{N}$ between vertices *i* and *j* is given by

$$\mathbb{P}(\sigma_{ij}^N = w) = q_{ij}(w) = p^w(1-p).$$

Weighted random graph

Example [Garlaschelli, '09]

A weighted random graph model in which the probability of drawing an edge of discrete weight $w \in \mathbb{N}$ between vertices *i* and *j* is given by

$$\mathbb{P}(\sigma_{ij}^N = w) = q_{ij}(w) = p^w(1-p).$$

Lack of a general framework !

Weighted random graph

Example [Garlaschelli, '09]

A weighted random graph model in which the probability of drawing an edge of discrete weight $w \in \mathbb{N}$ between vertices *i* and *j* is given by

$$\mathbb{P}(\sigma_{ij}^N = w) = q_{ij}(w) = p^w(1-p).$$

Lack of a general framework !

Definition [A., Pouradier Duteil, '23]

A **q-weighted random graph** on N nodes generated by the random sequence $\overline{\xi}$, denoted G_N , is such that the weight of an edge of G_N is randomly attributed. More precisely, the law for the weight of the edge (i, j) is $q(\xi_i, \xi_j, .)$ where

$$q: I \times I \rightarrow \mathcal{P}(\mathbb{R}_+)$$

$$(\xi,\zeta) \mapsto q(\xi,\zeta;.).$$

The decision of the attribution of the weight of a pair $(i, j) \in \{1, ..., N\}^2$ is made independently from the decision for other pairs.

Examples

W-random graph (Medvedev, '14): Generate between any two nodes (ξ, ζ) an edge (of weight 1) with probability W(ξ, ζ).

 $q(\xi,\zeta;\cdot) = (1 - W(\xi,\zeta))\delta_0 + W(\xi,\zeta)\delta_1,$ for all $\xi,\zeta \in \mathbb{R}$.

Examples

W-random graph (Medvedev, '14): Generate between any two nodes (ξ, ζ) an edge (of weight 1) with probability W(ξ, ζ).

 $q(\xi,\zeta;\cdot) = (1 - W(\xi,\zeta))\delta_0 + W(\xi,\zeta)\delta_1,$ for all $\xi,\zeta \in \mathbb{R}$.

 Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w ∈ N, with probability p^w(1 − p).

$$q(\xi,\zeta;\cdot) = (1-p)\sum_{i=0}^{+\infty} p^i \delta_i, \qquad ext{ for all } \xi,\zeta\in\mathbb{R}.$$

Weighted random graph limit

• Let $\overline{\xi} = (\xi_1, \xi_2, \xi_3, ...)$ and $\overline{\xi}^N = (\xi_1, \xi_2, ..., \xi_N)$ where $\xi_i, i \in \mathbb{N}$ are i.i.d. random variables with $\mathcal{L}(\xi_1) = \mathcal{U}(I)$.

Dynamical systems on q-weighted random graph

$$\begin{cases} \frac{d}{dt} x_i^N(t) = \frac{1}{N} \sum_{j=1}^N \sigma_{ij} \phi(x_j^N(t) - x_i^N(t)), \\ x_i^N(0) = g(\xi_i^N), \quad i \in \{1, \dots, N\} \end{cases}$$
(S_N^{r-r})

with $\mathcal{L}(\sigma_{ij}|\overline{\xi}) = q(\xi_i, \xi_j; \cdot).$

Weighted random graph limit

• Let $\overline{\xi} = (\xi_1, \xi_2, \xi_3, ...)$ and $\overline{\xi}^N = (\xi_1, \xi_2, ..., \xi_N)$ where $\xi_i, i \in \mathbb{N}$ are i.i.d. random variables with $\mathcal{L}(\xi_1) = \mathcal{U}(I)$.

Dynamical systems on q-weighted random graph

$$\begin{cases} \frac{d}{dt} x_i^N(t) = \frac{1}{N} \sum_{j=1}^N \sigma_{ij} \phi(x_j^N(t) - x_i^N(t)), \\ x_i^N(0) = g(\xi_i^N), \quad i \in \{1, \dots, N\} \end{cases}$$
(S_N^{r-r})

with $\mathcal{L}(\sigma_{ij}|\overline{\xi}) = q(\xi_i, \xi_j; \cdot).$

We prove the convergence towards the continuum limit

The weighted random graph limit equation

$$\begin{cases} \partial_t x(\xi, t) = \int_I \left(\int_{\mathbb{R}_+} wq(\xi, \zeta; dw) \right) \phi(x(\zeta, t) - x(\xi, t)) d\zeta \\ x(\xi, 0) = g(\xi), \quad \xi \in I, \end{cases}$$
(C₂)

Our result

Hypothesis 1

Let $\phi \in L^{\infty}(\mathbb{R})$ be bounded and Lipschitz continuous, with $\|\phi\|_{\text{Lip}} := L$ and $\|\phi\|_{L^{\infty}(\mathbb{R})} := K$.

