Scattering Theory of Quantum N-particle systems

Christian Gérard Université Paris-Saclay

March 27, 2024

Scattering Theory of Quantum N-particle systems

(a)

N-particle Hamiltonians

N-particle Hamiltonians: basic theory

The Mourre estimate

Scattering theory

Asymptotic velocity

Asymptotic completeness for short-range N-particle systems

Asymptotic completeness for long-range N-particle systems

N-particle Hamiltonians

- Consider a system of N non-relativistic particles in \mathbb{R}^{ν} .
- configuration space: $X = X_1 \times \cdots \times X_N$, $X_i = \mathbb{R}^{\nu}$, with $x = (x_1, \cdots, x_N)$,
- ► x_i , $D_i = i^{-1} \partial_{x_i}$ position, momentum of particle *i*, $D = (D_1, \dots, D_N) X^{\#}$ -valued selfadjoint operator.
- ► Hilbert space

$$\mathcal{H} = \otimes_{i=1}^{N} L^2(X_i) = L^2(X).$$

statistics of the particles easily incorporated and will be forgotten.

N-particle Hamiltonians

► *N*-particle Hamiltonian:

$$H = \sum_{i=1}^{N} -\frac{1}{2m_i}\Delta_i + \sum_{i < j} v_{ij}(x_i - x_j),$$

 m_i mass of particle $i, v_{ij} : \mathbb{R}^{\nu} \to \mathbb{R}$ interaction potential between particles i and j.

Collision planes

Inside X subspaces where two or more particles collide are very important.

▶ If
$$1 \le i \ne j \le N$$
 we set

$$X_{(ij)} := \{x \in X : x_i = x_j\}.$$

- complete the set of collision subspaces by intersections.
- one obtains a family of subspaces X_a, indexed by the set A of partitions of {1,..., N}.
- $a = \{C_1, \ldots, C_k\}$, the C_i correspond to clusters of a.
- write $(ij) \leq a$ if x_i and x_j are in the same cluster of a and set

$$X_a = \{x \in X : x_i = x_j \text{ if } (ij) \le a\}.$$

N-particle Hamiltonians N-particle Hamiltonians: basic theory The Mourre estimate Scattering theory Asymptotic velocity Asymptotic completeness for short-range N-particle systems

Collision planes

- set A is equipped with an order relation defined by a ≤ b if X_a ⊃ X_b (a is finer than b).
- minimal partition is $a_{\min} = \{\{1\}, \dots, \{N\}\}$
- maximal partition is $a_{\max} = \{\{1, \dots, N\}\}.$
- associated subspaces are

$$X_{a_{\min}} = X, \ X_{a_{\max}} = \{x \in X : x_i = x_j \ \forall i, j\}.$$

Separation of the center of mass

H commutes with translations:

$$u(x_1, \cdots, x_n) \mapsto u(x_1 - v, \cdots, x_n - v), v \in \mathbb{R}^d$$

▶ equivalently H commutes with translations e^{iy·D_x} for y ∈ X_{amax}
 ▶ we can write H and H as direct integrals:

$$\mathcal{H}=\int_{\mathbb{R}^{
u*}}^\oplus \mathcal{H}(p)dp, \,\, H=\int_{\mathbb{R}^{
u*}} H(p)dp.$$

explicit version of H(p) and H(p): (in the old times, done with 'Jacobi coordinates').

• kinetic part in H equal to $\frac{1}{2}D_x^2$ for $\xi \cdot \xi = \sum_{i=1}^N \frac{1}{m_i} \xi_i^2$, $\xi \in X^{\#}$.

Separation of the center of mass

ξ·ξ dual (aka inverse) of x · x = ∑_{i=1}^N m_ix_i².
Set X^a_{max} = X[⊥]_{amax}, identify X ~ X^a_{max} ⊕ X_{amax}.
we get

$$V(x) = \sum_{i=1}^{N} v_{ij}(x_i - x_j) =: V(x^{a_{\max}})$$

•
$$D_x^2 = (D_{x^{a_{\max}}})^2 + (D_{x_{a_{\max}}})^2$$

• we take $p = \xi_{a_{\max}}$:

$$\begin{aligned} \mathcal{H}(\xi_{a_{\max}}) &= L^2(X^{a_{\max}}), \\ \mathcal{H}(\xi_{a_{\max}}) &= H^{a_{\max}} + \frac{1}{2}(\xi_{a_{\max}})^2 \\ \mathcal{H}^{a_{\max}} &:= \frac{1}{2}(D_{X^{a_{\max}}})^2 + V(X^{a_{\max}}). \end{aligned}$$

Scattering Theory of Quantum N-particle systems

Agmon Hamiltonians

- fix a finite dimensional Euclidean space X (automatically equipped with a Lebesgue measure).
- Fix a family {X_a : a ∈ A} of subspaces of X closed under intersections and containing X.
- ▶ set $a \le b$ if $X_a \supset X_b$, $a, b \in A$. so $X_{a_{\min}} = X$ and $X_{a_{\max}} = \bigcap_{a \in A} X_a$.
- we can assume that X_{amax} = {0}. (If not separate the 'center of mass' as explained above).
- ▶ 'number of particles': consider a chain a₁ < ··· < a_k connecting a₁ = a_{min} to a_k = a_{max}.

 number of particles is the maximal length of such chains. (reflects the complexity of the lattice of subspaces {X_a : a ∈ A}.

Agmon Hamiltonians

set

$$X^a := X_a^{\perp}, \ x = x^a + x_a, \ a \in \mathcal{A}.$$

by duality we can similarly split

$$X^{\#}=X^{a\#}\oplus^{\perp}X^{\#}_{a},\;\xi=\xi^{a}+\xi_{a},$$

▶ for $a \in \mathcal{A}$ we fix a real function $v^a : X \to \mathbb{R}$ such that

$$v^a(x) = v^a(x+y_a), \ \forall y_a \in \mathcal{X}_a.$$

a Agmon Hamiltonian is

$$H = \frac{1}{2}D_x^2 + \sum_{a \in \mathcal{A}} v^a$$
, acting on $\mathcal{H} = L^2(X)$.

Agmon Hamiltonians

▶ for
$$a \in A$$
 set

$$V^{a}(x) = \sum_{b \leq a} v^{b}(x)$$
, function on X^{a} ,

$$H^{a} = \frac{1}{2} (D_{x}^{a})^{2} + V^{a}(x^{a}), \text{ acting on } \mathcal{H}^{a} = L^{2}(X^{a}).$$

Since $X = X^{a_{\max}}$ we have $H = H^{a_{\max}}$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Agmon Hamiltonians

we have

$$\begin{aligned} H &= H_a + I_a, \\ H_a &= H^a + \frac{1}{2} D_{x_a}^2, \ I_a(x) = \sum_{b \neq a} v_b(x). \end{aligned}$$

 \blacktriangleright I_a is the intercluster potential.

Agmon Hamiltonians

Advantages of this framework:

- notational and conceptual simplification.
- easy to incorporate particles of infinite masses (very heavy nuclei):
- ▶ add to the above family the subspaces {x ∈ ℝNd : x_j = 0} and their intersections,
- In can consider also multi-particle interactions, for example with potential v_{ijk}(x_i − x_j, x_j − x_k), for v_{ijk} : ℝ^{2d} → ℝ, associated to the subspace X_{(ijk}) = {x ∈ X : x_i = x_j = x_k}.

