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Nonlinear waves and turbulence



Kolmogorov 1903 — 1987

“| became interested in turbulent liquid and gas flows at the end of the thirties. From
the very beginning it was clear that the theory of random functions of many variables
(random fields), whose development only started at that time, must be the underlying
mathematical technique. Moreover, | soon understood that there was little hope of
developing a pure, closed theory, and because of the absence of such a theory the

investigation must be based on hypotheses obtaining in processing experimental data.”
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Wave Turbulence (N. Mordant)




Botlzmann’s statistical description for waves

Boltzmann's kinetic theory : interaction of N > 1 particles of size
€ < 1 in the scaling N4 1 ~ 1
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Botlzmann’s statistical description for waves

Boltzmann's kinetic theory : interaction of N > 1 particles of size
€ < 1 in the scaling N4 1 ~ 1

Wave turbulence : interaction of IN > 1 waves with interaction

strength ¢ < 1 in a scaling eL® ~ 1

on =T (n) (WKE)

Which interactions 7
How to quantify the number of wave 7

Randomness and statistical description ?

T

Solution to the kinetic equation 7



Physical ideas

Theory : turbulent cascade, KZ spectrum, large deviations ...
Experiments : shape of the boxes, dispersive relation, forcing ...

Numerics : simulations for understanding and predictions



Physical ideas

Theory : turbulent cascade, KZ spectrum, large deviations ...

Experiments : shape of the boxes, dispersive relation, forcing ...

Numerics : simulations for understanding and predictions




Mathematical ideas for cubic NLS

. Growth of H® norm and turbulent cascade

lullfepay = Y lux® and lullf.pey = Y (K)*Jux|?
K€z Kez



Mathematical ideas for cubic NLS

. Growth of H® norm and turbulent cascade

lullZaay = D luxl® and Jlull pay = Y (K)*|ux[?

KcZ KeZ
. Wave Kinetic Equation for nx := E[|uk|?] with K € Z% = %Zd
. / ( 1 1 " 1 1 )
5 = NNy Ny Mgy | — — — + — — —
(s k=k1—ko—+ks kT Tk2 ks NE Ny, Mgy My

|k[?=k1|?~ k2 |+ k3|

in the continuous limit



Mathematical ideas for cubic )

. Growth of H® norm and turbulent cascade
lullF2pay = D luxl® and  JJullreqay = D (K)|uk|?
KeZ KeZ

. Wave Kinetic Equation for nx := E[|ux|?] with K € Z¢ := 174

5 ( 1 1 n 1 1 )
10t = NN, N, Mgy | — — — + — — —
n ) k:k:észJrzka ) L2 ng Mg,y Ny Ny
[k|"=lk1]"—k2|"+]|ks|
in the continuous limit
. Continuous Resonant equation by Faou, Germain and Hani
10,0 = A g VK, UK, VK,

K=K, —-K>+K3
|K|?=|K1|*—|K2|*+| K3

indexed by K1, K2, K3 € Z$



Random initial data

Statistical description for random initial data

. Random Phase (RP) :

<p(x) _ Z nKei()KeiK-z
Kezd

with (0 ) geza i..d. uniform random variables on [0, 27]

. Random Phase and Amplitudes (RPA) :

p(x) = Z nrére®

Kezd

with (£5) geza i.i.d. Gaussian complex random variables
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Random initial data

Statistical description for random initial data

. Random Phase (RP) :

<p(x) _ Z nKei()KeiK-z
Kezd

with (0 ) geza i..d. uniform random variables on [0, 27]

. Random Phase and Amplitudes (RPA) :

p(x) = Z nrére®

Keza
with (£5) geza i.i.d. Gaussian complex random variables
— Propagation of chaos : correlations at ¢t > 0 ?