Hypothesis 2

There exists M > 0 such that for all $(\xi, \zeta) \in I^2$, for all $k \in \{1, \dots, 4\}$,

$$\left(\int_{\mathbb{R}_+} w^k q(\xi,\zeta;dw)\right)^{1/k} \leq M,$$

i.e. the first four moments of the probability measure $q(\xi, \zeta; \cdot)$ are bounded uniformly in ξ and ζ .

Our result

Theorem [A., Pouradier Duteil, 2023]: Weighted Random Graph Limit

Let ϕ satisfy Hypothesis 1, let $g \in L^{\infty}(I)$ and let q be a weighted random graph law satisfying Hypothesis 2. Then, as N goes to infinity, solution x^N to the discrete system (S_N^{r-r}) converges to the solution x of the continuous model (C_2) . More precisely,

$$\mathbb{P}\left[\sup_{t\in[0,T]}\|x^{N}(t)-\mathsf{P}_{\overline{\xi}^{N}}x(\cdot,t)\|_{2,N}\geq\frac{C_{1}(T)}{\sqrt{N}}\right]\leq\frac{\tilde{C}_{1}}{N}$$

where the constants $C_1(T)$ and \tilde{C}_1 are respectively defined by $C_1(T) := \sqrt{T}\sqrt{1 + M^2K^2}e^{(\frac{1}{2} + 4ML)T}$ and $\tilde{C}_1 := 3M^4K^4 + 6$.

 Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w ∈ N, with probability p^w(1 − p).

• Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight $\mathbf{w} \in \mathbb{N}$, with probability $p^{w}(1-p)$.

$$q(\xi,\zeta;\cdot) = (1-p)\sum_{i=0}^{+\infty} p^i \delta_i, \qquad ext{for all } \xi,\zeta\in\mathbb{R}.$$

 Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w ∈ N, with probability p^w(1 − p).

$$q(\xi,\zeta;\cdot) = (1-p)\sum_{i=0}^{+\infty} p^i \delta_i, \qquad ext{ for all } \xi,\zeta\in\mathbb{R}.$$

• First moment given by:

$$ar{w}(\xi,\zeta)=\int_{\mathbb{R}^+}wq(\xi,\zeta;dw)=(1-p)\sum_{i=1}^{+\infty}ip^i=rac{p}{1-p}$$

 Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w ∈ N, with probability p^w(1 − p).

$$q(\xi,\zeta;\cdot) = (1-p)\sum_{i=0}^{+\infty}p^i\delta_i, \qquad ext{ for all } \xi,\zeta\in\mathbb{R}.$$

• First moment given by:

$$ar{w}(\xi,\zeta)=\int_{\mathbb{R}^+}wq(\xi,\zeta;dw)=(1-p)\sum_{i=1}^{+\infty}ip^i=rac{p}{1-p}$$

• Limit equation:

$$\begin{cases} \partial_t x(\xi,t) = \frac{p}{1-p} \int_I \phi(u(\zeta,t) - u(\xi,t)) d\zeta \\ x(\xi,0) = g(\xi), \quad \xi \in I. \end{cases}$$

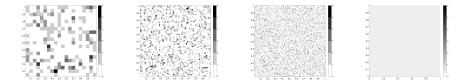


Figure: Left and Centers: Random interaction matrices generated by deterministic sequences for N = 20, N = 60 and N = 150, for the random weighted graphon (44), Right: Corresponding graphon.

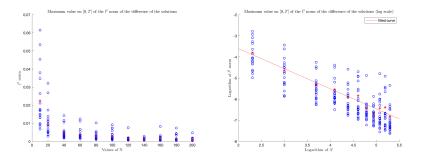


Figure: Convergence of $\sup_{t \in [0,T]} ||x^N(t) - \mathbf{P}_{\overline{\xi}^N} x(\cdot, t)||_{2,N}$ for different values of N, with 20 runs for each value of N.

