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N —particle Hamiltonians

N-particle Hamiltonians

» Consider a system of N non-relativistic particles in R”.
» configuration space: X = X1 X --- x Xy, X; = R, with
X:(le... 7XN):
> x;, D; =710, position , momentum of particle i,
D = (Dy,--- ,Dy) X#-valued selfadjoint operator.

» Hilbert space
H =N, L2(X;) = L*(X).

> statistics of the particles easily incorporated and will be
forgotten.
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N —particle Hamiltonians

N-particle Hamiltonians

» N—particle Hamiltonian:
Yo
H= Zl —2—miA,- + g vii(xi — Xj),
i= i<j

m; mass of particle i, v;j : R” = R interaction potential
between particles i and j.
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N —particle Hamiltonians

Collision planes

» Inside X subspaces where two or more particles collide are very
important.
> If1<i#j<N we set

Xijy == {x € X 1 x; = x;}.
» complete the set of collision subspaces by intersections.
> one obtains a family of subspaces Xj, indexed by the set A of
partitions of {1,..., N}.
» a={C,...,C}, the G correspond to clusters of a.
» write (ij) < aif x; and x; are in the same cluster of a and set

Xo={xe X :xi=x;if (ij) < a}.



N —particle Hamiltonians

Collision planes

> set A is equipped with an order relation defined by a < b if
Xs D Xp (ais finer than b).

» minimal partition is api, = {{1},...,{N}}
maximal partition is amax = {{1,..., N}}.
» associated subspaces are

v

X

4min

=X, Xap.. ={x € XX =x; Vi, j}.

max
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N —particle Hamiltonians

Separation of the center of mass

» H commutes with translations:
d
u(xi, -+ xp) = u(xy — v, - ,xp —v), v €RY

> equivalently H commutes with translations ¢V'Px for y € X,

max

> we can write H and H as direct integrals:

(&)
H= [ U)o H= [ H(p)dp

Rv* 125

» explicit version of H(p) and H(p): (in the old times, done
with "Jacobi coordinates’).

> kinetic part in H equal to 1D2 for & = Z, 1 2 &e X*
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N —particle Hamiltonians

Separation of the center of mass

» ¢-¢ dual (aka inverse) of x - x = Zl’\’zl m;x?.
> Set Xmex = X;- | identify X ~ Xomax @ X,
> we get

max *

N

V(x) =) vilxi —x) = V(x>=)

i=1
> D)% = (Dxamax )2 + (DX3max )2
> we take p =&, ..:
(é-amix (Xamax )

(famnx amax + (é’amax)2
Hamax = § ( Dxamax ) + V(Xamax ) .

N~—
||
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N —particle Hamiltonians

Agmon Hamiltonians

>

>

>

fix a finite dimensional Euclidean space X (automatically
equipped with a Lebesgue measure).

fix a family {X; : a € A} of subspaces of X closed under
intersections and containing X.

seta< bif X, DX, a,be A.

so Xo,., = X and X, = [,e4 X

we can assume that X, .. = {0}. (If not separate the 'center
of mass’ as explained above).

'number of particles’: consider a chain a; < -+ < a,
connecting a1 = amin t0 ax = amax-

number of particles is the maximal length of such chains.
(reflects the complexity of the lattice of subspaces
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N —particle Hamiltonians

Agmon Hamiltonians

P> set
X?:= Xt x=x"4x,, ac A

» by duality we can similarly split
X* =X XY, =€+ b
» for a € A we fix a real function v : X — R such that
vi(x) = v3(x +ya), Vya € X,.
» a Agmon Hamiltonian is
H= %Df + Z v?, acting on H = L%(X).
acA
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N —particle Hamiltonians

Agmon Hamiltonians

> for a c A set

Va(x) = Z vP(x), function on X2,

b<a

» and
1
H? = §(D5)2 + V(x?), acting on H? = L?(X?).

Since X = X?max we have H = H3max
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N —particle Hamiltonians

Agmon Hamiltonians

> we have
H=H,+ 1,
H; = H? + %Dia la(x) = Zb¢a vp(x).

» H, describes the non interacting clusters of a, whose centers
of masses move freely.

» [, is the intercluster potential.
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N —particle Hamiltonians

Agmon Hamiltonians

Advantages of this framework:
» notational and conceptual simplification.
> easy to incorporate particles of infinite masses (very heavy
nuclei):
> add to the above family the subspaces {x € RV : x; = 0} and
their intersections,

» on can consider also multi-particle interactions, for example
with potential vij(xi — x;j, x; — xx), for vjj R2d R,
associated to the subspace X(ji) = {x € X : x; = x; = x«}.
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N-particle Hamiltonians: basic theory

Pair potentials

> typical 2—body potentials decay near infinity and have a
Coulomb type singularity at 0.

