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The Boltzmann Equation for Hard Spheres

Unknown: velocity distribution function f(t, x, v) > 0 satisfying
(0 + v - Vy)f(t,x,v) = B(f(t,x,-))(v)

where B(f) := B(f, f), with

B(fvg)(v)1=(2f)2/ (F(V)g(vi) — F(v)g(v))((v — vi) - n)1dvidn
R3xS2

with r =molecular radius and |n| = 1, and with

V,::V—(V—V*)'nny V:(::V*—F(V—V*)'nn

Thm 1. [Cercignani-lliner-Pulvirenti] If £ € LY(R3; (1-+v|)*dv), then

1 0
B(f)e L}(R3; (1Hv|)?dv), and B(f)(v) ( v ) dv = (O)
R3 | 0

v|2
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Landau's Currents

In his 1936 article on the collision integral for charged particles with
Coulomb potential (see also §41 in [Landau-Lifshitz vol. 10]) Landau
argued that (at least formally)

B(f)(v)dv =0 = B(f)=-V, - J(f)
R3

Henceforth J(f)(v) € R3 is called a Landau (mass) current.
See also [Villani, M2AN1999] for a more detailed presentation.

By the same formal argument

B(f)(v)|v|?dv =0 = B(f)|v|]> = -V, - T(f)
R3

Henceforth ['(f)(v) € R3 is called a Landau energy current.
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Mass Current for the Hard-Sphere Boltzmann Equation

Since (v, v) + (V/, v.) is an involutive isometry of R® for all n € S?,
it preserves the Lebesgue measure on R®. Besides (V/, v/) is invariant
under the transformation n — —n, while

(V' =v) - n=—(v—v)-n

Hence, for all ¢ € C2°(R3), setting 2r = 1 for simplicity

/ B(f,g)(v)p(v)dv
= [ AW = S = ) - ). dide

(v—v&)-n
:/ f(v)g(v*)</ jsgb(v—sn)ds) ((v—vi)-n)4dvdv.dn
R6xS? 0
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— | B(f,g)(v)o(v)dv

R3

(v—vs)-n
/ f(v)g(v*)</ n~qu(vsn)ds> ((v—v4)-n)4dvdvsdn
R6xS? 0
:/ f(v)g(ve)Locs<(vvs)-nn* V(v —sn)((v—vi)-n)4dsdvdv.dn
R7xS?

_/ f(W+Sn)g(W*+Sn)10<s<(w—w*)-nn'v¢(w)
R7xS2
X ((w—wy)-n) 1 dsdwdw, dn

This leads to Landau’s mass current (up to a divergence-free field)

B(f,g)=-V-J(f,g) with J(f,g)(v)

=— / Locs<(vav,)nf (v+sn)g(vi+sn)((v—vi)-n)sndsdv.dn
R*xS2
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Schwartz Kernel of J

Set z := sn so that s = |z| and dsdn = |ZTZ2; integrating in the

formula giving J(f, g) by substitution shows that

HE8Y)=— [ FA2get2 iy o 2z
(R3)2 |z
Equivalently, with v + z = v; and v, 4+ z =: v, so that % =1
J(f,g)(v) = A(v —vi,vi — w)f(vi)g(va)dvidva

(R%)?

where

A(&,n) = —1|§2+n‘§<01‘7£.|f5

Observe that
€] > n| = [€P >0 €| = A(&n) =0

Remark. This follows from energy conservation
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Translation- and O3;(R)-equivariance of J

Lemma 2.
(1) Setting 7.z = z + ¢, we see that

J(fore,gorte)=J(f,g)oc, ceR3
(2) For each R € O3(R)
J(foR,goR)=RTJ(f,g)oR

(3) If f is radial, there exists a radial function (or distribution) j(f)
that is real-valued and satisfies

J(F)(v) = i(F)(IvD)v
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Proof of (1): Due the fact that J is defined through an integral kernel
depending only on v — vy and v; — v». O

Proof of (2): The integral kernel of J is the form
A(v = vi,vi —w) = a[lv —wv|, (v —w1) - (vi = w)](v — v1) O
Proof of (3): Since f = f o R, by O3(R)-equivariance of J
RTJ(f)(Rv) = J(f)(v), Re€ Os(R)
Specializing this to v # 0 and R € O3(R), ~ O((Rv)})
J(f)(v) = RJ(f)(v) sothat v x J(f)(v)=0

since O((Rv)1) acts transitively on cercles centered at 0 in (Rv)™*.

