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The Navier-Stokes equations

In three-dimensional space, consider the velocity field uν(x, t), where

uν = (uν
1 , u

ν
2 , u

ν
3), x ∈ R

3 and say t > 0. Given a (large-scale, divergence-free forcing)

f , it is solution of

∂uν

∂t
+ (uν ·∇)uν = −

1

ρ
∇pν + ν∆uν + f and ∇ · uν = 0,

where pν is the pressure field, and ν the kinematic viscosity.

"I became interested in turbulent liquid and

gas flows at the end of the thirties. From

the very beginning it was clear that the

theory of random functions of many

variables (random fields), whose

development only started at that time,

must be the underlying mathematical

technique. Moreover, I soon understood

that there was little hope of developing a

pure, closed theory, and because of the

absence of such a theory the investigation

must be based on hypotheses obtained by

processing experimental data."
Kolmogorov 1903-1987
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Two-point statistical structure of turbulence

Define the energy spectrum (Fourier transform of the correlation) as

Eν(k) =

∫
e−2iπkℓ〈uν(x)uν(x+ ℓ)〉 dℓ
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Two-point statistical structure of turbulence

In an equivalent way, define the velocity increment as

δℓu
ν(x) = uν(x+ ℓ)− uν(x),

and remark that 〈(δℓu
ν)2〉 = 2σ2 − 2〈uν(x)uν(x+ ℓ)〉.
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The Lagrangian picture

Yeung (97), Mordant et al. (02), Mordant et al. (04), Bourgoin-Volk

Flow equations vν(t) ≡
dXν(t)

dt
= uν(Xν(t), t)
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The Lagrangian picture: Multiscale Analysis
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Numerical data from the Hopkins Database: Rλ = 418
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The Lagrangian picture: Multiscale Analysis
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• The velocity increment: δτvν(t) = vν(t+ τ)− vν(t)

• We have seen that 〈(δτvν)2〉 ∝ τ in the inertial range

• We have seen that 〈(δτvν)2〉 ≈ τ2〈a2〉 in the dissipative range

• What about high-order statistics? such as Probability density functions (PDF) and

Flatness?
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Asymptotics of phenomenology of fluid turbulence

Consider (as observed) a homogeneous, isotropic stationary solution of the (forced over

L) Navier and Stokes equations: call it uν(x, t), with x ∈ R
3.

• Velocity variance σ2 is finite and independent on viscosity ν, i.e.

Eulerian
︷ ︸︸ ︷
lim
ν→0

lim
t→∞

E(|uν |(t)2) =

Lagrangian
︷ ︸︸ ︷
lim
ν→0

lim
t→∞

E(|vν(t)|2) = σ2 < +∞

To do so, the fluid develops Roughness

• In the Eulerian description, velocity develops H = 1/3 Hölder continuity, i.e.

lim
ν→0

lim
t→∞

E
[
|uν(x+ ℓ, t)− uν(x, t)|2

]
∝

τ→0
ℓ2/3.

• In the Lagrangian description, velocity develops H = 1/2 Hölder continuity, i.e.

lim
ν→0

lim
t→∞

E
[
|vν(t+ τ)− vν(t)|2

]
∝

τ→0
τ.
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Contributions on the stochastic modeling of Lagrangian turbulence

Can we build up an

infinitely differentiable and causal random

process to mimic fluctuations of

Lagrangian velocity at a finite Reynolds

number?
→ B. Viggiano, J. Friedrich, R. Volk, M.

Bourgoin, RB Cal, L. Chevillard (2020).

What are the minimal ingredients to

include in a spatio-temporal random

advecting Eulerian field such that induced

Lagrangian velocities are realistic of

experimental observations?

→ J. Reneuve, L. Chevillard (2020).
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The Era of Random Fields

→ Fractional Gaussian Fields are a remarkable (admirable) stochastic representation

of an asymptotic Eulerian velocity field u(x):

u(x) =

∫

k∈Rd

e2iπk·x 1

|k|
H+ d

2

L

Ŵ (ddk)

• Ŵ being the Fourier transform of a Gaussian white noise

• |k|2L ≡ |k|2 + 1/L2, a regularized norm over the integral length scale L

It is, for 0 < H < 1,

• a finite variance scalar field

• a statistically homogeneous random representation of a Hölder continuous

function, in the sense that

E(δℓu)
2 ∝

|ℓ|→0
|ℓ|2H

• Easy extension to divergence-free (in a distributional sense) vector field

• Easy numerical representation on the torus x ∈ T
d

So what about its flow?
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Flow of Rough vector fields

Flow of a vector field u(x, t) corresponds to studying the map

v ≡ Ẋ(t) = u(X(t), t)

with initial datum X(0) = x.

