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Motivation to study field theory in de Sitter spacetime

o D-dimensional de Sitter spacetime (dSp) — maximally
symmetric solution of vacuum Einstein equations

1
R, — EgWR +Agu =0

with positive cosmological constant A = %

o Z is the ‘de Sitter radius’

o Relevant to inflationary cosmology and late-time
cosmology.
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Background material: dS spacetime as a hyperboloid

e dSp can be represented as one-sheeted hyperboloid
embedded in RP1

—(XO)2—|—(X1)2—|—...+(XD)2:%2

o Often work in units with Z = 1.
o We can draw dS, embedded in 3D Minkowski
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2D dS manifold embedded in 3D Minkowski

(Figure taken from ‘Les Houches Lectures on de Sitter
Space’ by Spradlin, Strominger and Volovich)
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o Hyperboloid picture manifests the isometry group
SO(D,1) (dS group)

o dS group has D(D + 1)/2 generators (max. number
of Killing vectors).

o Let us denote the dS algebra as spin(D, 1)
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Fields and rep theory in de Sitter spacetime

o Following Wigner's classification in D-dimensional
Minkowski spacetime, we expect:
Elementary particles in dSp — UIR’s of the de
Sitter algebra spin(D,1).
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Mathematical question | am interested in

o Study realizations of UIRs of spin(D, 1) on the
classical solution space? ~(i.e. one-particle Hilbert
space from QFT viewpoint)

Which free theories are unitary?

o Known for the case of bosons with arbitrary spin
[Higuchi's PhD Thesis and Basile, Bekaert,
Boulanger].

o This question has not yet been fully answered for
higher-spin s > 3/2 fermions on dSp.
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Aim of the talk

o In this talk:
e introduce useful rep-theoretic machinery that will
uncover new features of spin-3/2 fermions on dSp and
e Main result:
The representation of spin(D,1)(D > 3)
corresponding to the massless spin-3/2 field in
dSp is unitary only for D = 4.
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Background material: massless spin-3/2 field in dSp

In dSp, the Rarita-Schwinger equations are:

qu = —M%, 7#¢u = V“% = 0.
Gauge invariance occurs for imaginary M
(D —2)
—

For this M, the field v, is a gauge potential, and we call
it massless.

M? = —

o On-shell gauge-invariance manifests itself as:
i
(Swu = (VM + 5’}%) €
where Ye = FiZ¢. (Below choose M = +i(D —2)/2.)
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Method - three basic steps

Our method consists of three steps:
1) Write down explicitly the mode solutions ,,. Choose to
work in global coordinates

ds® = —dt? + cosh? t dQ3, ;, (SP~ spatial slices)

ii) Determine the action of spin(D, 1) generators (i.e.
Killing vectors &) on solutions:
e Use spinorial Lie derivative L¢1),,.
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Method - three basic steps

iii)Definition of unitarity: Do scalar products with the
following properties exist?

o (Letp,¢") + (¢, Leyp") = 0 (dS invariance /

anti-hermitian generators)

e positive-definiteness of the norm.
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Constructing massless spin-3/2 eigenmodes

o The first step is to construct the eigenmodes in global
coordinates.

° %(fa 0) = ('th(tv 0)7 ¢9071(t7 8)7 ooy Zp91(t7 H))

o The eigenmodes can be constructed using separation
of variables ~ (time dependence)x(angular
dependence).

o To be specific, express eigenmodes on dSp in terms of
(vector-)spinor spherical harmonics on SP~1,
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Constructing the gravitino eigenmodes on dSp - even

D > 4 - physical modes

Case 1: even D > 4.

Apply separation of variables.

Constructing physical modes: Vanishing t-component
Y(t,0) = 0. Separate variables for non-zero components

as:
7(¢,m)
(.phys;—E,m) 9) — ¢£(t)¢(:)1(0)
KA (—iwmwﬁe’;’)() |

plehysEom) (¢ gy (,-W(t) ¢(+) )(0)>
J qbg(t)w(ﬂj (6)

where 1&(6 -m) wgi'; are spherical harmonics on SP~1.
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Constructing the gravitino eigenmodes on dSp - even

D > 4 - physical modes

From a representation-theoretic viewpoint: we study
spin(D, 1) representations in the decomposition
spin(D, 1) D spin(D). The spin(D) content of the
representation is understood from the vector-spinor
spherical harmonics:

o Two inequivalent vec-spin spin(D) irreps for even D
°1) V?Z(&m)(e) = +i (5 + £ ¢§i;n) with highest

weight £+ = (¢ +3,3,3, .., 1, +1)
0 2) W¢ em)(@) (f + £41) 15(([1)%) with highest
weight £~ (£+% % ...,%,—%), (=1,2,..
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Method - Step i completed

Now, we will study the transformation properties
under spin(D, 1):

V1) Write down explicitly the gravitino eigenmodes.