Thus J(f) = j(f)v, with j(f) real-valued, and j(f)o R = j(f) for all
R € O3(R), so that j(f) is radial. O
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Action of Scalings on J

Lemma 3.
For each A > 0, set S,z := A\z; then

J(foSygo08\)=A"J(f,g)o S\

Proof: Since (&,7n) — A(&,n) is homogeneous of degree —1,

J(foSy,goS\)(v)=[ A(v—vi,vi—wv2)f(Avi)g(Av2)dvidva
R6

= / AA(AV = Avi, Avi — A (Avi)g(Ave)dvidva
RS
= / )\.A(AV — \71, \71 — \72)f(\71)g(\72))\_6d\71d\72
R6
= A2 J(f,8)(\v)
which implies the desired identity. O
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Uniqueness of A/Gauge Condition

Question. Uniqueness of J in the class of vector fields of the form

J(f,g)(v) = (Ro)2 A(v —vi,vi — w)f(v1)g(v2)dvidvy ?

Lemma 4. Let A(-,n) € D'(R3)3 for each € R3 satisfy

{supp[A(-,n)l c B(0,[n]), ¢ 3 A(E,n) =0
Ve A& m) =0, A(-,n) e l}(B)?

for some open ball B 5 0. Then, for all n € R,
A(-,m) =0 in D'(R%?3

Proof: Set A(£,n) = a(&,n)¢ for € # 0 and all n € R3 with real-
valued a. The distribution a(-,n) is —d-homogeneous on R? \ {0},
since V¢- A(&,n)=0, compactly supported, thus supp[A(-, )] C {0}.
That A(-,n) € L}(B(0,1))3 implies the conclusion. O
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J(Maxwellians)= 0

It is known (consequence of Boltzmann's H Theorem) that, if f > 0
is rapidly decaying while In f has polynomial growth at oo

p —|v—ul?
B(f) =0 «<— = M(p7u79)(V) = We | °/20

Thm 5. For all p,# > 0 and all u € R3, one has
J(Mp,u0)) =0

Proof: Set u =0 by Lemma 2 (1) and = 3
and p = 7%/2 since J is quadratic. Then J(e™
Lemma 2 (3). Since [A(¢, n)] < |nl/I¢]?

: —lvl? P
VIV </e|vivlfz“/%(lﬂvl—m?)e 2P g

3/2 ) 2 2 —v]2/2
<7|— / (2+|V1‘2)e_‘\/1‘ dVl < C e [vi|©/ dVl

Jv—v1] — [v—v1|?

by Lemma 3 WLOG,
Y(v) = j(|v[?)v by
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By the rearrangement inequality

BIVEYI(v] + [vP) <2€ [ afebal et /2g,

[v—vq]2

S(_—//e—lv;nz/advl+ C/e_vlz/zdvl

[vi[?

This implies that j € L1(0, +00). Setting

+o0
J(vP) = —/ j(r)dr, sothat J e L*°(1,+400)
|

v|2
we see that J(e 1*)(v) = 3V, 3(|v|?) and therefore
AJ(vP) =2V - J(e ) (v) = 2B(e” F)(v) =0

Therefore v +— J(|v|?) is harmonic on R3 and bounded at infinity.
Hence J =const. by Liouville’s theorem and J(e™ ") = V3 = 0. O
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Landau Energy Current

For all ¢ € C°(R3), denoting ¢’ := ¢(v') and ¢. := ¢(vs), one has
/ B(f)\v|2<bdv = é/ ff(v - n)2(<l5*—¢)((V—v*)-n)+dvdv*dn
R3 R6xS2

+/ (V12 = (v-n)?+ (ve-n)?)(¢' = 9)((v = vs)- )4 dvdvedn
R6 x S2
The Landau energy current is given by the formula

F(f) =T1(f) +Ta(f), so that [v|?B(f) = -V - T(f)

where 'y(f) corresponds to the second integral above, viz.