» a natural assumption: v¥(x?)(—A2 +1)~! is compact on
L2(X?).

> note that v¥(x?)(—A + 1)~! not compact on L?(X) (unless
a = amax). By Kato-Rellich we obtain:

Theorem
H with domain H?(X) is selfadjoint and bounded from below on
L2(X).

» for standard N—body Hamiltonians with Coulomb interactions

vii(x) = q;q‘j and d = 3 first important result of Kato (

'stability of matter of the first kind").



N-particle Hamiltonians: basic theory

The HVZ theorem

» describes the essential spectrum of H (important result from
the 60's, nowadays very easy to prove).

» important role played by the thresholds:
> the set of thresholds of a subsystem a € A is

T = | opp(H®).
b<a
» T amax will be simply denoted by 7.
set also X7 := inf(77?) and X := ¥ = inf(T).

> easy to show using trial functions (the 'variational argument’)
that inf o(H?) < 7°.
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N-particle Hamiltonians: basic theory

> by energy conservation, X2 — ¥ is the minimal energy needed
to decompose the system into freely moving clusters of a.

> —3 is the minimal energy needed to fully decompose the
system.
Note that opp(H2,,) = {0} hence ¥ < 0.

min
Theorem
Let H be an N—particle Hamiltonian with X,
essential spectrum of H is equal to

= {0}. Then the

max

oess(H) = [£, o0].
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N-particle Hamiltonians: basic theory

Partitions of unity

We split the configuration space X into regions describing different
cluster decompositions.

> set

Z, =X, \ UbﬁaXb-
» {Z,}acA is a partition of X.
> thicken the Z, into
70 ={xeX:|x° <e |xP| > for b £ a},
» construct a partition of unity {qa}ac.4 such that

supp g, C 2%, Y qa(x) =1,
acA
02G2(x)] < Cay 0 < qalx) < 1.
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N-particle Hamiltonians: basic theory

Functional calculus formula

recall the celebrated Hellfer-Sjostrand formula:
> let x € C3°(R). Then there exist a function ¥ € C5°(C),
called an almost-analytic extension of , such that
>
fe=x |2(2) < CyImzN, NeN.
» if H selfadjoint operator on a Hilbert space H then
i ox

xX(H) = (92( z)(z — H) *dz A dz.
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N-particle Hamiltonians: basic theory

Proof of the HVZ theorem

» prove by induction on k that oess(H?) = [£?, +o0[ for all a
with fa < k.

» the hard part is C ( D proved with Weyl sequences).

» assume that the theorem holds for all a < ap.x and consider

H = Hamax,
» choose x € C§°(R) with supp x C] — oo, X[. Then
x(H) = " x(H)aa(Z), R> 1.
acA

> on support of g,, the interaction potential I, is o(R?), so we
can replace x(H) by x(H.) modulo a small error (use HS
formula).
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N-particle Hamiltonians: basic theory

Proof of the HVZ theorem

P> one gets

X(H) = 3" x(Ha)as( ) + o R).

acA
» since H, = H? + 2D§ , X(H2) = 0 for a # ay,ax because of
support of x,

» X(H)Gapmax (%) compact for any x, because g,,,,, has compact
support.

» Therefore x(H) is compact (norm limit of compact operators).
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The Mourre estimate

The Mourre estimate

» study of the nature of the essential spectrum of H
revolutionized in the 80's by the Mourre method (positivity of
a commutator).

> let H, A be two selfadjoint operators on a Hilbert space H.

» one requires that H is of class C1(A), ie
R>tw e™(H +i)te ™ is strongly C'.

» the commutator [H,1A] makes then sense as a bounded
hermitian form on Dom H.

» the Mourre estimate holds at A € R if there exists an open
interval A 3 A, ¢ > 0 and K compact such that:

1 (H)[H, iA]1a(H) > cla(H) + K. (3.1)

P the strict Mourre estimate holds at \ if one can take K = 0.



The Mourre estimate

The Mourre estimate

» assuming higher regularity of H w.r.t. ¢!** one deduces from
the strict Mourre estimate at A weighted estimates on
(H — X\ Fi0)~!.(original motivation of the Mourre method).

> these resolvent estimates are not necessary for the
time-dependent scattering theory that we will describe here.
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The Mourre estimate

The virial theorem

» the virial theorem states that

1y (H)[H, 1A] 1 (H) = 0.

» formally obvious by 'undoing’ the commutator.

v

rigorous proof requires a lot of care, since A is unbounded.

> first consequence: if the Mourre estimate holds at A then the
eigenvalues of H cannot accumulate at .