# dynamic at the equilibrium given by invariant Gibbs measure



Wave Kinetic Equation and Deng/Hani

Solve the equation
i0pu = Au + Mul?u (NLS)

on the large torus TdL with L > 1 and A < 1 ford > 3

— random initial data of the form

LQZ” ff\

Kez2

with ({x)x i.i.d. Gaussian complex random variables



Wave Kinetic Equation and Deng/Hani

Solve the equation
i0pu = Au + Mul?u (NLS)

on the large torus TdL with L > 1 and A < 1 ford > 3

— random initial data of the form

Z 77 f[\

Kez2

with ({x)x i.i.d. Gaussian complex random variables

Wave Kinetic Equation for nx := E[|uk|?] with K € Z¢

1 1 1 1

i@tnk:/ TNy Moy T (———+———
k=k1—ko+ks3 1°"R277R3 n n n -
[l 2|22+ k3 A



Continuous Resoning equation by Faou, Germain and Hani

Solve the equation
i0pu = Au + Mul?u (NLS)

on the large torus T2 with L. > 1 and \ < 1

v(t) = e~ *Au(t) gives in frequency

. iwt —_—
1000 = A Z " VK, TR, VK,
K=K1—-K>+K3

with K1, Ko, K3 € Z2 and w = |K|? + |Ka|? — | K4 | — | K3[?



Continuous Resoning equation by Faou, Germain and Hani

Solve the equation

i0pu = Au + Mul?u (NLS)
on the large torus T2 with L. > 1 and \ < 1
v(t) = e~ *Au(t) gives in frequency

1000 = A Z e"”tv[ﬁ%v;{s
K=Ki—K>+K3
with K1, Ko, K3 € Z2 and w = |K|? + |Ka|? — | K4 | — | K3[?
— In the limit L > 1 and A < 1, effective resonant system
100K = A Z VK, VK, VK,
K=K1—Kx+K3
|K =K1 >~ | K2|*+| K3

using normal form and number theory with AL < 1



CR as the effect of exact resonances [FGH]

The trilinear discrete sum

L
Ti(fig,h) = > Jr 9K, Pk
K=K1—Kx+K3
|K|?=|K1|*—|K2|?+|K3]?

is of order

2 2
L osll) | ktpbaine fagiahi,
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CR as the effect of exact resonances [FGH]

The trilinear discrete sum

L
Ti(fig,h) = > Jr 9K, Pk
K=Ki—Ky+K3
|K|?=|K1|*—|K2|?+|K3]?
is of order

2 2
L osll) | ktpbaine fagiahi,
|K|2=k1|?—|k2|?+|ks3|?

The long time behavior of NLS in the limit A < 1 and L > 1 with
a scaling can be described by the Continuous Resoning equation

i0ig = R(9,9,9) (CR)

as an equation on the full space R?



Deterministic initial data and CR




New family of random initial data

L > 1 is the period of the oscillating function

h < 1 is the spatial truncation parameter

Observation of a large number of waves under the scaling hl < 1
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New family of random initial data

L > 1 is the period of the oscillating function

h < 1 is the spatial truncation parameter

Observation of a large number of waves under the scaling hl < 1

_1p2).2 _ 1322
plz) = zzne e3Pl = el pp (o)
Kez2

ETR
2h2
Pk = 27Th2 ZQ nNKe

KezZs

Can we observe wave turbulence in the limit ?
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Nonlinear Schrodinger equation

The equation
i0u = Au + |ul®u (NLS)

on R? rewrites in frequency as

108U, = Wil + Ul Uj
k=0—m+j

and in the new variable v(t) := e~ #2u(t)
. _ — it AW ) L.
10y = e IvgUmv; =: Ri(t, v,v,v)
k=0—m+j
with the resonance relation

Awppmi = |kI* = [ + |m[* — |5
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Scattering and resonant manifold

Scattering is a linear behavior for large time of the solution

o(t) = (), — o

This is related to

Ry (t,u,v,w) :/ eim‘“k‘v”"juﬂmwj
k=0—m-+j

= /Reitﬁ (/k:ém+j uﬂ)mwj) d¢

AWkpmj=¢

using the co-area formula thus related to

Se(&) ={(t,m,j) eR®; k=L—m+j and Awgem; =&}



Scattering for NLS

The nonlinear Schrédinger equation scatters for initial data in
2 = {p(z) € H'(R?) ; |z|p(z) € L*(R?)}