Fa(F) = J( - PF,F) + / (Un(F (10)2F) — Ju((-|m)2F. £))dn

/Av Vi, Vi—V2)d (‘V V‘)f(vl)g(V2)dv1dV2

In other words, J, is the disintegration of J in the direction n € S?
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Set @y := Rotg ® k5 and
wn(0) ui(9)\ oY v~ (v—w)-nn
w(d) uy(0)) ~ O\ v+ (v—w) -
In the first term in the decomposition of the integral of B(f)|v|?¢

w/2
@—¢=A Vo(un(~0)) - ta(—0)do

so that the current corresponding to that term is

O == [ (@O0 (a0) o

X f(u1(0))f(u2(0)))vsdvidndb

Remark The current I'1(f) corresponds to the symmetry v < v,
and »(f) to the pre- to post-collision transform v/ — v.
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Action of Scalings and of O3(R) on I’

Lemma 6.
(1) For each R € O3(R)

M(foR)=R'T(f)oR
(2) Denoting Syz = Az for z € R® and A > 0
F(foSy\)=A'T(f)o S,

Proof of (1): Use the O3(R)-equivariance of J and J, for I'y; for I,
use the commutation of Qy with h ® R. O

Proof of (2): For 'y, use the fact that (v, vq,n) — A(v — vy, )2
is homogeneous of degree 1 on R?; in the case of 1, use the fact
that the map (v, v) — ((u1 — u2) - n)4(u1 - n)?vs is homogeneous
of degree 4on R® (9+1=6+4=7+3..). O
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Kolmogorov-Zakharov Solutions

Question To find power-law, steady, space-homogeneous solutions
of the Boltzmann equation. If they exist, these solutions are called
KZ spectra in the context of wave turbulence, by analogy with the
K41 theory of fluid turbulence.

Zakharov's approach [Zakharov-Lvov-Falkovich | 1992, chapter 3]
(1) For radial distribution functions, denoting f(t,v) = F(t,w) with
w = |v|?, the space homogeneous Boltzmann equation for hard
spheres in dimension 3 is

F ) 2 \/min(w,W1,wz,W3)6 . _

X (F(t,w1)F(t,w2) — F(t,w)F(t,ws))dwidwadws =: B(F(t,-))(w)

Think of the r.h.s. as an integral in w1, ws with w3 = w1 +wr —w
on A = {(w1,w2) s.t. wy,wz, w1 +wp —w >0}
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(2) Integrate by substitution using Zakharov's transformations

Py w O(wi.wy) | w3
(w, w3, wy,wh) = (w1, w2, w,w3) A — Ag ‘d(wi,wz) =03
Py w Awpwy) | w8
(w,w3,w1,w2) - E(w37w7w17w2) A3 — A1 ‘a(wivwg) - ;g
PN L w A(wiwh) | W8
(w,w3,w1,w2) - E(W2,W1,W3,W) A4 — A1 ‘8(0.11,(,03) - ;g

;

®;

Figure: The domain of integration A = A; U Ay U A3 U Ay
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(3) This transforms B(F(t,-))(w) into an integral on Aj:

VWB(| - ") (w) = A Vmin(w, wi, wz, w3)(Wiws — wtwh)