» second consequence: if the Mourre estimate holds at A and
A & opp(H) then the strict Mourre estimate holds at .
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The Mourre estimate

Best constant in the Mourre estimate

» nice polishing of various arguments, due to Amrein-Boutet de
Monvel-Georgescu .

» set p(A)= larger ¢ such that
1o (H)[H,1Al1A(H) > cla(H).

» p(A) best constant in the strict Mourre estimate at A.

» define () similarly, adding a compact error term.
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The Mourre estimate

Best constant in the Mourre estimate

virial theorem can be rephrased by stating that
» if A € opp(H) and p(A) > 0, then p(A) = 0.
> if A& opp(H) then p(X) = p(A).
> IfH=H1QH, H=H @1+ 1 H;, A=A @1+ 1® A,
and H; bounded from below then:

A)= inf A A2).
p(A) /\1-§I-r)]\2:>\p1( 1) + p2(X2)

» (looks easy but rather tricky to prove).
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The Mourre estimate

Mourre estimate for N-body Hamiltonians

> set A= 3(x-Dx + Dy-x) (generator of dilations).

» the expression xVV is understood as [V, iA] (allows to 'undo
the commutator’ if needed).

> stronger assumption:

(1 - A%)"x°V,av?(1 — A7) Lcompact on L?(X?), a € A.

Theorem

For A € [£,00[, let d(\) :=inf{\—7 | 7 < A\, 7€T}. Then for
any e >0, A € [¥, 00|, there exists an open interval A containing \
and a compact operator K such that

Ia(H)[H, A (H) > 2 (d(\) — €) 1a(H) + K. (3.2)
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The Mourre estimate

Mourre estimate for N-body Hamiltonians

» T is a closed countable set and op,,(H) can accumulate only

at 7.

» with terminology introduced above (3.2) means that
p(A) = 2d(}).

» Using trial functions one can show that j(\) = 2d(\).
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The Mourre estimate

ldea of proof

» applying recursively the abstract theory to H? for a < amax
gives that 7 is a closed countable set.

» it suffices prove Mourre estimate by induction on fayax. If
famax = 1 then H = 1D2, [H,iA] =
» assume that Mourre estimate holds for all H? with a # anax.

v

use a partition of unity as before but with >°__ , ¢2(x) = 1.
» controlling double commutator terms gives

(H)HL AN (H) =~ a0 (H)[H. A (H)aa( ) + O(R™2),

acA

Scattering Theory of Quantum N-particle systems



The Mourre estimate

ldea of proof

» on support of g,, one can replace H by H, modulo small
errors, so

X(H)HAAI(H) = 3 4a()X(Ha)[Hay iAIX(Ha)dal ) + o(RY).
acA
(3.3)

> write [2(X) = L2(X?) ® [3(X,) so H, = H*®@ 1+ 1® 3D2,

A=A1+1®A,.
» for a # amax Mourre estimate for H? gives

pP(A) > 2 inf{)\ -7 Ta € T2 Uopp(H?)}.
> since [$D2 |iA,] = D2, abstract result for tensor products

gives:

pa(A) = Aa-si-r;\f:A P?(AT) + 2/, = 2inf{\—7:7€ T, 7 <A}
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The Mourre estimate

ldea of proof

» for A € R\ T for all € > 0 there exists x € C§°(R) with
X(A) # 0 such that for all a < apax:

X(Ha)[Ha,1AIx(Ha) = 2(d(X) — €) x*(Ha).
» winding back the partition of unity gives:
X(H)[H,IAIX(H) > 2 (d(X) — €) x*(H) + Ki(R) + Ka(R) + o(R%).
>
Ki(R) = Gagax (5)X(H™ ) [HT JAX(H*) G2y (R )
K2(R) = Gama (F)XP(H*™) Gaerc (5):

are compact (qa,,., compactly supported).
» pick R > 1 to obtain Mourre estimate for H.

Scattering Theory of Quantum N-particle systems
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Scattering theory

Wave operators

» consider first 1-particle case:
1
H= §Df + V(x), Ho= 293,

potential V tends to 0 at infinity.

» describe the asymptotic behavior when t — £o0 of e
u € He(H).

> the case of bound states u € H,,(H) is obvious (superposition
of oscillations).

» assume that

—itH ; for

V(x) € O((x)™*), for i > 0 when x — oc.