Numerical Illustration: Weighted "Small World" network

• Model for a "small-world" network (Watts, Strogatz, '98): Connect each node with its *k* closest neighbors to form a ring lattice. Then, rewire each edge at random with probability *p*.

Numerical Illustration: Weighted "Small World" network

- Model for a "small-world" network (Watts, Strogatz, '98): Connect each node with its *k* closest neighbors to form a ring lattice. Then, rewire each edge at random with probability *p*.
- **Refined model for a weighted "small-world" network: Connect two nodes** with an edge of **weight 1** if they are among each other's closest *k* neighbors, i.e. if $|\xi_i \xi_j| \le r$, where $r := \frac{k}{2N}$. Then, with probability $p = \frac{|\xi_i \xi_j|}{r}$, rewire each edge at random, giving the new edge a weight drawn uniformly in the interval [0, 1].

$$q(\xi,\zeta;dw) = \begin{cases} \frac{\rho(\xi,\zeta)}{r} d\lambda_{[0,1]} + (1 - \frac{\rho(\xi,\zeta)}{r})\delta_1 & \text{if } \rho(\xi-\zeta) \le r \\ d\lambda_{[0,1]} & \text{otherwise} \end{cases}$$
(2)

where $\rho(\xi,\zeta) = \min\{|\xi-\zeta|, |\xi-\zeta-1|, |\zeta-\xi-1|\}.$

Numerical Illustration: Weighted "Small World" network

- Model for a "small-world" network (Watts, Strogatz, '98): Connect each node with its *k* closest neighbors to form a ring lattice. Then, rewire each edge at random with probability *p*.
- Refined model for a weighted "small-world" network: Connect two nodes with an edge of weight 1 if they are among each other's closest k neighbors, i.e. if $|\xi_i \xi_j| \le r$, where $r := \frac{k}{2N}$. Then, with probability $p = \frac{|\xi_i \xi_j|}{r}$, rewire each edge at random, giving the new edge a weight drawn uniformly in the interval [0, 1].

$$q(\xi,\zeta;dw) = \begin{cases} \frac{\rho(\xi,\zeta)}{r} d\lambda_{[0,1]} + (1 - \frac{\rho(\xi,\zeta)}{r})\delta_1 & \text{if } \rho(\xi-\zeta) \le r \\ d\lambda_{[0,1]} & \text{otherwise} \end{cases}$$
(2)

where $\rho(\xi,\zeta) = \min\{|\xi-\zeta|, |\xi-\zeta-1|, |\zeta-\xi-1|\}.$

• First moment:

$$\bar{w}(\xi,\zeta) = \int_{\mathbb{R}^+} wq(\xi-\zeta;dw) = \begin{cases} (1-\frac{\rho(\xi-\zeta)}{2r}) & \text{if } \rho(\xi-\zeta) \leq r\\ \frac{1}{2} & \text{otherwise.} \end{cases}$$

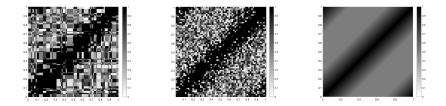


Figure: Values of the random interaction matrices generated from a random sequence (left) and a deterministic sequence (right) according to the random weighted graph law (2) for N = 60. Right: Corresponding continuous graphon $(\xi, \zeta) \mapsto \bar{w}(\xi, \zeta)$.

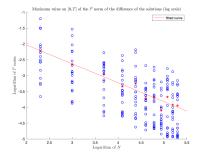


Figure: Convergence of $\sup_{t \in [0,T]} ||x^N(t) - \mathbf{P}_{\overline{\xi}^N} x(\cdot, t)||_{2,N}$ for different values of N, with 20 runs for each value of N. Case of the random weighted graph law (44).

Hypergraphs

• Many existing models focus on binary interactions

Hypergraphs

• Many existing models focus on binary interactions \neq real-life dynamics often involve interactions within groups containing more than just two individuals (virtual group chats, physical meetings ...)



Figure: Higher-order group interactions in social context [Neuhauser et al, 2022]

Hypergraphs

• Hypergraph H = (V, E) where V are the vertices, E the hyperedges.

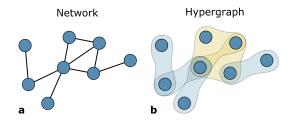


Figure: Pairwise and higher-order interactions [Battiston et al, 2021]

The θ -nearest neighbor example

The unweighted unbounded ranked hypergraphon: for all $\ell \in \mathbb{N}$,

$$w_\ell(\xi_0,\xi_1,\cdots,\xi_\ell) = egin{cases} 1 & ext{if} & \max_{i,j\in\{0,\cdots,\ell\}} |\xi_i-\xi_j| \leq heta \ 0 & ext{otherwise}, \end{cases}$$

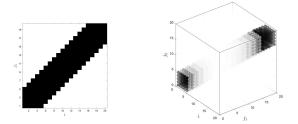


Figure: Pixel representation for $\ell = 1, 2$ with $\theta = 0.3$ and N = 20.