(LT @) @) )
X6(w1 — w2 — w — w3)dwidwrdws

This argument shows that

=—7/4 —I—2k=0
RO — (=0
k=—-9/4 —I—2k=1

2

Questions

(1) Is this compatible with Boltzmann's H Theorem in the equality
case? [Boltzmann's H Thm, equality case: for f rapidly decreasing
and In f with polynomial growth B(f) =0 = f = Maxwellian]

(2) Are the computations above legitimate? Existence of all the
integrals involved in Zakharov's argument?
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Euler's Identity/Residue at 0 of a Distribution

Thm 7. [Gelfand-Shilov'63 vol. 1 111.3.3] Let T € D'(R9\ {0}).
(1) If T is homogeneous of degree o > —d on R?\ {0}, it has a
unique extension T € D'(R9) that is homogeneous of degree a.
(2) A distribution T on R?\ {0} is homogeneous of degree —d iff

V- (xT)=0 in D'(RY\ {0})

(3) If TeD'(RY\{0}) is homogeneous of degree —d, there exists a
real number ro(T) (residue of T at 0) s.t.

V- [(xT)] = ro(T)do in D'(RY)

(4) A distribution T on RY\ {0} that is homogeneous of degree —d
has an homogeneous extension to RY if and only if ro(7) = 0, and

two such extensions of T to R differ by a multiple of &.

Example: d = 1, then rp(1/x) = 0 (take pvi) while ro(1/|x|) =2
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Other Approach to KZ Solutions

The KZ solutions arise from the structural properties of the Landau
currents — especially scaling- and O3(R)-equivariance.

Lemma 8. If f is radial and homogeneous of degree § and if j(f)
exists in D'(R3\ {0}), then j(f) is homogeneous of degree 4 + 20.

Proof: For A > 0, one has f o Sy = \?f so that

A5J(F) oSy = J(foSy) = JWNF) = X\ J(f)
so that J(f) o Sy = A>*29 J(f), hence j(f) o Sy = M*2%(f). O
Thm 9. If kK € R is such that J(| - |?%) € D'(R3\ {0})3, then

B(l- )= =V-(J(]- ) =0in D'(R°\{0}) <= r=—
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Proof: Under the assumption that J(| - |?%) € D'(R3\ {0})3, using
Lemma 2 (3) shows that J(|-|**) = j(|-|?®)v in D'(R3\ {0})3 where
J(| - ?%) € D'(R3\ {0}) is a radial distribution.

By Lemma 8, for each A >0
J( - P9y 0 Sy = XHAG( - 2
On the other hand, by Euler's identity (Thm 7 (2))
B(|- )= =V-(J(I- ) = =V - (- [*)v) =0
in D'(R3\ {0}) iff

(1) o S =A725( - 1)

ISIN
O

Hence 4 + 4k = —3, or, equivalently, Kk = — 1.
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t = —27 (This remains ambiguous in Zakharov's works.)

For all open 3 0 with C! boundary and outward normal field n
oli(- P = [ J(1- ) nds
oQ

if J(| - |?") is continuous on a neighborhood of 9, or in the sense
of currents in the general case.

Thm. 9’ Under the assumptions of Thm 8, J(|-|>*) € D'(R3\ {0})3
has the same flux § through all closed surfaces surrounding 0 and

B(|-[>) = —F6 in D'(R®)  forr=—7

Remark. Obviously, one has § # 0, unless J(| - |?%) = 0.

Remark. That KZ profiles are solutions to the steady Boltzmann
equation with source term (at 0 or co) already appears in [Escobedo-
Velasquez, Mem. AMS 741]
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KZ Solution/Energy Cascade

Thm 10. If € Ris such that ['(] - |?) € D'(R3\ {0})3, then
\v|2B(| . |29) = _V. (r(| . |29)) —0in D/(R3 \ {0}) —s = _%