Pair potentials

- typical 2-body potentials decay near infinity and have a Coulomb type singularity at 0.
- a natural assumption: $v^a(x^a)(-\Delta^a + 1)^{-1}$ is compact on $L^2(X^a)$.
- note that $v^a(x^a)(-\Delta + 1)^{-1}$ not compact on $L^2(X)$ (unless $a = a_{\max}$). By Kato-Rellich we obtain:

Theorem

H with domain $H^2(X)$ is selfadjoint and bounded from below on $L^2(X)$.

► for standard *N*-body Hamiltonians with Coulomb interactions $v_{ij}(x) = \frac{q_i q_j}{|x|}$ and d = 3 first important result of Kato ('stability of matter of the first kind').

The HVZ theorem

- describes the essential spectrum of H (important result from the 60's, nowadays very easy to prove).
- important role played by the thresholds:
- ▶ the set of thresholds of a subsystem $a \in A$ is

$$\mathcal{T}^{a} := \bigcup_{b < a} \sigma_{\mathrm{pp}}(H^{b}).$$

• $\mathcal{T}^{a_{\max}}$ will be simply denoted by \mathcal{T} .

• set also $\Sigma^a := \inf(\mathcal{T}^a)$ and $\Sigma := \Sigma^{a_{\max}} = \inf(\mathcal{T})$.

▶ easy to show using trial functions (the 'variational argument') that $\inf \sigma(H^a) \leq T^a$.

- by energy conservation, Σ^a − Σ is the minimal energy needed to decompose the system into freely moving clusters of a.
- $-\Sigma$ is the minimal energy needed to fully decompose the system.

Note that $\sigma_{\rm pp}(H_{\min}^a) = \{0\}$ hence $\Sigma \leq 0$.

Theorem

Let H be an N-particle Hamiltonian with $X_{a_{\max}} = \{0\}$. Then the essential spectrum of H is equal to

 $\sigma_{\rm ess}(H) = [\Sigma, \infty[.$

イロト イポト イヨト イヨト

Partitions of unity

We split the configuration space X into regions describing different cluster decompositions.

set

$$Z_a = X_a \setminus \cup_{b \not\leq a} X_b.$$

- $\{Z_a\}_{a \in \mathcal{A}}$ is a partition of X.
- thicken the Z_a into

$$Z^{\epsilon,\delta}_{\mathbf{a}} = \{ x \in X : |x^{\mathbf{a}}| < \epsilon, \ |x^{\mathbf{b}}| \ge \delta \text{ for } \mathbf{b} \not \le \mathbf{a} \},$$

• construct a partition of unity $\{q_a\}_{a \in \mathcal{A}}$ such that

$$\begin{split} & \text{supp } q_{a} \subset Z_{a}^{\epsilon,\delta}, \quad \sum_{a \in \mathcal{A}} q_{a}(x) = 1, \\ & |\partial_{x}^{\alpha} q_{a}(x)| \leq C_{\alpha}, \quad 0 \leq q_{a}(x) \leq 1. \end{split}$$

Scattering Theory of Quantum N-particle systems

Functional calculus formula

recall the celebrated Hellfer-Sjöstrand formula:

▶ let $\chi \in C_0^{\infty}(\mathbb{R})$. Then there exist a function $\tilde{\chi} \in C_0^{\infty}(\mathbb{C})$, called an almost-analytic extension of χ , such that

$$\tilde{\chi}\big|_{\mathbb{R}} = \chi, \quad |\frac{\partial \tilde{\chi}}{\partial \overline{z}}(z)| \leq C_{N} |\mathrm{Im} z|^{N}, \quad N \in \mathbb{N}.$$

• if H selfadjoint operator on a Hilbert space \mathcal{H} then

$$\chi(H) = rac{i}{2\pi} \int_{\mathbb{C}} rac{\partial \widetilde{\chi}}{\partial \overline{z}}(z)(z-H)^{-1} \mathrm{d} z \wedge \mathrm{d} \overline{z}.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Proof of the HVZ theorem

- ▶ prove by induction on k that $\sigma_{ess}(H^a) = [\Sigma^a, +\infty[$ for all a with $\sharp a \leq k$.
- the hard part is \subset (\supset proved with Weyl sequences).
- ► assume that the theorem holds for all a < a_{max} and consider H = H^{a_{max}.}
- ► choose $\chi \in C_0^\infty(\mathbb{R})$ with supp $\chi \subset] \infty, \Sigma[$. Then

$$\chi(H) = \sum_{a \in \mathcal{A}} \chi(H) q_a(\frac{x}{R}), \ R \gg 1.$$

► on support of q_a, the interaction potential I_a is o(R⁰), so we can replace χ(H) by χ(H_a) modulo a small error (use HS formula).

Proof of the HVZ theorem

$$\chi(H) = \sum_{a \in \mathcal{A}} \chi(H_a) q_a(\frac{x}{R}) + o(R^0).$$

- since H_a = H^a + ½D²_{xa}, χ(H_a) = 0 for a ≠ a_{max} because of support of χ,
- ► $\chi(H)q_{a_{\max}}(\frac{x}{R})$ compact for any χ , because $q_{a_{\max}}$ has compact support.
- Therefore $\chi(H)$ is compact (norm limit of compact operators).

The Mourre estimate

- study of the nature of the essential spectrum of H revolutionized in the 80's by the Mourre method (positivity of a commutator).
- let H, A be two selfadjoint operators on a Hilbert space \mathcal{H} .
- one requires that H is of class $C^{1}(A)$, ie $\mathbb{R} \ni t \mapsto e^{itA}(H+i)^{-1}e^{-itA}$ is strongly C^{1} .
- the commutator [H, iA] makes then sense as a bounded hermitian form on Dom H.
- the Mourre estimate holds at λ ∈ ℝ if there exists an open interval Δ ∋ λ, c > 0 and K compact such that:

$$\mathbb{1}_{\Delta}(H)[H, iA]\mathbb{1}_{\Delta}(H) \ge c\mathbb{1}_{\Delta}(H) + K.$$
(3.1)

► the strict Mourre estimate holds at λ if one can take K = 0.

Scattering Theory of Quantum N-particle systems

The Mourre estimate

- assuming higher regularity of H w.r.t. e^{itA} one deduces from the strict Mourre estimate at λ weighted estimates on (H − λ ∓ i0)⁻¹.(original motivation of the Mourre method).
- these resolvent estimates are not necessary for the time-dependent scattering theory that we will describe here.

The virial theorem

the virial theorem states that

 $\mathbb{1}_{\{\lambda\}}(H)[H,\mathrm{i} A]\mathbb{1}_{\{\lambda\}}(H)=0.$

- formally obvious by 'undoing' the commutator.
- **rigorous proof** requires a lot of care, since A is unbounded.
- first consequence: if the Mourre estimate holds at λ then the eigenvalues of H cannot accumulate at λ.
- ► second consequence: if the Mourre estimate holds at λ and $\lambda \notin \sigma_{pp}(H)$ then the strict Mourre estimate holds at λ .

N—particle Hamiltonians N-particle Hamiltonians: basic theory **The Mourre estimate** Scattering theory Asymptotic velocity Asymptotic completeness for short-range *N*-particle systems

Best constant in the Mourre estimate

 nice polishing of various arguments, due to Amrein-Boutet de Monvel-Georgescu .

• set
$$\rho(\lambda) = \text{larger } c$$
 such that

$$\mathbb{1}_{\Delta}(H)[H,\mathrm{i}A]\mathbb{1}_{\Delta}(H) \geq c\mathbb{1}_{\Delta}(H).$$

- $\rho(\lambda)$ best constant in the strict Mourre estimate at λ .
- define $\tilde{\rho}(\lambda)$ similarly, adding a compact error term.