» V is short-range if 4 > 1 long-range if 0 < p < 1.
» Coulomb potential is long-range.
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Scattering theory

Wave operators

> time-dependent method starts with wave operators

>

QF :=s— lim eltHeitHo,
t—+oo

proof of the existence of QF easy in the short-range case for
N = 1. (Cook method).
asymptotic completeness is the statement that
RanQ* = H.(H).
means that for any u € H.(H), there exists u™ such that

lim e 1tHy — ¢~ithoy® — o,

t—+oo

if asymptotic completeness holds asymptotic behavior of
ety for all u € L2(X) is completely understood.

Scattering Theory of Quantum N-particle systems



Scattering theory

Wave operators in the N-body case

» In the N-particle case other scattering scenarios are possible:
freely moving stable clusters of particles can form.

.7 © o
- /. breakup

Bl )
i T

-. elastic <scattering

S

A
O
o O

rearrangement
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Scattering theory

> Several wave operators needed to exhaust all the possibilities.

>
ST itH _—itH, a
Qg i=s— tﬂgxe e 1,,(H?).
note that ngmx = 1pp(Hapa )-
> existence of QF is easy in the short-range case by the Cook

method.
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Scattering theory

> easy to see that for a # b RanQF and Raan are mutually
orthogonal.

» asymptotic completeness is the statement that:

@Raan = L2(X).
acA
» much more difficult !

» additional difficulty in the long-range case: free motion of the
center of masses has to be modified (already present in the
1-particle case). One needs modified wave operators.
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Scattering theory

Historical sketch of N-particle asymptotic completeness

> brief sketch of the N—body asymptotic completeness via
time-dependent methods:

» Enss 1978 2-particles, 1986-1989 3-particle short and long
range.

> Sigal-Soffer 1987, elegant proof by Graf 1990 N-particle
short-range.

» Derezinski 1993, Zielinski 1994, Sigal-Soffer 1994 N—particle
long-range.

» Gérard 1993, Skibsted 2003 3—particle long range decay p > %
» Yafaev 1996 counterexample for 3-particle 0 < p < %
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Scattering theory

Unitary dynamics

> one needs often to consider also time-dependent Hamiltonians.

» unitary dynamics: strongly continuous map
R xR > (t,s) — U(t,s) € B(H) with

U(t,s) unitary, U(s,s) = 1, U(t, u)U(u,s) = U(t,s), Vt,u,s € R.
» what is the generator H(t) of U(t,s)?
> one can require that for B some strictly positive operator
dsU(t,s)B™ =1iU(t,s)H(s)B™, Dom B C Dom H(s),
hence
0:B7rU(t,s) = —iBTrH(t)U(t,s).
» choose the reference initial time s = 0 and set U(t) := U(t,0).



Scattering theory

Heisenberg derivatives

» fundamental rule: do not consider evolution of states (too
complicated) but of observables.

» replace Schroedinger equation by Heisenberg equation.

» if Ui(t,s), i = 1,2 are two unitary dynamics with generators
H;(t), set

2D1®(t) = 0:®(t) + i(Ha(t)®(t) — (1) Hi(t)),
for ® : R — B(H) of class CL. If Hi(t) = Ha(t) = H(t),
denote D7 simply by D.
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Scattering theory

Cook method

» Cook method is the simplest and oldest method to show
existence of limits like wave operators.

» based on L! in time arguments.

» simplest version: if Uj(t,s) are generated by H;(t) and
Ha(t) = Hi(t) 4+ V(t) with [|V(t)] g € L*(R), then

s— t_IQOO Us(0, t) Ui (t,0) exists.

proof obvious (time derivative is integrable in norm).

» sufficient to show existence of wave operators, not for
completeness.

» does not take advantage of the Hilbert space structure, (works
on Banach spaces).
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Scattering theory

Propagation estimates

> better to rely on more symmetric L? in time estimates.

» assume R > t — ®(t) € B(H) uniformly bounded and there
exist Cp > 0 and operator valued functions B(t) and B;(t),
i=1,...,n, such that

DO(t) > GB"(1)B(1) - 3 B (1)Bi(1)
fHB (t)o|2dt < G||o|]?, i=1,...,n.

Then there exists C such that

[ee]
/1 1B U(1)é]2dt < Cllé]P (4.1)



Scattering theory

Existence of limits

» assume that R > t — ®(t) € B(H) is uniformly bounded and
(W2l Da0(e)in)| < 3° [1Bar(e)vall| Bui( e with
[ 1B () Ua(0)0IPde < CloIP. 6 €M, i=1.....n
f | B1i(t)Ur(t)||2dt < C||o||?, ¢ €H, i=1,...,n.

» then the limit

s— lim U5(t)®(t)Us(t) exists.

t—4-00
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Asymptotic velocity

What is a selfadjoint operator ?

» provocative but meaningful definition:

» a (possibly non densely defined) selfadjoint operator on H is a
continuous #-morphism v : Coo(R) — B(H).