Carles and Gallagher proved that the scattering operator is analytic
in 3, that is for initial data ¢ the solution satisfies

vR(t) = o + Y (—i)"ViH(t)

n>1

with [[V* 2 < [lellz,



Scattering for NLS

The nonlinear Schrédinger equation scatters for initial data in
2 = {p(z) € H'(R?) ; |z|p(z) € L*(R?)}

Carles and Gallagher proved that the scattering operator is analytic
in 3, that is for initial data ¢ the solution satisfies

vR(t) = o + Y (—i)"ViH(t)

n>1

with [V 5 I, V0 = [ Ru(s, 0, )ds and

t s
sz(t)=2/ / Ri(s, 9,0, R(s', 0,9, ¢))ds'ds

+//Rk5907 (s, 0,0, 9), p)ds'ds



Back to our initial data

The function ¢ is a 2w L-periodic function embbeded in ¥ by
Gaussian truncation and

L
lolls < -

thus for u(0) = ep with € < h% we have

v(t) = ep — ieSVi(t, p) + O(°)



Back to our initial data

The function ¢ is a 2w L-periodic function embbeded in ¥ by
Gaussian truncation and

L
lolls < -

thus for u(0) = ep with € < h% we have

v(t) = ep — ieSVi(t, p) + O(°)

Can we obtain a limit for

t . )
Vl(t,(p)Z/O S_ZSA(‘QZSAQO’QeZSA(p)dS

in a suitable timeframe depending on the parameters 7



Coarse grained observables

In frequency, the initial data

o ]] Z nNKe >h k—K|? h—>0 Z nK()() /w *]\)
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Pk =
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Coarse grained observables

In frequency, the initial data

1 — L k—K|? . .
Pk = 575 Z nge 2h2 | — Z Nido(k — K)
2mh h—0
Kez? KeZ?

hence we consider observable
Wko = /R e m R g )k
with h < 0 < 1
/R? 6720% kiKPﬁl\fl?;,(k?)dk ~ 6720%‘K17K|2 ~ -k,

hence

<90>K,0 X NK



Identifying the first order term

For t <« %2 we have
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Identifying the first order term

For t <« %2 we have

—it| K|?

1 220 o w2
(e ztAgKe)( ) ~ (27T>2€ o |2 iz K—it| K| = gxe(z)e

which gives for t < %

/ /R2 e 202\16 K|2 ( _iSA(|€i$A<P|2€i$A<,D))(k)dk:ds

t
—is(| K| —|K1|2+| K2 |2~ | K3|?
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Identifying the first order term

For t <« %2 we have

( itA )(.’IJ) - 1 e—%\xp-ﬁ-ix-K—it\K\Q _

—it| K|?
€T OK . e gk.c(z)e it| K|

which gives for ¢t <« %

t , . .
(VYKo :/0 /RQ efza%‘kaPﬂ(e_ZSA(|e’$A<p|2e’$A<p))(k)dk:ds
1

¢
=~ Ky —is(|K[2—| K12 +| K2 |?—|K3[?
~ (2m)* ) 77K1"7K277K3/0 e is(EP— K [P+ K2 "~ | K3[*) q o

K=Ki1—-Ky+K3

thus

3 1— e_itAwKKlKgKg,

€ —
v(t)) Ko = EPK—i7—7 SRl
(Wt)ro = ep (2m)4 K=K1§(2+K3n WIS AWK K, Ky K




Limit to the kinetic operator CR

For t < L, we have a convergent Riemann sum
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.1 -
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1 Z 1 — ¢ HAWKK, KoKy
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Limit to the kinetic operator CR

For t < L, we have a convergent Riemann sum

1— e_itAwKKlKgKg

.1 -
nggoﬁ > MK TR K

K=K, —Ks+Ks AWK K, Ky K
1— efitAWKklkgl%
= n(k1)n(k2)n(ks) — dkqdkodks
K=Fk1—ka+k3 TIAWKky koks