N—particle Hamiltonians N-particle Hamiltonians: basic theory **The Mourre estimate** Scattering theory Asymptotic velocity Asymptotic completeness for short-range *N*-particle systems

Best constant in the Mourre estimate

virial theorem can be rephrased by stating that

• if
$$\lambda \in \sigma_{\rm pp}(H)$$
 and $\tilde{\rho}(\lambda) > 0$, then $\rho(\lambda) = 0$.

• if
$$\lambda \notin \sigma_{\rm pp}(H)$$
 then $\rho(\lambda) = \tilde{\rho}(\lambda)$.

• if $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$, $H = H_1 \otimes \mathbb{1} + \mathbb{1} \otimes H_2$, $A = A_1 \otimes \mathbb{1} + \mathbb{1} \otimes A_2$, and H_i bounded from below then:

$$\rho(\lambda) = \inf_{\lambda_1 + \lambda_2 = \lambda} \rho_1(\lambda_1) + \rho_2(\lambda_2).$$

(looks easy but rather tricky to prove).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Mourre estimate for *N*-body Hamiltonians

- set $A = \frac{1}{2}(x \cdot D_x + D_x \cdot x)$ (generator of dilations).
- ► the expression x∇_xV is understood as [V, iA] (allows to 'undo the commutator' if needed).
- stronger assumption:

$$(1-\Delta^a)^{-1}x^a
abla_{x^a} v^a (1-\Delta^a)^{-1} ext{compact on } L^2(X^a), \ a \in \mathcal{A}.$$

Theorem

For $\lambda \in [\Sigma, \infty[$, let $d(\lambda) := \inf\{\lambda - \tau \mid \tau \leq \lambda, \tau \in \mathcal{T}\}$. Then for any $\epsilon > 0$, $\lambda \in [\Sigma, \infty[$, there exists an open interval Δ containing λ and a compact operator K such that

 $\mathbb{1}_{\Delta}(H)[H, \mathrm{i}A]\mathbb{1}_{\Delta}(H) \ge 2(d(\lambda) - \epsilon)\mathbb{1}_{\Delta}(H) + K.$ (3.2)

・ 同 ト ・ 三 ト ・ 三

N—particle Hamiltonians N-particle Hamiltonians: basic theory **The Mourre estimate** Scattering theory Asymptotic velocity Asymptotic completeness for short-range *N*-particle systems

Mourre estimate for *N*-body Hamiltonians

- \mathcal{T} is a closed countable set and $\sigma_{pp}(H)$ can accumulate only at \mathcal{T} .
- with terminology introduced above (3.2) means that $\tilde{\rho}(\lambda) \geq 2d(\lambda)$.
- Using trial functions one can show that $\tilde{\rho}(\lambda) = 2d(\lambda)$.

Idea of proof

- ▶ applying recursively the abstract theory to H^a for a < a_{max} gives that T is a closed countable set.
- ▶ it suffices prove Mourre estimate by induction on $\sharp a_{\max}$. If $\sharp a_{\max} = 1$ then $H = \frac{1}{2}D_x^2$, $[H, iA] = D_x^2$.
- ▶ assume that Mourre estimate holds for all H^a with $a \neq a_{max}$.
- use a partition of unity as before but with $\sum_{a \in A} q_a^2(x) = 1$.
- controlling double commutator terms gives

$$\chi(H)[H, \mathrm{i}A]\chi(H) = \sum_{a \in \mathcal{A}} q_a(\frac{x}{R})\chi(H)[H, \mathrm{i}A]\chi(H)q_a(\frac{x}{R}) + O(R^{-2}).$$

N—particle Hamiltonians N-particle Hamiltonians: basic theory **The Mourre estimate** Scattering theory Asymptotic velocity Asymptotic completeness for short-range *N*-particle systems

Idea of proof

on support of q_a, one can replace H by H_a modulo small errors, so

$$\chi(H)[H, iA]\chi(H) = \sum_{a \in \mathcal{A}} q_a(\frac{x}{R})\chi(H_a)[H_a, iA]\chi(H_a)q_a(\frac{x}{R}) + o(R^0).$$
(3.3)

- write $L^2(X) = L^2(X^a) \otimes L^2(X_a)$ so $H_a = H^a \otimes \mathbb{1} + \mathbb{1} \otimes \frac{1}{2} D^2_{x_a}$, $A = A^a \otimes \mathbb{1} + \mathbb{1} \otimes A_a$.
- for a ≠ a_{max} Mourre estimate for H^a gives ρ^a(λ) ≥ 2 inf{λ - τ^a : τ^a ∈ T^a ∪ σ_{pp}(H^a)}.

 since [¹/₂D²_{x_a}, iA_a] = D²_{x_a}, abstract result for tensor products gives:

$$\rho_{a}(\lambda) = \inf_{\lambda^{a} + \lambda_{a} = \lambda} \rho^{a}(\lambda^{a}) + 2|\lambda_{a}| \geq 2\inf\{\lambda - \tau : \tau \in \mathcal{T}, \tau \in \mathcal{I}, \tau \in \lambda\}.$$

Scattering Theory of Quantum N-particle systems

N—particle Hamiltonians N-particle Hamiltonians: basic theory **The Mourre estimate** Scattering theory Asymptotic velocity Asymptotic completeness for short-range *N*-particle systems

Idea of proof

• for $\lambda \in \mathbb{R} \setminus \mathcal{T}$ for all $\epsilon > 0$ there exists $\chi \in C_0^{\infty}(\mathbb{R})$ with $\chi(\lambda) \neq 0$ such that for all $a < a_{\max}$:

 $\chi(H_a)[H_a, iA]\chi(H_a) \ge 2(d(\lambda) - \epsilon)\chi^2(H_a).$

• winding back the partition of unity gives: $\chi(H)[H, iA]\chi(H) \ge 2(d(\lambda) - \epsilon) \chi^{2}(H) + K_{1}(R) + K_{2}(R) + o(R^{0}).$

$$\begin{split} \mathcal{K}_1(R) &= q_{a_{\max}}(\frac{x}{R})\chi(H^{a_{\max}})[H^{a_{\max}}, \mathrm{i}A]\chi(H^{a_{\max}})q_{a_{\max}}(\frac{x}{R}),\\ \mathcal{K}_2(R) &= q_{a_{\max}}(\frac{x}{R})\chi^2(H^{a_{\max}})q_{a_{\max}}(\frac{x}{R}),\\ \text{are compact } (q_{a_{\max}} \text{ compactly supported}).\\ \text{pick } R \gg 1 \text{ to obtain Mourre estimate for } H. \end{split}$$

Wave operators

consider first 1-particle case:

$$H = \frac{1}{2}D_x^2 + V(x), \ H_0 =: \frac{1}{2}D_x^2,$$

potential V tends to 0 at infinity.

- describe the asymptotic behavior when $t \to \pm \infty$ of $e^{-itH}u$ for $u \in \mathcal{H}_c(H)$.
- ► the case of bound states u ∈ H_{pp}(H) is obvious (superposition of oscillations).
- assume that

$$V(x) \in O(\langle x \rangle^{-\mu}), \text{ for } \mu > 0 \text{ when } x \to \infty.$$

- V is short-range if $\mu > 1$ long-range if $0 < \mu \leq 1$.
- Coulomb potential is long-range.

イロン イヨン イヨン イヨン

Wave operators

time-dependent method starts with wave operators

$$\Omega^{\pm} := \mathrm{s-} \lim_{t \to \pm \infty} \mathrm{e}^{\mathrm{i} t H} \mathrm{e}^{-\mathrm{i} t H_0}$$

 proof of the existence of Ω[±] easy in the short-range case for N = 1. (Cook method).