» a densely defined selfadjoint operator on H is a continuous
s-morphism 7 : Co(R) — B(#) such that
s—limg_i o0 7(xR) = 1 for xg(A) = x(R7IA) with
X € Cxo(R) and x(0) = 1.

» there is a unique selfadjoint operator H such that vy(x) = x(H)
for all x € Cx(R). v uniquely extends to B(R) (space of
bounded Borel functions), using the monotone class theorem.

> replacing R by R” one obtains the definition of a commuting
family (Hi,- -« , Hp) of selfadjoint operators.
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Asymptotic velocity

» Jan Derezinski invented the notion of asymptotic velocity.

> gives a bird's eye view of scattering theory and asymptotic
completeness.

» a crucial tool in his proof of completeness for long-range
potentials.

» assume that 0%v?(x?) € O((x*)™*), > 0,|a| < 1.

» then

X

s— lim ety (S)e It = % (y) exist, ¥ € Coo(X).

t—+o0 t
> E(x) = x(P*%), P* future/past asymptotic velocity.
» Pt commute with H.

Interpretation: x(t) = e't

x(t)

227 the average velocity at time t, P* their limits when
t — +oo.

Scattering Theory of Quantum N-particle systems
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Asymptotic velocity

Properties of the asymptotic velocity

» Recall that for
Zy =X, \ UbﬁaXba

the {Z,}.c.4 are a partition of unity.

1=> 1z(P%).

acA

» therefore we have

> u = llz (P*)u then ey for t — o0 is decomposed into
independent clusters of a, whose size is o(t).

Scattering Theory of Quantum N-particle systems



Asymptotic velocity

Properties of the asymptotic velocity

» in particular for a = amax, Za,.. = {0} and if
uc Ran]l{o}(Pi) then

. x|, _
s— tﬂToo ]1[574_00[(7)0 Hu=0, V6 >0,

ie x(t) is of size o(t), u is an 'almost bound state’.
» the Mourre estimate implies the following fundamental result:

ﬂ{o}(Pi) - ﬂpp(H)v

ie almost bound states are necessarily bound states.
» not true in the classical case !
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Asymptotic velocity

Joint energy-velocity spectrum

» since [H, P¥] = 0 on can study the joint energy-velocity
spectrum.

> it gives a first 'spectral’ understanding of scattering theory.

Theorem
The joint energy-velocity spectrum is

o(H,P*) = {67+ 58) 1 & € X, 7 € opp(H)).
acA
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Asymptotic velocity

Joint energy-velocity spectrum

free channel

/cluster channels

bound states
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Asymptotic velocity

Energy-momentum spectrum in relativistic QFT

» similar result in relativistic QFT.

» if the theory is invariant under the Poincaré group, one can
study the energy-momentum spectrum (space-time
translations).

> typical spectrum is shown in the next slide. Parabolas are
replaced by hyperbolas (and Galilei group by Lorentz group).
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Asymptotic velocity

Energy-momentum spectrum in relativistic QFT

continuous spectrum

article state

i
i
‘\vicuum
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Asymptotic velocity

Asymptotic absolute continuity

> one can ask about the nature of the spectral measure of P*.

» a result in this direction is the following (called asymptotic
absolute continuity):

> assume that V& v2 € O((x?)~1%1=1) for [a| < 1and p > 3.

» then if a € A and 6 C Z, is of measure zero on X, one has

Iy(P*) = 0.
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Asymptotic velocity

Large velocity estimates

> the Heisenberg derivative of x is D,, controlled by H.

» if total energy is bounded, the position x cannot grow faster
than Ct.

» (not true for the N-body problem of Celestial Mechanics !)
» Let x € C3°(R). Then there exists § > 0 such that

e x| —i dt
) [ g Pl < Clal?
Moreover

x|

2) lim ﬂ[g7+x[(7)x(H)e*itHu =0.

t—+o0

> statement 2) means exactly that P* is densely defined.



Asymptotic velocity

» proof of 1): take ®(t) = x(H)F(5)x(H),
> DO(t) = 1x(H)(Dx — %) - VF(%) + h.c.)x(H).

> take F( )_ f(’X‘), with f/ = ]1[9’9/].

» since Dx(H) is bounded we get that

x|

DO(t) < = x(H) g 15 )x(H)

negative Heisenberg derivative.

Scattering Theory of Quantum N-particle systems



Asymptotic velocity

> proof of 2): replace ®(t) by ®r(t) = x(H)F(z;)x(H), for
R> 1

» we want to show that s— lim; 1. e (t)e H = 0.