= g g TR0 (R2)n(K3)dk1 dkadks + o(t™")

AWKk koks =0

— open problem for L <t < L2, this is number theory

(V(t) Ko ~ epK — iWRK(U)

with R from Faou, Germain and Hani
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Limit to the kinetic operator CR

For all time ¢ € R, we have

_ oAWK K KoK
1—e¢ 1K2K3 <L4+6

Z NK1 KK iAw
K=K —Ko+Kj3 MGG

AWK Ky Koy K570

for any > 0 while

1— e—itAwKKl KoKg

. ¢(2) S
lim E - =R
L>o0 2tL21og(L) e NK1 MK K N K (1)

AWK K1 Ko K570

as proved by Faou, Germain and Hani thus

2te3L? log(L
(o) = s = i 2 B Racl)
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General picture

& operator Discret operator
—+--- t F--4---t t Fe==9
1

8 2—-6 2 245 3 —

0 I 7 I P P I LS
continuous limit then localization on the

localization on the resonant manifold discrete resonant manifold
quasifrcsonanccs resonances

For L® <t < L'79, we have

34
(v(t)) ko = epr — ZWRK(W +o(e°L*)
For L2t <t < ﬁ we have
2te3 L2 log(L)

(V(t) Ko = ePK — ZWRK(U) + o(°tL? log(L))

scaling : hL* <1 and hL <o < hi



Random phase and WKE




Randomization of the initial data

We consider

1

G o e e ~3hPlal = o= Wl Fy (o)

Kez?

p(x) =

with (QK)KEZ% i.i.d. uniform random variables on [0, 27], that is
Random Phase
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Randomization of the initial data

We consider

1 o
o) = Gy 2 mee e e N — iy ()

2
Kezj

with (QK)KEZ% i.i.d. uniform random variables on [0, 27], that is
Random Phase and the CR operator should be replaced by

Te) = fety s, POk

AWy kgks =0

1 1 1 1
<"(k‘) Tk nlk:) n(k3)> dkidksdk;

Can we observe the Wave Kinetic Equation in the description of
E[[{v(t))k.0I*] ?



Second order expansion

The expansion
(W) k.o = epi — iV (t) — "V (t) + O(e7)
gives
E[[{(v(t)) k.0 [*] = €2Ek o (t, 0)+€" Bk o (£, )+ B, (t, 0)+O(e%)
with

E?(,a( ,(P) - EH(@)K,O"2]




Identifying the second order term

With the same type of computations, we get

(V2(t) ko =2 > K4 TTKs 6 TR, K
K=K1—-K>+K3
K1=K4—Ks5+Kg

t rs
% / / ISAWK K KoKy 018 AWK Ky K5 Kg (6! d g
0 J0

+ Z MK MK, MK KK
K=K —Ky+K3
Ko=K4—Ks5+Kg

t s
% / / elSAwKKlKQKS e—ZS,AWK2K4K5K6 dS,dS
0 JO

which gives the three missing terms to get from CR to WKE
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General picture

& operator Discret operator
—+--- F--4---t Fe==9
1

5 2—6 72 72+6 1

0 L L L® L hId
continuous limit then localization on the

localization on the resonant manifold discrete resonant manifold
quasi—rcsonanccs resonances

For L® <t < L?79, we have

’ 2

E[[{v(t) k.0 |*] = e*lox (1) + o(t"LY)

o teS L4
(2m)®

For L2t < ¢ < we have

AP

2t25 2 log(L)

C2)2n) T (n)+o(t?e%tL? log(L))

E[[{v(t) k.0 [*] = *lox [+

and }E{<U(7§)>K7U<U(t)>[{/7g} ~ 0 for K # K’ (propagation of chaos)
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» Forcing and dissipation (with Erwan Faou)

= Numeric simulations (with Quentin Chauleur)
= Other equations

= Law of the solution
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Thanks for you attention !
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