• asymptotic completeness is the statement that $\operatorname{Ran}\Omega^{\pm} = \mathcal{H}_{c}(\mathcal{H}).$

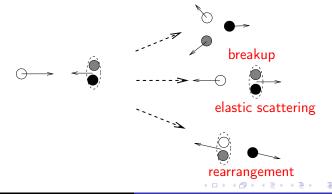
▶ means that for any $u \in \mathcal{H}_{\mathrm{c}}(H)$, there exists u^{\pm} such that

$$\lim_{t\to\pm\infty}\mathrm{e}^{-\mathrm{i}tH}u-\mathrm{e}^{-\mathrm{i}tH_0}u^{\pm}=0.$$

If asymptotic completeness holds asymptotic behavior of e^{-itH}u for all u ∈ L²(X) is completely understood.

Wave operators in the N-body case

In the N-particle case other scattering scenarios are possible: freely moving stable clusters of particles can form.



Scattering Theory of Quantum N-particle systems

Several wave operators needed to exhaust all the possibilities.

$$\Omega_{a}^{\pm} := \mathrm{s-} \lim_{t \to \pm \infty} \mathrm{e}^{\mathrm{i}tH} \mathrm{e}^{-\mathrm{i}tH_{a}} \mathbb{1}_{\mathrm{pp}}(H^{a}).$$

note that $\Omega^{\pm}_{a_{\max}} = \mathbb{1}_{pp}(H_{a_{\max}}).$

• existence of Ω_a^{\pm} is easy in the short-range case by the Cook method.

- ► easy to see that for $a \neq b \operatorname{Ran}\Omega_a^{\pm}$ and $\operatorname{Ran}\Omega_b^{\pm}$ are mutually orthogonal.
- asymptotic completeness is the statement that:

$$\bigoplus_{a\in\mathcal{A}}\operatorname{Ran}\Omega_a^{\pm}=L^2(X).$$

- much more difficult !
- additional difficulty in the long-range case: free motion of the center of masses has to be modified (already present in the 1-particle case). One needs modified wave operators.

Historical sketch of N-particle asymptotic completeness

- brief sketch of the N-body asymptotic completeness via time-dependent methods:
- Enss 1978 2-particles, 1986-1989 3-particle short and long range.
- Sigal-Soffer 1987, elegant proof by Graf 1990 N-particle short-range.
- Derezinski 1993, Zielinski 1994, Sigal-Soffer 1994 N-particle long-range.
- Gérard 1993, Skibsted 2003 3-particle long range decay $\mu > \frac{1}{2}$
- Yafaev 1996 counterexample for 3-particle $0 < \mu < \frac{1}{2}$.

Unitary dynamics

- one needs often to consider also time-dependent Hamiltonians.
- unitary dynamics: strongly continuous map $\mathbb{R} \times \mathbb{R} \ni (t, s) \mapsto U(t, s) \in B(\mathcal{H})$ with

U(t,s) unitary, $U(s,s) = \mathbb{1}, U(t,u)U(u,s) = U(t,s), \forall t, u, s \in \mathbb{R}.$

- what is the generator H(t) of U(t,s)?
- one can require that for B some strictly positive operator

 $\partial_s U(t,s)B^{-1} = iU(t,s)H(s)B^{-1}$, Dom $B \subset$ Dom H(s),

hence

$$\partial_t B^{-1} U(t,s) = -\mathrm{i} B^{-1} H(t) U(t,s).$$

• choose the reference initial time s = 0 and set U(t) := U(t, 0).

N—particle Hamiltonians N-particle Hamiltonians: basic theory The Mourre estimate Scattering theory Asymptotic velocity Asymptotic completeness for short-range N-particle systems

Heisenberg derivatives

- fundamental rule: do not consider evolution of states (too complicated) but of observables.
- replace Schroedinger equation by Heisenberg equation.
- ▶ if U_i(t, s), i = 1, 2 are two unitary dynamics with generators H_i(t), set

 $_{2}\mathrm{D}_{1}\Phi(t) = \partial_{t}\Phi(t) + \mathrm{i}(H_{2}(t)\Phi(t) - \Phi(t)H_{1}(t)),$

for $\Phi : \mathbb{R} \to B(\mathcal{H})$ of class C^1 . If $H_1(t) = H_2(t) = H(t)$, denote $_2D_1$ simply by D.

Cook method

- Cook method is the simplest and oldest method to show existence of limits like wave operators.
- based on L^1 in time arguments.
- ▶ simplest version: if $U_i(t, s)$ are generated by $H_i(t)$ and $H_2(t) = H_1(t) + V(t)$ with $||V(t)||_{B(\mathcal{H})} \in L^1(\mathbb{R})$, then

s- $\lim_{t\to\pm\infty} U_2(0,t)U_1(t,0)$ exists.

proof obvious (time derivative is integrable in norm).

- sufficient to show existence of wave operators, not for completeness.
- does not take advantage of the Hilbert space structure, (works on Banach spaces).

Propagation estimates

- better to rely on more symmetric L^2 in time estimates.
- ► assume $\mathbb{R} \ni t \mapsto \Phi(t) \in B(\mathcal{H})$ uniformly bounded and there exist $C_0 > 0$ and operator valued functions B(t) and $B_i(t)$, i = 1, ..., n, such that

$$D\Phi(t) \ge C_0 B^*(t) B(t) - \sum_{i=1}^n B_i^*(t) B_i(t),$$

$$\int_1^\infty \|B_i(t) U(t)\phi\|^2 dt \le C_i \|\phi\|^2, \quad i = 1, ..., n.$$

Then there exists C such that

$$\int_{1}^{\infty} \|B(t)U(t)\phi\|^{2} \mathrm{d}t \leq C \|\phi\|^{2}.$$

$$(4.1)$$

Scattering Theory of Quantum N-particle systems

N—particle Hamiltonians N-particle Hamiltonians: basic theory The Mourre estimate Scattering theory Asymptotic velocity Asymptotic completeness for short-range N-particle systems

Existence of limits

▶ assume that $\mathbb{R} \ni t \mapsto \Phi(t) \in B(\mathcal{H})$ is uniformly bounded and

$$\begin{split} |(\psi_2|_2 \mathcal{D}_1 \Phi(t) \psi_1)| &\leq \sum_{i=1}^n \|B_{2i}(t) \psi_2\| \|B_{1i}(t) \psi_1\|, \text{ with} \\ &\int_{1}^{\infty} \|B_{2i}(t) U_2(t) \phi\|^2 \mathrm{d}t \leq C \|\phi\|^2, \ \phi \in \mathcal{H}, \ i = 1, \dots, n, \\ &\int_{1}^{\infty} \|B_{1i}(t) U_1(t) \phi\|^2 \mathrm{d}t \leq C \|\phi\|^2, \ \phi \in \mathcal{H}, \ i = 1, \dots, n. \end{split}$$

then the limit

s-
$$\lim_{t\to+\infty} U_2^*(t)\Phi(t)U_1(t)$$
 exists.

イロン イ団 と イヨン イヨン

What is a selfadjoint operator ?

- provocative but meaningful definition:
- a (possibly non densely defined) selfadjoint operator on *H* is a continuous *-morphism *γ* : C_∞(ℝ) → B(*H*).
- a densely defined selfadjoint operator on \mathcal{H} is a continuous *-morphism $\gamma : \mathcal{C}_{\infty}(\mathbb{R}) \mapsto B(\mathcal{H})$ such that $s - \lim_{R \to +\infty} \gamma(\chi_R) = \mathbb{1}$ for $\chi_R(\lambda) = \chi(R^{-1}\lambda)$ with
 - $\chi \in \mathcal{C}_{\infty}(\mathbb{R})$ and $\chi(0) = \mathbb{1}$.
- there is a unique selfadjoint operator H such that γ(χ) = χ(H) for all χ ∈ C_∞(ℝ). γ uniquely extends to B(ℝ) (space of bounded Borel functions), using the monotone class theorem.
- ▶ replacing ℝ by ℝⁿ one obtains the definition of a commuting family (H₁, · · · , H_n) of selfadjoint operators.