Models of multi-agent dynamics on hypergraphs

• Extension of the Kuramoto-Saraguchi model on hypergraphs (Skardal, Arenas, '20)

$$\begin{split} \frac{d}{dt} x_i &= \sum_{j_1=1}^N w_{ij_1}^{N,1} \sin(x_{j_1} - x_i) + \sum_{j_1=1}^N \sum_{j_2=1}^N w_{ij_1j_2}^{N,2} \sin(2x_{j_1} - x_{j_2} - x_i) \\ &+ \sum_{j_1=1}^N \sum_{j_2=1}^N \sum_{j_3=1}^N w_{ij_1j_2j_3}^{N,3} \sin(x_{j_1} + x_{j_2} - x_{j_3} - x_i) \end{split}$$

• **Higher-order opinion dynamics** on a uniform hypergraph of rank 2 (Neuhauser, Lambiotte, Schaub '22)

$$\frac{d}{dt}x_i = \sum_{j_1=1}^N \sum_{j_2=1}^N w_{j_1j_2}^{N,2} e^{\lambda |x_{j_1} - x_{j_2}|} \left(\frac{x_{j_1} + x_{j_2}}{2} - x_i\right).$$

Non-exchangeable mean-field limit for higher order case

$$\begin{cases} \frac{dX_i^N(t)}{dt} = \sum_{\ell=1}^{N-1} \sum_{j_1,\dots,j_\ell=1}^N w_{ij_1\dots j_\ell}^{\ell,N} \, \mathcal{K}_\ell(X_i^N(t), X_{j_1}^N(t),\dots, X_{j_\ell}^N(t)), \\ X_i^N(0) = X_{i,0}^N, \quad i \in \{1,\dots,N\}. \end{cases}$$

Mean-field limit of non-exchangeable multi-agent systems over hypergraphs with unbounded rank, A., Pouradier-Duteil, Poyato, In preparation

Nathalie Ayi

GL and MFL for interacting particle systems

Non-exchangeable mean-field limit for higher order case

$$\begin{cases} \frac{dX_i^N(t)}{dt} = \sum_{\ell=1}^{N-1} \sum_{j_1,\dots,j_\ell=1}^N w_{j_1\dots,j_\ell}^{\ell,N} \, \mathcal{K}_\ell(X_i^N(t),X_{j_1}^N(t),\dots,X_{j_\ell}^N(t)), \\ X_i^N(0) = X_{i,0}^N, \quad i \in \{1,\cdots,N\}. \end{cases}$$

Under some regularity assumptions on the kernel K_{ℓ} , scaling and symmetry conditions on the weights, then the microscopic dynamics as N goes to ∞ is characterized by the Vlasov equation:

$$\begin{cases} \partial_t \mu_t^{\xi} + \operatorname{div}_x(F_{\mathsf{w}}[\mu_t](\cdot,\xi)\,\mu_t^{\xi}) = 0, \quad t \ge 0, \, x \in \mathbb{R}^d, \, \xi \in [0,1], \\ \mu_{t=0}^{\xi} = \mu_0^{\xi}. \end{cases}$$

where

$$\begin{aligned} F_{\mathsf{w}}[\mu_t](x,\xi) &:= \sum_{\ell=1}^{\infty} \int_{[0,1]^{\ell}} w_{\ell}(\xi,\xi_1,\ldots,\xi_{\ell}) \\ & \times \left(\int_{\mathbb{R}^{d\ell}} K_{\ell}(x,x_1,\ldots,x_{\ell}) \, d\mu_t^{\xi_1}(x_1) \, \cdots \, d\mu_t^{\xi_{\ell}}(x_{\ell}) \right) \, d\xi_1,\ldots \, d\xi_{\ell}. \end{aligned}$$

Mean-field limit of non-exchangeable multi-agent systems over hypergraphs with unbounded rank, A., Pouradier-Duteil, Poyato, In preparation

Nathalie Ayi

Figure: Social graph (http://inicia.org.ar/blog/7-claves-para-hacer-networking/)

Thank you for your attention !