» Dog(t) is controlled by terms under the integral in 1) so

> s—limeio @ dg(t)e 1 exists.
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Asymptotic velocity

» keeping track of R in computation of D®(t) one obtains that

o oa I itH , —itH _
s errocb t_llgooe dr(t)x(H)e 0.
®r(t) — P1(t) supported in 6 < @ <, so
L (PR(E) = P1)e X (H)ulP 4 < oo, hence
s—limy 100 € (DR(t) — D1(t))x(H)e 1t = 0.
taking R — 400 gives s— lim;_, 1. ' () (H)e 7 = 0.

vvvyYyy
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Asymptotic velocity

Phase-space propagation estimates: 1—particle case

> free case (V =0): let R(x) = 2x? and
®(t) = 3(Dx — %) - VR(%) + h.c.) + R(%).
» then

1 1
DO(t) = 9, (t) + [; D.i0(t)] = - 1D - §||2 > 0.

» problem: ®(t) is not bounded.

> solution: replace ®(t) by x(H)F($)®(t)F(5)x(H), F
supported in x| <R, R> 1.

> extra terms coming from DF (%) are controlled by large
velocity estimates.
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Asymptotic velocity

Phase-space propagation estimates: 1—particle case

» assume now that V/(x) € O((x)"*), u > 0.

> extra term in D®(t) is —VR(3) - V. V(x), not controlled.

» solution: modify R(x) such that V,R(x) =0 in |x| <,
keeping V2R(x) > 0.

> for example take R(x) = max(3¢2, 1x?) (convex !).

> if necessary smooth out R by convolution w.r.t. €.

> then if V,V(x) € O((x)"17H), extra term is O(t~17H),
integrable in norm.

> We obtain ;"™ |15, (¥)(Dx — %)e 1t u|[24 < Cllul?.

» example of a phase space propagation estimate.
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Asymptotic velocity

the Graf function

» Graf ingenious construction: modify R(x) in the N-body case:
modify R(x) = $x? so that

» 1) R(x) depends only on x, near Z,.

» 2) V2R(x) > 7, near Z,, where 7, : X — X, orthogonal
projection.

» one chooses

1
RP(x) = 5 Tea%{xf +pats p=(pa)aca-

R satisfies 1) and 2) for p in some open set.
» smooth out R” w.r.t. p:

RO) = [ R ()dn, for [ Flo)dp =1



Asymptotic velocity

Phase-space propagation estimates: N-particle case

> properties 1) 2) still satisfied.
> recall that Z5° ¢ X defined by

Xl <e x| >6VbZa.

> if ¥ e Z5°, then clusters of a have distance at least o|t| and
size €|t].
> let x € (5°(R), F € C5°(X). Then

e X X Xa\ i dt
| I CD 2y <
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Asymptotic velocity

Phase-space propagation estimates: N-particle case

> propagation observable:
®(t) = 3((Dx — %) - VR(%) + h.c.) + R(%).
» add energy cutoffs y(H) and large distance cutoffs F(%).
> DO(t) = 9, D(t) + [3D2,i0(t)] + [V(x),id(t)].
> first two terms can be computed exactly as

(D ff) v2R( (Dy — = >CZ]12
acA

Xa

=)
> for ¥ € zZ5° split the second term as

—Vxa VA(x7) - anR(ﬁ) — Vila(x) - VXR(K)

> first term is O because near Z VxR depends only on x,.
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Asymptotic velocity

Asymptotic velocity

» goal: prove that for F € C5°(X) (dense in Coo(X)):

s— lim eitHF(f)e*itH exists.
t—+o0 t
> we can take F in a C® dense subspace of C§°(X): good
choice: F(x) depends only on x, near X,.
> set X X p
010 =F()+ VR (0=

Do(t) = (D—*) V2F( . )(Dx —*) VF(E L) VV(x).

1) first term is integrable along the evolution by phase space
propagation estimates.
2) second term is O(t~17#) in norm.
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Asymptotic velocity

Asymptotic velocity

» therefore

s— lim eitH(F(§) + VF(;) -(Dx — %))e*itH exists.

t—+oo

» next show (by computing its Heisenberg derivative) that

s— lim eitH(VF(%) - (Dy — %)e_itH exists.

> this observable is integrable along the evolution hence the limit
has to be 0.

> therefore s— lim;_, o e F(X)e 1 = F(P*) exists.

» the fact that [H, P¥] = 0 is a general property (valid for all
asymptotic observables).
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Asymptotic velocity

Minimal velocity estimate

P construction of asymptotic velocity not sufficient to prove
asymptotic completeness, even in the short-range case.

» one needs the additional spectral information:
H{O}Pi) = ]lpp(H)-
(almost bound states are bound states).