- ► Jan Derezinski invented the notion of asymptotic velocity.
- gives a bird's eye view of scattering theory and asymptotic completeness.
- a crucial tool in his proof of completeness for long-range potentials.
- ▶ assume that $\partial_{x^a}^{\alpha} v^a(x^a) \in O(\langle x^a \rangle^{-\mu}), \ \mu > 0, |\alpha| \leq 1.$

then

$$\mathrm{s-}\lim_{t\to\pm\infty}\mathrm{e}^{\mathrm{i}tH}\chi(\frac{x}{t})\mathrm{e}^{-\mathrm{i}tH}=:\gamma^{\pm}(\chi)\;\mathrm{exist},\;\chi\in\mathcal{C}_{\infty}(X).$$

γ[±](χ) = χ(P[±]), P[±] future/past asymptotic velocity.
 P[±] commute with H.

Interpretation: $x(t) = e^{itH}xe^{-itH}$ is the position at time t, $\frac{x(t)}{t}$ the average velocity at time t, P^{\pm} their limits when $t \xrightarrow{t} \pm \infty$.

Properties of the asymptotic velocity

Recall that for

$$Z_a = X_a \setminus \cup_{b \not\leq a} X_b,$$

the $\{Z_a\}_{a \in \mathcal{A}}$ are a partition of unity.

therefore we have

$$\mathbb{1} = \sum_{a \in \mathcal{A}} \mathbb{1}_{Z_a}(P^{\pm}).$$

▶ $u = \mathbb{1}_{Z_a}(P^{\pm})u$ then $e^{-itH}u$ for $t \to \pm \infty$ is decomposed into independent clusters of *a*, whose size is o(t).

・ロト ・日ト ・ヨト ・ヨト

Properties of the asymptotic velocity

▶ in particular for $a = a_{\max}$, $Z_{a_{\max}} = \{0\}$ and if $u \in \operatorname{Ran} \mathbb{1}_{\{0\}}(P^{\pm})$ then

$$\mathrm{s-}\lim_{t\to\pm\infty}\mathbbm{1}_{[\delta,+\infty[}(\frac{|x|}{t})\mathrm{e}^{-H}u=0,\ \forall \delta>0,$$

ie x(t) is of size o(t), u is an 'almost bound state'.

the Mourre estimate implies the following fundamental result:

 $\mathbb{1}_{\{0\}}(P^{\pm})=\mathbb{1}_{\mathrm{pp}}(H),$

ie almost bound states are necessarily bound states.

not true in the classical case !

Joint energy-velocity spectrum

- ► since [H, P[±]] = 0 on can study the joint energy-velocity spectrum.
- ▶ it gives a first 'spectral' understanding of scattering theory.

Theorem

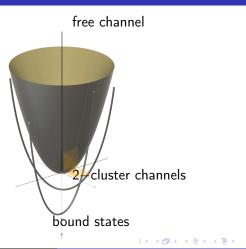
The joint energy-velocity spectrum is

$$\sigma(H, P^{\pm}) = \bigcup_{a \in \mathcal{A}} \{ (\xi_a, \tau + \frac{1}{2}\xi_a^2) : \xi_a \in X_a, \ \tau \in \sigma_{\rm pp}(H^a) \}.$$

N—particle Hamiltonians N-particle Hamiltonians: basic theory The Mourre estimate Scattering theory Asymptotic velocity Asymptotic completeness for short-range N-particle systems

Asymptotic completeness for short-range *N*-particle systems Asymptotic completeness for long-range *N*-particle systems

Joint energy-velocity spectrum



Scattering Theory of Quantum N-particle systems

Energy-momentum spectrum in relativistic QFT

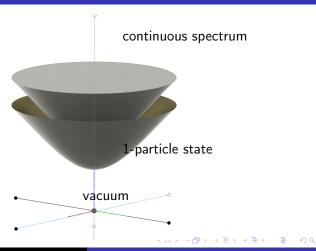
- similar result in relativistic QFT.
- if the theory is invariant under the Poincaré group, one can study the energy-momentum spectrum (space-time translations).
- typical spectrum is shown in the next slide. Parabolas are replaced by hyperbolas (and Galilei group by Lorentz group).

(D) (A) (A) (A) (A)

N—particle Hamiltonians N-particle Hamiltonians: basic theory The Mourre estimate Scattering theory Asymptotic velocity Asymptotic completeness for short-range N-particle systems

Asymptotic completeness for short-range *N*-particle systems Asymptotic completeness for long-range *N*-particle systems

Energy-momentum spectrum in relativistic QFT



Scattering Theory of Quantum N-particle systems

Asymptotic absolute continuity

- one can ask about the nature of the spectral measure of P^{\pm} .
- a result in this direction is the following (called asymptotic absolute continuity):
- assume that $\nabla_{x^a}^{\alpha} v^a \in O(\langle x^a \rangle^{-|\alpha|-\mu})$ for $|\alpha| \leq 1$ and $\mu > \frac{1}{2}$.
- ▶ then if $a \in A$ and $\theta \subset Z_a$ is of measure zero on X_a one has

 $\mathbb{1}_{\theta}(P^{\pm})=0.$

Large velocity estimates

- the Heisenberg derivative of x is D_x , controlled by H.
- if total energy is bounded, the position x cannot grow faster than Ct.
- (not true for the N-body problem of Celestial Mechanics !)
- Let $\chi \in C_0^{\infty}(\mathbb{R})$. Then there exists $\theta > 0$ such that

1)
$$\int_{1}^{+\infty} \|\mathbb{1}_{[\theta,\theta']}(\frac{|x|}{t})\chi(H)\mathrm{e}^{-\mathrm{i}tH}u\|^{2}\frac{dt}{t} \leq C\|u\|^{2}.$$

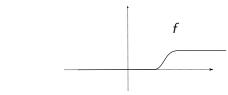
Moreover

2)
$$\lim_{t\to\pm\infty}\mathbb{1}_{[\theta,+\infty[}(\frac{|x|}{t})\chi(H)\mathrm{e}^{-\mathrm{i}tH}u=0.$$

• statement 2) means exactly that P^{\pm} is densely defined.

N-particle Hamiltonians N-particle Hamiltonians: basic theory The Mourre estimate Scattering theory Asymptotic velocity Asymptotic completeness for short-range N-particle systems

Asymptotic completeness for long-range N-particle systems



▶ since $D\chi(H)$ is bounded we get that

$$\mathrm{D}\Phi(t) \leq -rac{\mathcal{C}}{t}\chi(\mathcal{H})\mathbb{1}_{[heta, heta']}(rac{|x|}{t})\chi(\mathcal{H})$$

negative Heisenberg derivative.

Scattering Theory of Quantum N-particle systems

- ▶ proof of 2): replace $\Phi(t)$ by $\Phi_R(t) = \chi(H)F(\frac{x}{Rt})\chi(H)$, for $R \gg 1$.
- we want to show that $s \lim_{t \to \pm \infty} e^{itH} \Phi_1(t) e^{-itH} = 0$.
- $D\Phi_R(t)$ is controlled by terms under the integral in 1) so
- ► $s-\lim_{t\to\pm\infty} e^{itH} \Phi_R(t) e^{-itH}$ exists.