Proof: If & € R is such that I'(| - |??) € D'(R3\ {0})3, we deduce
from Lemma 2 (3) the existence of (|- |??) € D'(R3\ {0}), a radial,
real-valued distribution such that

r([-1%) = (- [*)v
By Lemma 9 (2), v(| - [2%) o0 Sy = A®T499(] - |29), while
VIPB(| - 1*) = =V - (+(] - [**)v) = 0.in D'(R*\ {0})

implies that (|- [2) 0 Sy = A~3y(|-|??) by Thm 7 (2) (since Euler’s
identity characterizes homogeneous functions). Therefore

6+40 = -3 < 0 =—

O
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As in the case of the mass current J(| - [**) for k = —Z, the energy
current (|- %) with @ = —% has the same flux & through all closed
surfaces surrounding 0, and Thm 6 (3) implies that

VIPB(| - [*)(v) = —®d in D'(R®) for 6 = —9

where the energy flux is the residue at 0 of the distribution (| - |2)
6 = noly(| - )]

Direct vs. inverse energy cascade

In the case of the KZ solution | -|?? with § = —%, energy flows from

low |v|'s to high |v|'s if & > 0, and from high |v|'s to low |v|'s
provided that & < 0.
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Existence of Collision Integral /Fluxes for KZ Solutions

Summarizing, we have

(1) written B(f) = —V - J(f) and |v|?B(f) = —V - T(f)(v)

(2) proved that J()(v) = j(F)(|v])v and T(F)(v) = A(F)(vI)v
when f is a radial distribution function, and

(3) proved that

(-1 € D’(R3\{0})} 7
B(| - [**)=0 on R*\{0} *
(- P € D’('?3\{0})} g 0
B(| - *)=0 on R*\ {0} *

Question Are j(| - |*%) and/or 4(] - [#) in L} _(R®\ {0})?

Remark. The scalar fields j(| - |*) and (| - |*) cannot be both in
L} (R3\ {0}) for o = —Z and for « = —3 (by Thms 9 and 10)
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Recall that, if f(v) = F(w) with w = |v|?, then

BN =2(r? [ VS () () - F()Fw3)
0,+00

X (w1 + w2 — w — w3)dwi dwadws

To study the absolute convergence of this integral for (v) = |v|~7/2,

/< o VminGewn el — T T
0,400

X (w1 + wr — w — w3)dwidwadws

> / \/071(w1_7/4w2_7/4 — w*7/4(w2 — w)*7/4)dw1dw2

wy<w
/ dwy / dw» 3 /oo dwy
0 wi’/A' 7/4 o1 (w2 — w)7/4

w+l<wy
,+oo —4/3( 1+w)3/4 =4/3
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Same argument with f(v) = ]v|79/2,

/ Vmin(w, wi, w2, w3)|wy % _9/4 —w_9/4w3_9/4\
(0,400)3
X (w1 + w2 — w — w3)dwy dwadws

> / \/wl(wl_g/4w2_9/4 — w_9/4(w2 — w)_9/4)dw1dw2

wy <w
/ dwq / dw» _w_5/4/<>o dwy
0 w;/4 1 9/4 1 (wg—w)9/4

w+l<wy
TV

—+<><> *4/5(1+w)5/4 =4/5
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.‘77/2

One could study instead the existence of the currents J(| ) or

F(|-179/2). In the former case

7 dvi (v — vp)®2 dvo
T R e e (1 )
|v1‘2 |V V1| (v—v2)-(v—v1)<0 |V2‘2

and the inner integral obviously diverges whenever |v|?> < v- vy, since
one can let vo — 0 in the domain of integration.

Conclusion Neither of the KZ solutions for the Boltzmann equation
with hard sphere collisions with the exponents 7/4 or 9/4 satisfies
the locality assumption.

Neither the derivation of KZ inverse power law solutions based on the
Zakharov transformation in the collision integral, nor the approach
based on the Landau mass flux and the Euler identity are justified in
this case.
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Applications to WT

Let us apply the methods above to the 4-wave collision integral

R = [ FRRIK e + gk ~ by — k)
X

X((k — ks) - n)+dkdn

o PRIV Ky + ey — oy~ k)

xO(k' + ki — k — k)O(|K'[2 + |KL|2 — | k|?| ke |?)dk, dk'dK.