» this will follow from a minimal velocity estimate due to Graf:
let x € C§°(R) with suppx N T Uopp(H) = 0.

» then there exists eg > 0 such that

o X i dt
| eaCx(H)e™ul S < Cllul?
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Asymptotic velocity

Minimal velocity estimate

> set M(t) = J(¥) + 2((Dx — %) - VJ(%) + h.c.), J depends
only on x; near Z,, J(x) =1in |x| <e.

> take A
&(t) = x(H)M(t)x(H) - x(H)M(t)x(H).

» when computing D®(t), terms coming from DM(t) will be
controlled.

> one has D4 = — 2 + [H,tiA]_

because of the Mourre estimate x(H)[H,iA]x(H) > cx?(H).

» choosing € <« 1 we can ensure that
M(t)x(H)Ex(H)M(t) < §M(t)x(H)x(H)M(t).

Scattering Theory of Quantum N-particle systems
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Asymptotic velocity

Minimal velocity estimate

> we obtain D®(t) > §x(H)M?(t)x(H) modulo already
controlled errors. This proves minimal velocity estimate.

> since we know that s— lim;_1o0 ™ X (H) g (X)X (H)e
exists, we obtain that

s— lim et (H)H[OE](X)X(H)efitH:O.

t—+oo

» by an easy density argument, this shows that

ﬂ{o}(Pi) - ﬂpp(H)'
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Asymptotic completeness for short-range N-particle systems

Asymptotic completeness for short-range N-particle systems

> existence and completeness of short-range wave operators
follows very easily from properties of asymptotic velocity.

> it can be neatly formulated as follows: assume that
v3(x?) € O((x?)) ™" for u > 1. Then

» the limits
1) s— t_I)igoo eltHeithay (H?) =: Qsjj,a exist.
» the limits
2) s— t_ll@m eithae=itHy , (pE) — erfa exist.
> Qgtr,a are partial isometries with
Dom Qg;a = Ranl,,(H?), Ranﬂiﬁa = Ranllz,(P%).
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Asymptotic completeness for short-range N-particle systems

Asymptotic completeness for short-range N-particle systems

» the proofs of 1) and 2) are similar: denoting by P(ia), P=(3) the
asymptotic velocities for H,, H? we get

PGy = (Dx, P(a)).

» therefore using Mourre estimate for H?, we get
Ipp(H?) = ]lZa('D(ﬂ;))-

» proof of 2): let u € Ranlz,(P*). By density we can assume
that u = F(P*)u = x(H)u for F supported near Z,,
x € G§°(R).

> so it suffices to prove the existence of

lim _x(Hs) F(S)X(H)e ™ F (5 )e™ .

t—+oo
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Asymptotic completeness for short-range N-particle systems

Asymptotic completeness for short-range N-particle systems

> we compute asymmetric Heisenberg derivative for H, = H,,

H1 = H:
2D1x(Ha)M(t)x(H),
» for M(t) = (F(%) — %((DX —%)-VF(3) +h.c).
> it equals

X(Ha)DM(t)x(H) + x(Ha)il(x)M(£)x(H).

> first term is integrable along the evolution (use phase space
propagation estimates for H and H.,).

» second term is O(t#) in norm so integrable by short-range
condition.
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Asymptotic completeness for short-range N-particle systems

Asymptotic completeness for short-range N-particle systems

» To complete the proof of asymptotic completeness, use:
>
1= Z 17,(P*), (spectral theorem 1)
acA
» and Z, .. = {0}, H{O}(Pi) = 1, (H).
> therefore
@aeARaHQ;a = [2(X).
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Asymptotic completeness for long-range N-particle systems

Modified dynamics 1-particle case

> consider 1-particle Hamiltonian: H = 3D2 + V/(x),
22V (x) € O((x))~#=lel > 0.
» the short-range wave operators

. . _. l 2 .
s— lim e'tMe it30% do not exist |

t—+o0

> the 'long-range tail' of the potential cannot be forgotten.

» purely classical problem, can be completely understood in
classical mechanics.

» one needs to modify the free dynamics: various equivalent
ways to do it.
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Asymptotic completeness for long-range N-particle systems

Modified dynamics 1-particle case

» time-dependent modifiers: choose a solution of the
Hamilton-Jacobi equation:

9:S(t,€) = %52 + Vi(VeS(t,6)),

» V;(x) time-dependent potential, equal to V/(x) in |x| > €|t|.

> boundary condition for S(t,&) is S(t,&) = 2t&? + O(t1 1),
when t — +oo.