イロト イボト イヨト イヨト 二日

• keeping track of R in computation of $D\Phi_R(t)$ one obtains that

$$s-\lim_{R\to+\infty}s-\lim_{t\to\pm\infty}e^{itH}\Phi_R(t)\chi(H)e^{-itH}=0.$$

▶ $\Phi_R(t) - \Phi_1(t)$ supported in $\theta \le \frac{|x|}{t} \le \theta'$, so ▶ $\int_1^{+\infty} \|(\Phi_R(t) - \Phi_1)e^{-itH}\chi(H)u\|^2 \frac{dt}{t} < \infty$, hence ▶ $s - \lim_{t \to \pm \infty} e^{itH}(\Phi_R(t) - \Phi_1(t))\chi(H)e^{-itH} = 0$. ▶ taking $R \to +\infty$ gives $s - \lim_{t \to \pm \infty} e^{itH}\Phi_1(t)\chi(H)e^{-itH} = 0$.

(D) (A) (A) (A)

Phase-space propagation estimates: 1-particle case

• free case
$$(V = 0)$$
: let $R(x) = \frac{1}{2}x^2$ and
 $\Phi(t) = \frac{1}{2}(D_x - \frac{x}{t}) \cdot \nabla R(\frac{x}{t}) + \text{h.c.}) + R(\frac{x}{t}).$

then

$$\mathrm{D}\Phi(t)=\partial_t\Phi(t)+[\frac{1}{2}D_x^2,\mathrm{i}\Phi(t)]=\frac{1}{t}\|D_x-\frac{x}{t}\|^2\geq 0.$$

• problem: $\Phi(t)$ is not bounded.

solution: replace Φ(t) by χ(H)F(^x/_t)Φ(t)F(^x/_t)χ(H), F supported in |x| ≤ R, R ≫ 1.

extra terms coming from DF(^x/_t) are controlled by large velocity estimates.

Phase-space propagation estimates: 1-particle case

- assume now that $V(x) \in O(\langle x \rangle^{-\mu})$, $\mu > 0$.
- extra term in $D\Phi(t)$ is $-\nabla R(\frac{x}{t}) \cdot \nabla_x V(x)$, not controlled.
- solution: modify R(x) such that ∇_xR(x) = 0 in |x| ≤ ε, keeping ∇²_xR(x) ≥ 0.
- for example take $R(x) = \max(\frac{1}{2}\epsilon^2, \frac{1}{2}x^2)$ (convex !).
- if necessary smooth out R by convolution w.r.t. ϵ .
- ▶ then if $\nabla_x V(x) \in O(\langle x \rangle^{-1-\mu})$, extra term is $O(t^{-1-\mu})$, integrable in norm.
- ► We obtain $\int_1^{+\infty} \|\mathbb{1}_{[\theta,\omega']}(\frac{x}{t})(D_x \frac{x}{t})e^{-itH}u\|^2 \frac{dt}{t} \leq C \|u\|^2$.
- example of a phase space propagation estimate.

(D) (A) (A) (A)

the Graf function

- Graf ingenious construction: modify R(x) in the N-body case: modify R(x) = ¹/₂x² so that
- ▶ 1) R(x) depends only on x_a near Z_a .
- ▶ 2) $\nabla^2_{\mathbf{x}} \mathbf{R}(\mathbf{x}) \ge \pi_a$ near Z_a , where $\pi_a : \mathbf{X} \to X_a$ orthogonal projection.
- one chooses

$$R^{
ho}(x) = rac{1}{2} \max_{a \in \mathcal{A}} \{x_a^2 +
ho_a\}, \
ho = (
ho_a)_{a \in \mathcal{A}}.$$

 R^{ρ} satisfies 1) and 2) for ρ in some open set.

> smooth out R^{ρ} w.r.t. ρ :

$$R(x) = \int R^{\rho}(x)f(\rho)d\rho$$
, for $\int f(\rho)d\rho = 1$,

Scattering Theory of Quantum N-particle systems

Phase-space propagation estimates: N-particle case

- properties 1) 2) still satisfied.
- ▶ recall that $Z^{\epsilon,\delta}_a \subset X$ defined by

$$|x^{a}| \leq \epsilon, |x^{b}| \geq \delta \ \forall b \not\leq a.$$

- ▶ if $\frac{x}{t} \in Z_a^{\epsilon,\delta}$, then clusters of *a* have distance at least $\delta|t|$ and size $\epsilon|t|$.
- let $\chi \in C_0^{\infty}(\mathbb{R})$, $F \in C_0^{\infty}(X)$. Then

$$\int_1^{+\infty} \|\chi(H)F(\frac{x}{t})\mathbb{1}_{Z^{\epsilon,\delta}_a}(\frac{x}{t})(D_{x_a}-\frac{x_a}{t})\mathrm{e}^{-\mathrm{i}tH}u\|^2\frac{dt}{t} \leq C\|u\|^2.$$

(D) (A) (A) (A) (A)

Phase-space propagation estimates: N-particle case

propagation observable:

 $\Phi(t) = \frac{1}{2}((D_x - \frac{x}{t}) \cdot \nabla R(\frac{x}{t}) + \text{h.c.}) + R(\frac{x}{t}).$

- add energy cutoffs $\chi(H)$ and large distance cutoffs $F(\frac{\chi}{t})$.
- $\blacktriangleright D\Phi(t) = \partial_t \Phi(t) + [\frac{1}{2}D_x^2, \mathrm{i}\Phi(t)] + [V(x), \mathrm{i}\Phi(t)].$

first two terms can be computed exactly as

$$\frac{1}{t}(D_{\mathsf{x}}-\frac{\mathsf{x}}{t})\cdot\nabla^2 R(\frac{\mathsf{x}}{t})(D_{\mathsf{x}}-\frac{\mathsf{x}}{t}) \geq c\sum_{\mathsf{a}\in\mathcal{A}}\mathbb{1}_{Z_{\mathsf{a}}}(\frac{\mathsf{x}}{t})(D_{\mathsf{x}_{\mathsf{a}}}-\frac{\mathsf{x}_{\mathsf{a}}}{t})^2$$

• for $\frac{x}{t} \in Z_a^{\epsilon,\delta}$ split the second term as

$$-\nabla_{x^a} V^a(x^a) \cdot \nabla_{x^a} R(\frac{x}{t}) - \nabla_{x} I_a(x) \cdot \nabla_{x} R(\frac{x}{t})$$

First term is 0, because near Z_a, ∇_xR depends only on x_a.
 second term is O(t^{-1-µ}) so integrable in norm. □ = · · · = ·

Scattering Theory of Quantum N-particle systems

Asymptotic velocity

▶ goal: prove that for $F \in C_0^{\infty}(X)$ (dense in $C_{\infty}(X)$):

$$s - \lim_{t \to \pm \infty} e^{itH} F(\frac{x}{t}) e^{-itH}$$
 exists

▶ we can take F in a C⁰ dense subspace of C₀[∞](X): good choice: F(x) depends only on x_a near X_a.

set

$$\Phi(t) = F(\frac{x}{t}) + \nabla F(\frac{x}{t}) \cdot (D_x - \frac{x}{t}).$$

$$D\Phi(t) = (D - \frac{x}{t}) \cdot \nabla^2 F(\frac{x}{t}) (D_x - \frac{x}{t}) - \nabla F(\frac{x}{t}) \cdot \nabla V(x).$$

first term is integrable along the evolution by phase space

1) first term is integrable along the evolution by phase space propagation estimates.

2) second term is
$$O(t^{-1-\mu})$$
 in norm.