• Cauchy-Lipschitz theorem provides global solutions, including existence and

unicity.

• DiPerna and Lions provide an extension to vector fields having bounded

divergence and some Sobolev type regularity. Further extensions by De Lellis et

al. (beyond my understanding).

• No hope to give a meaning to the flow when u is Hölder continuous!

See for instance the (deterministic) textbook example u(x) = |x|1/3, non unicity of

the solution when starting at the origin.

a Regularization procedure is needed

When there is no flow, first possible regularization is introducing a white noise in the

trajectory, i.e.

dX = u(t,X)dt+ dW (t)
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Regularized (by viscosity) Fractional Gaussian Fields
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uν(x) =

∫

k∈Rd

e2iπk·x 1

|k|
H+ d

2

L

e−|k|ηK Ŵ (ddk)

• with ηK(ν) known as the Kolmogorov dissipative length scale, and goes to 0 as
ν → 0.

• The random field u is now Lipschitz (actually C∞)

• Hölder continuity is now obtained in the asymptotic regime, i.e.

lim
ν→0

E(δℓu
ν)2 ∝

|ℓ|→0
|ℓ|2H
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Incompressible Spatio-Temporal Fractional Gaussian Field

→ Consider then an incompressible, statistically homogeneous, isotropic and stationary

velocity field with proper regularity H in both space and time,

u(x, t) =

∫

y∈R2,s∈R

GH(x− y, t− s)W (d2y, ds)

GH(x, t) = ϕ(x, t)
x⊥

|x|
||x, t||H−3/2

• A functional form inspired by the Biot-Savart law.

• ||x, t||2 = |x|2 + σ2t2 a spatio-temporal norm.

• ϕ a spatio-temporal cut-off function over large (integral) L and T scales.

• H the Holderian regularity, H ≈ 1/3 for turbulence.

• Keep in mind that this has to be regularized over a small scale ηK to ensure

differentiability.

• then do funky movies.

• See also alternative (Markovian) propositions by

Chaves-Gawędzki-Horvai-Kupiainen-Vergassola (2003).
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Solving the flow equations
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and measure the regularity of Lagrangian velocity

kjkjkjg,bkjbkjbkjhkjhhhjgEvolving-in-timekjkjkkjhkjjghjgFrozen-in-time
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Conclusions

• It remains to understand why and how 1
3

-Eulerian regularity makes a
1
2

-Lagrangian regularity.

• Note also non-Gaussian corrections on v while u is Gaussian.

• See J. Reneuve et al. PRL (2020)

• Go to three-dimensional modeling of the advecting field, plus 1d in time!!

A good conjecture for today (well-posed and difficult!):

Take uν a regularized fractional field as we presented, even time-independent. Consider

0 < H < 1. Then the regularity of the Eulerian (advective) field sets the regularity in the

Lagrangian counterpart, i.e.

lim
ν→0

E(δℓu
ν)2 ∝

|ℓ|→0
|ℓ|2H ⇒ lim

ν→0
lim
t→∞

E(δτv
ν)2 ∝

|τ |→0
|τ |2H
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The ensemble of correlated velocities of Gawędzki et al.

A (Markovian) proposition by Chaves-Gawedzki-Horvai-Kupiainen-Vergassola (2003)

The authors propose a covariance structure for the spatio-temporal velocity field ui(t, x),

for x ∈ R
d and i and integer such that 1 ≤ i ≤ d. It reads

E
[
ui(t, x)uj(t

′, x′)
]
= D2

∫

k∈Rd

e2iπk·(x−x′) e
−|t−t′|D3(2π|k|L)2β

(2π|k|L)d+2H
P̂ij(k)dk,

where Pij is the projector (Leray) along divergence-free vector fields.

It is a very smart proposition for a Markovian incompressible velocity field, that has

unique formulation using a Langevin evolution when is assumed a Gaussian framework.

Namely

dv̂i(t, k) = −D3(2π|k|L)
2β v̂i(t, k)dt+

√
2D2D3(2π|k|L)

β−d/2−H ˆdW i(t, k),

and then project û(t, k) = P̂(k)v̂(t, k).
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Intermittency in Eulerian fluctuations

Eulerian longitudinal velocity increments: δℓu(x) = u(x+ ℓ)− u(x)

Flatness F =
〈(δℓu)

4〉

〈(δℓu)
2〉2
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