» not unique, no canonical choice.
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Asymptotic completeness for long-range N-particle systems

Modified dynamics 1-particle case

» one introduces the modified wave operators:

Qﬂ: i=s— lim e itHeiS(t,DX)
t—+oo

» Completeness of wave operators is as before statement that:
RanQjt = 1.(H)L*(X).

> existence easy to prove (stationary phase arguments).

» completeness more difficult: nice time-dependent proof by
Sigal
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Asymptotic completeness for long-range N-particle systems

Modified dynamics 1-particle case

> first step: replace V(x) by Vi(x) as above, satisfying
92 Vi(x) € O(t~+1o1) (use minimal velocity estimates).

» let U(t,s) unitary dynamics generated by
H(t) = 1D2 + Vi(x).

» using asymptotic velocity one shows that

T —itH -
S tj;noo U(0,t)e """ 1.(H) exist.

» it remains to show that

s— lim DI Y(t,0) exists.
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Asymptotic completeness for long-range N-particle systems

Modified dynamics 1-particle case

» compute Heisenberg derivative w.r.t. H(t):
D(x — V¢S(t, Dy))
= Dy + ViVi(x)VES(t, Dx) — 0:VeS(t, Dx)
= (Vi Vi(x) = Vi Ve (VeS(t, DX)))VES(t7 Dy)
= VEVe(x)(x — (V¢S(t, D)) VES(t, Dx)
= O(t7 1) (x — VS(t, Dy)).
» Gronwall's inequality then gives Sigal's estimate:

I(x = VS(t, D)) U(t,0)(x) "] € O(1).
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Asymptotic completeness for long-range N-particle systems

» show that s— lim;_ 4o eis(t’DX)U(t, 0) exists by naive Cook
method:

» show that (0:5(t, Dx) — H(t))U(t,0)u integrable in norm.

» we need to show
1(Ve(VeS(t, Dx)) — Vi(x))U(t, 0)ul| € L}(dt).

» pdo calculus gives Vi (VeS(t, Dy)) — Vi(x)) =
O(t717#)(x — VeS(t, D)) + O(t~1+).
> this is in L!(dt) for u € Dom(x) by Sigal's estimate.
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Asymptotic completeness for long-range N-particle systems

Long-range N-particle case

|
>

let u € Ranlz (P*). Then:

size of the clusters of a is o(t), distance between clusters of a
greater than C|t|.

We can replace I5(x) by I, ¢(x), with x/,+(x) € O(t~1el=m),
l5¢(x) = l(x) near Z,.

the usual argument gives the existence of

+ R, —itHp . +
Q S t_':TOOUa(Oat)e Rdn]lza(P )’

a,sep ~

where U,(t, x) unitary dynamics generated by

Ha(t) = 3D2 + H? + I,+(x).

main problem: U,(t,0) still couples motion in X2 and in Xj.
one would like to replace I, +(x) by 1,+(0, x5) ie set x¥ = 0.
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Asymptotic completeness for long-range N-particle systems

Bound on the size of the clusters

» by Taylor's formula I, :(x) — 1,.+(0,x,) € O(t~17#)|x?|.
P so the key is to estimate the size of the clusters of a when
u € Ranllz, (P%), ie replace the o(t) estimate by O(t°) for
some 0 < 4 < 1.
» Jan Derezinski managed to prove that if u € Ranllz,(P¥) then
‘Xa‘) fitHu _ O,

i (G e

» for § = 2(2 + u)~L. Proof uses the function r(x) = (2R(x))%
(modification of |x|).
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Asymptotic completeness for long-range N-particle systems

Long-range N-particle case

> if 2(2+ )~ < pie > /3 — 1, then one can replace I, +(x)
by 1,.¢(0, x5) on the evolution of such states.

» choose a solution of Hamilton-Jacobi equation:

0eS:(1,62) = 56+ 1e(0, Ve, S(8,€2)),

Si(t,6) = 265 + O(#H)
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Asymptotic completeness for long-range N-particle systems

Long-range N-particle case

> one obtains the following theorem
> assume that V&v3(x?) € O((x?))~ 1=+ for 1 > /3 — 1.
Then the limits

1) Ql:i:',a = s—lim o0 e 7152(100) 71tH? Tpp (H?)

2) O = s—limepoo €% (BD) Tt mitH Y, (Pt

exist.

> Qia are partial isometries with

Dom Qi | = Ranll,,(H?), Ranﬂia = Ranllz,(P%).

Ir,a
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Asymptotic completeness for long-range N-particle systems

Long-range N-particle case

» the wave operators are complete
+ 2
DacARanQy , = L7(X).

One has
QF P, (PT) = D,QE* 17, (PY).

Ir,a Ir,a
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Asymptotic completeness for long-range N-particle systems

Thank your for your attention !
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