Asymptotic velocity

therefore

$$s-\lim_{t\to\pm\infty} e^{itH}(F(\frac{x}{t})+\nabla F(\frac{x}{t})\cdot (D_x-\frac{x}{t}))e^{-itH}$$
 exists.

next show (by computing its Heisenberg derivative) that

$$s-\lim_{t\to\pm\infty} e^{itH} (\nabla F(\frac{x}{t}) \cdot (D_x - \frac{x}{t}) e^{-itH}$$
 exists.

- this observable is integrable along the evolution hence the limit has to be 0.
- therefore $s \lim_{t \to \pm \infty} e^{itH} F(\frac{x}{t}) e^{-itH} = F(P^{\pm})$ exists.
- ► the fact that [H, P[±]] = 0 is a general property (valid for all asymptotic observables).

Minimal velocity estimate

- construction of asymptotic velocity not sufficient to prove asymptotic completeness, even in the short-range case.
- one needs the additional spectral information: 1_{0}P[±]) = 1_{pp}(H). (almost bound states are bound states).
- this will follow from a minimal velocity estimate due to Graf: let χ ∈ C₀[∞](ℝ) with supp χ ∩ T ∪ σ_{pp}(H) = Ø.
- then there exists $\epsilon_0 > 0$ such that

$$\int_1^{+\infty} \|\mathbb{1}_{[0,\epsilon]}(\frac{x}{t})\chi(H)\mathrm{e}^{\mathrm{i}tH}u\|^2 \frac{dt}{t} \leq C \|u\|^2.$$

Minimal velocity estimate

▶ set $M(t) = J(\frac{x}{t}) + \frac{1}{2}((D_x - \frac{x}{t}) \cdot \nabla J(\frac{x}{t}) + \text{h.c.})$, *J* depends only on x_a near Z_a , J(x) = 1 in $|x| \le \epsilon$.

take

$$\Phi(t) = \chi(H)M(t)\chi(H)\frac{A}{t}\chi(H)M(t)\chi(H).$$

- when computing $D\Phi(t)$, terms coming from DM(t) will be controlled.
- one has $D\frac{A}{t} = -\frac{A}{t^2} + \frac{[H,iA]}{t}$.
- ▶ because of the Mourre estimate $\chi(H)[H, iA]\chi(H) \ge c\chi^2(H)$.
- choosing $\epsilon \ll 1$ we can ensure that $M(t)\chi(H)\frac{A}{t}\chi(H)M(t) \leq \frac{c}{2}M(t)\chi(H)\chi(H)M(t).$

・ 同 ト ・ ヨ ト ・ モ ト ・

Minimal velocity estimate

- ▶ we obtain $D\Phi(t) \ge \frac{c}{2}\chi(H)M^2(t)\chi(H)$ modulo already controlled errors. This proves minimal velocity estimate.
- ▶ since we know that $s \lim_{t \to \pm \infty} e^{itH} \chi(H) \mathbb{1}_{[0,\epsilon]}(\frac{x}{t}) \chi(H) e^{-itH}$ exists, we obtain that

$$\mathrm{s-}\lim_{t\to\pm\infty}\mathrm{e}^{\mathrm{i}tH}\chi(H)\mathbb{1}_{[0,\epsilon]}(\frac{x}{t})\chi(H)\mathrm{e}^{-\mathrm{i}tH}=0.$$

by an easy density argument, this shows that

$$\mathbb{1}_{\{0\}}(P^{\pm})=\mathbb{1}_{\mathrm{pp}}(H).$$

(D) (A) (A) (A) (A)

N—particle Hamiltonians N-particle Hamiltonians: basic theory The Mourre estimate Scattering theory Asymptotic velocity Asymptotic completeness for short-range N-particle systems

Asymptotic completeness for short-range N-particle systems

- existence and completeness of short-range wave operators follows very easily from properties of asymptotic velocity.
- ▶ it can be neatly formulated as follows: assume that $v^a(x^a) \in O(\langle x^a \rangle)^{-\mu}$ for $\mu > 1$. Then

the limits

1) s-
$$\lim_{t \to \pm \infty} e^{itH} e^{-itH_a} \mathbb{1}_{pp}(H^a) =: \Omega_{sr,a}^{\pm}$$
 exist.

the limits

2) s-
$$\lim_{t \to \pm \infty} e^{itH_a} e^{-itH} \mathbb{1}_{Z_a}(P^{\pm}) = \Omega_{\mathrm{sr},a}^{\pm *}$$
 exist.

• $\Omega_{\mathrm{sr},a}^{\pm}$ are partial isometries with $\operatorname{Dom} \Omega_{\mathrm{sr},a}^{\pm} = \operatorname{Ran} \mathbb{1}_{\mathrm{pp}}(\mathcal{H}^{a}), \ \operatorname{Ran} \Omega_{\mathrm{sr},a}^{\pm} = \operatorname{Ran} \mathbb{1}_{Z_{a}}(\mathcal{P}^{\pm}).$

Scattering Theory of Quantum N-particle systems

Asymptotic completeness for short-range N-particle systems

the proofs of 1) and 2) are similar: denoting by P[±]_(a), P^{±(a)} the asymptotic velocities for H_a, H^a we get

 $P_{(a)}^{\pm} = (D_{x_a}, P^{\pm}(a)).$

- ► therefore using Mourre estimate for H^a , we get $\mathbb{1}_{pp}(H^a) = \mathbb{1}_{Z_a}(P^{\pm}_{(a)}).$
- Proof of 2): let u ∈ Ran l_{Z_a}(P[±]). By density we can assume that u = F(P[±])u = χ(H)u for F supported near Z_a, χ ∈ C₀[∞](ℝ).
- so it suffices to prove the existence of

$$\lim_{t\to\pm\infty}\chi(H_a)F(\frac{x}{t})\chi(H)\mathrm{e}^{\mathrm{i}tH_a}F(\frac{x}{t})\mathrm{e}^{-\mathrm{i}tH}u.$$

N—particle Hamiltonians N-particle Hamiltonians: basic theory The Mourre estimate Scattering theory Asymptotic velocity Asymptotic completeness for short-range N-particle systems

Asymptotic completeness for short-range N-particle systems

we compute asymmetric Heisenberg derivative for H₂ = H_a, H₁ = H:

 $_{2}\mathrm{D}_{1}\chi(H_{a})M(t)\chi(H),$

• for $M(t) = (F(\frac{x}{t}) - \frac{1}{2}((D_x - \frac{x}{t}) \cdot \nabla F(\frac{x}{t}) + \text{h.c.}).$

it equals

 $\chi(H_a) DM(t) \chi(H) + \chi(H_a) i I_a(x) M(t) \chi(H).$

- first term is integrable along the evolution (use phase space propagation estimates for H and H_a).
- ▶ second term is $O(t^{-\mu})$ in norm so integrable by short-range condition.

Asymptotic completeness for short-range N-particle systems

To complete the proof of asymptotic completeness, use:

$$1\!\!1 = \sum_{a \in \mathcal{A}} 1\!\!1_{Z_a}(P^{\pm}), (\text{spectral theorem } !)$$

▶ and
$$Z_{a_{\max}} = \{0\}$$
, $\mathbb{1}_{\{0\}}(P^{\pm}) = \mathbb{1}_{\operatorname{pp}}(H)$.

therefore

$$\oplus_{\boldsymbol{a}\in\mathcal{A}}\mathrm{Ran}\Omega^{\pm}_{\mathrm{sr},\boldsymbol{a}}=L^{2}(X).$$

Modified dynamics 1-particle case

► consider 1-particle Hamiltonian: $H = \frac{1}{2}D_x^2 + V(x)$, $\partial_x^{\alpha}V(x) \in O(\langle x \rangle)^{-\mu - |\alpha|}, \ \mu > 0.$

the short-range wave operators

$$s-\lim_{t\to\pm\infty}e^{itH}e^{-it\frac{1}{2}D_x^2}$$
 do not exist !