— ii) Study their transformation properties under
spin(D, 1) using the spinorial Lie derivative (i.e. action of
spin(D, 1) generators on eigenmodes)

1
Ls% = fVVu% + f”V,ﬂbu + Zvnf)\’y ’7>\¢u
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Transformation properties under spin(D, 1) - even D > 4

o Focus on transformation generated by the boost
Killing vector

0 _ 0
§'0, = costp_1 Frim tanh t sinfp_; 900

o the dS algebra spin(D, 1) is generated by & and the
spin(D) Killing vectors — [ Boost , Rotation | =
Boost'.
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Transformation properties under spin(D, 1) - even D > 4

After a (very) long calculation, we find:
dS boost on physical modes:

L£¢Lphys;af,m) - m (D _ 4) Cl.m 77bl(LP/U/s;—O'E,m) 4.

Treal
where i M = —(D —2)/2 and ¢, € R\ {0}.
The terms in “..." contain eigenmodes that must always be
orthogonal to ¢,(,phys;ﬂ’m) with resect to any dS invariant

scalar product (because of different spin(D) content)
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Transformation properties under spin(D, 1) - even D > 4

What can we learn from this expression?
For even D > 4.

o Under a dS boost, modes with o = + (i.e. spin(D)

content F*) always mix with eigenmodes with o = —
(i.e. spin(D) content f~).

For D = 4: The rep. is reducible

o The modes with o = + (positive helicity) and the
ones with o = — (negative helicity) do not mix under

the dS boost.

o The two sets {1, (phys;—£,m) } nd {v)! (phys;+£,m) }
separately form irreps. of spin(4,1).
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Method - Step ii completed

Now, we have to check unitarity.

v'i) Write down explicitly the gravitino eigenmodes.

Vi) Study their transformation properties under

spin(D, 1).

— iii)Unitarity: Does a scalar product with the following
properties exist7

o (LeypM )Y 4 () TLeap?)) = 0 (dS invariance)
e positive-definiteness of the norm.
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Check (non-)unitarity - even D > 4

e Suppose that (1)) (?)) is a dS invariant scalar product
for the gravitino eigenmodes.

e dS invariance means (L¢yy(), 9®?) + (M) Leyp@) = 0
for any two modes and any Killing vector &.

e Let us apply our transformation formulae for the dS
boost.
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Check (non-)unitarity - even D > 4

e Requiring dS invariance of (y(Physittm) o (physi—£.m)).

(L£¢(phys;+2,m) ’w(phys;—f,m))
+ (ypPhysitom), L£¢(Phys;—€,m)) 1o
Use:

HdgﬂbﬁehyS;ﬁ:ﬁdﬂ) - M ([) . Zl) C%1Q1@b£fhys;qlﬁgn) + .
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e We find

(D — 4.) X ((w(Ph}’S;Am)’ ¢(phys;—€,m))

+ (¢(phys;+£,m)’ ¢(phys;+2,m))> Lo

= Negative norms are unavoidable unless D = 4!

22/31



Conclusion for even D > 4

e \We conclude that for even D > 4 the gravitino field
theory is not unitary.
e For D = 4, the gravitino field is unitary.
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Case 2: D odd

e Let us discuss briefly the case with odd D > 3.
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Case 2: odd D > 3

e Follow the same steps as in the case with D even:

1) Find gravitino eigenmodes (separation of variables).

ii) Study their transformation properties under spin(D, 1).
iii) Check (non-)unitarity (i.e. existence of a
positive-definite and dS invariant scalar product.)
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Non-unitarity for odd N

e there is no dS invariant scalar product that is not
identically zero for the gravitino modes = non-unitary rep.
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Main result

Thus, we arrive at our main result:
The gravitino field theory on dSp (D > 3) is not
unitary unless D = 4.
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Final remarks

o The dimensionality D = 4 that plays a special role
coincides with the dimensionality of our physical
Universe.

o This feature of dS field theory (i.e. dimension decides
unitarity) does not appear in Minkowski nor in Anti-de
Sitter spacetimes.
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Final remarks

o The results presented in this talk can be also obtained
by studying the classification of the UIR’s of
spin(D, 1) (see my JHEP paper
https://doi.org/10.1007 /JHEP05(2023)015.)

o The classification of the UIR's of spin(D, 1) suggests
that the main result extends to all
strictly /partially massless fermionic reps. with
arbitrary spin s > 3/2.
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o Canonical quantization of the spin-3/2 theory on dS,
and study UIRs in the QFT Hilbert space (with
Anninos, Fukelman, Silva, and Sempe)
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Thank youl!
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