N~

If £ > 0 is continuous and rapidly decaying at infinity

1
C(F)(k) ( K ) dk =0
R3 |k‘2

Remark. This corresponds to cubic NLS; other homogeneities of
x-section for the MMT model
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(1) The integrand of C(f) is 0 iff f is a “Rayleigh-Jeans” distribution

1

— a,c>0, ueR?
a+clk—ul?’ ’ ’

F(k) =

(2) Landau mass current

J(f)(k):—/ (f(k+sn—(k—ky)-nn)+f(ke+sn+(k—ks)-nn))
R*xS?
xf(k + sn)f(ke + sn)locsc(k—k.).n(k — ki) - nndk.dsdn
= / A(k — k1, ki — ko, ko — k3)f(ki1)f(k2)f(ks)dkidkodks
(R%)3

where

{9[(5777, ¢) = A(&n) (5(77 +¢— £46) +0(C + I%\Zé)>
A(&,m) = —Ligl2em<ol€TH(E - 1)E
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The mass current J is translation- and O3(R)-equivariant — because
the Schwartz kernel of J is a function of k — k1, k1 — ko, ko — k3, and
because 2A(RE, Rn, RC) = RA(&,m, €); besides 2 is homogeneous of
degree —1 — 3 = —4 in R®. Therefore

J(foSy)=A"J(f)oSy
(3) Since f +— J(f) is cubic, if J(| - |**) is a distribution on R3\ {0}
J(I- 270 83) = JN] - 1) = XFJ(| - [27) = A72J(] - ) 0 Sy
so that J(|- %) = (|- [2*)k with j(|- [*%) € D/(R®\ {0}) radial, and
J( -1 0 Sy = ATORj(] - )
Then | - |2 is a KZ solution if in the sense of D'(R3\ {0})

C(I- 7)==V -((l- PIK) =0 <= 4+6r=-3 < r=—

[N
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(4) There is an energy current I such that | - |°C = V - T, and, if
F(] - ) is a distribution on R3\ {0}, exactly as for J

T [2) = (- )k, with y(] - %) radial

Besides, (| -|??) has the same degree of homogeneity as | -|%j(|-|*?),
i.e. 244460 = 6+60. Therefore § is a KZ exponent for the energy
flux if and only if
|-2C =~V -(v(]-[*)k) =0 on R*\ {0} <= 6+ 60 =—3
3
— 0=—3
(5) The collision integral C(f) is absolutely convergent

o for f(k) = |k|~7/3 (KZ mass profile), but
e neither for f(|k|) = |k|~3 (KZ energy profile)
e nor for f(k) = (a+ c|k — u|?>)~! (RJ profile)

See [Collot-Dietert-Germain, ARMA2022]
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Conclusion

e The Boltzmann collision integrals in the kinetic theory of gases
and in WT can be represented in terms of Landau mass and energy
currents, even for anisotropic distribution functions

e The uniqueness of these fluxes has been established under some
appropriate gauge conditions

e The KZ exponents are identified by using the Euler identity for
homogeneous distributions together with the O3(R)-equivariance and
scale invariance of the Landau currents, instead of using Zakharov's
transform or Balk's argument [PhysicaD2000]

(Connaughton, Nazarenko and Newell proposed in [PhysicaD2003] a
dimensional argument to find KZ exponents, based on postulating
the existence of mass and energy fluxes in space dimension 1 on the
basis of the local conservation laws for these quantities — closer in
spirit to K41 theory)
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e Unlike in earlier works (from Zakharov's school), KZ spectra satisfy
Collision integral = pdg

Consistent with the picture of K41 theory with a low frequency source
and a high frequency sink — in an asymptotic regime where the
wavelength range of the source is shrunk to a point.

Energy

Damping
(viscosity)

Inertial range

Source Wavelength
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