- the 'long-range tail' of the potential cannot be forgotten.
- purely classical problem, can be completely understood in classical mechanics.
- one needs to modify the free dynamics: various equivalent ways to do it.

Modified dynamics 1-particle case

time-dependent modifiers: choose a solution of the Hamilton-Jacobi equation:

$$\partial_t S(t,\xi) = rac{1}{2}\xi^2 + V_t(
abla_\xi S(t,\xi)),$$

- $V_t(x)$ time-dependent potential, equal to V(x) in $|x| \ge \epsilon |t|$.
- ▶ boundary condition for $S(t,\xi)$ is $S(t,\xi) = \frac{1}{2}t\xi^2 + O(t^{1-\mu})$, when $t \to \pm \infty$.
- not unique, no canonical choice.

イロト イポト イヨト イヨト

Modified dynamics 1-particle case

one introduces the modified wave operators:

$$\Omega_{\mathrm{lr}}^{\pm} := \mathrm{s} - \lim_{t \to \pm \infty} \mathrm{e}^{itH} \mathrm{e}^{\mathrm{i}S(t,D_x)}.$$

Completeness of wave operators is as before statement that:

$$\operatorname{Ran}\Omega_{\operatorname{lr}}^{\pm} = \mathbb{1}_{\operatorname{c}}(H)L^{2}(X).$$

- existence easy to prove (stationary phase arguments).
- completeness more difficult: nice time-dependent proof by Sigal

Modified dynamics 1-particle case

- ► first step: replace V(x) by $V_t(x)$ as above, satisfying $\partial_x^{\alpha} V_t(x) \in O(t^{-\mu |\alpha|})$ (use minimal velocity estimates).
- ► let U(t, s) unitary dynamics generated by $H(t) = \frac{1}{2}D_x^2 + V_t(x).$

using asymptotic velocity one shows that

$$s-\lim_{t\to\pm\infty}U(0,t)e^{-itH}\mathbb{1}_{c}(H)$$
 exist.

it remains to show that

s-
$$\lim_{t\to\pm\infty} e^{iS(t,D_x)} U(t,0)$$
 exists.

イロト イポト イヨト イヨト

Modified dynamics 1-particle case

• compute Heisenberg derivative w.r.t. H(t):

 $D(x - \nabla_{\xi}S(t, D_x))$

$$= D_x + \nabla_x V_t(x) \nabla_{\xi}^2 S(t, D_x) - \partial_t \nabla_{\xi} S(t, D_x)$$

$$= (\nabla_x V_t(x) - \nabla_x V_t(\nabla_\xi S(t, D_x))) \nabla_\xi^2 S(t, D_x)$$

$$= \nabla_x^2 V_t(x)(x - (\nabla_\xi S(t, D_x)))\nabla_\xi^2 S(t, D_x)$$

$$= O(t^{-1-\mu})(x - \nabla_{\xi}S(t, D_x)).$$

Gronwall's inequality then gives Sigal's estimate:

$$\|(x-
abla_{\xi}S(t,D_x))U(t,0)\langle x
angle^{-1}\|\in O(1).$$

- Show that s−lim_{t→±∞} e^{iS(t,D_x)} U(t,0) exists by naive Cook method:
- ▶ show that $(\partial_t S(t, D_x) H(t))U(t, 0)u$ integrable in norm.
- we need to show

 $\|(V_t(\nabla_{\xi}S(t,D_x))-V_t(x))U(t,0)u\|\in L^1(dt).$

- ▶ pdo calculus gives $V_t(\nabla_{\xi}S(t, D_x)) V_t(x)) = O(t^{-1-\mu})(x \nabla_{\xi}S(t, D_x)) + O(t^{-1-\mu}).$
- ▶ this is in $L^1(dt)$ for $u \in \text{Dom}\langle x \rangle$ by Sigal's estimate.

Long-range *N*-particle case

- ▶ let $u \in \operatorname{Ran} \mathbb{1}_{Z_a}(P^{\pm})$. Then:
- size of the clusters of a is o(t), distance between clusters of a greater than C|t|.
- ► We can replace $I_a(x)$ by $I_{a,t}(x)$, with $\partial_x I_{a,t}(x) \in O(t^{-|\alpha|-\mu})$, $I_{a,t}(x) = I_a(x)$ near Z_a .
- the usual argument gives the existence of

$$\Omega^{\pm}_{a,\mathrm{sep}} = \mathrm{s-}\lim_{t \to \pm \infty} U_a(0,t) \mathrm{e}^{-\mathrm{i}tH} \mathrm{Ran} \mathbb{1}_{Z_a}(P^{\pm}),$$

- where $U_a(t, x)$ unitary dynamics generated by $H_a(t) = \frac{1}{2}D_{x_a}^2 + H^a + I_{a,t}(x).$
- ▶ main problem: $U_a(t,0)$ still couples motion in X^a and in X_a .
- one would like to replace $I_{a,t}(x)$ by $I_{a,t}(0, x_a)$ is set $x^a = 0$.

Bound on the size of the clusters

- ▶ by Taylor's formula $I_{a,t}(x) I_{a,t}(0, x_a) \in O(t^{-1-\mu})|x^a|$.
- So the key is to estimate the size of the clusters of a when u ∈ Ran l_{Z_a}(P[±]), ie replace the o(t) estimate by O(t^δ) for some 0 < δ < 1.</p>

▶ Jan Derezinski managed to prove that if $u \in \text{Ran} \mathbb{1}_{Z_a}(P^{\pm})$ then

$$\lim_{t\to\pm\infty}\mathbb{1}_{[\theta,+\infty[}(\frac{|x^a|}{t^{\delta}})\mathrm{e}^{-\mathrm{i}tH}u=0,$$

 for δ = 2(2 + µ)⁻¹. Proof uses the function r(x) = (2R(x))^{1/2} (modification of |x|).

イロン イヨン イヨン イヨン

Long-range N-particle case

• if $2(2 + \mu)^{-1} < \mu$ ie $\mu > \sqrt{3} - 1$, then one can replace $I_{a,t}(x)$ by $I_{a,t}(0, x_a)$ on the evolution of such states.

choose a solution of Hamilton-Jacobi equation:

$$\partial_t S_a(t,\xi_a) = rac{1}{2}\xi_a^2 + I_{a,t}(0,
abla_{\xi_a}S(t,\xi_a)),$$

 $S_a(t,\xi_a) = rac{1}{2}\xi_a^2 + O(t^{1-\mu}).$

(日) (四) (三) (三) (三) (三)

Long-range *N*-particle case

- one obtains the following theorem
- ► assume that $\nabla_x^{\alpha} v^a(x^a) \in O(\langle x^a \rangle)^{-|\alpha|-\mu}$ for $\mu > \sqrt{3} 1$. Then the limits

1)
$$\Omega_{\mathrm{lr},a}^{\pm} = \mathrm{s-}\lim_{t \to \pm \infty} \mathrm{e}^{\mathrm{i}H} \mathrm{e}^{-\mathrm{i}S_a(t,D_{x_a}) - \mathrm{i}tH^a} \mathbb{1}_{\mathrm{pp}}(H^a)$$

2)
$$\Omega_{\mathrm{lr},a}^{\pm *} = \mathrm{s-}\lim_{t \to \pm \infty} \mathrm{e}^{\mathrm{i}S_a(t,D_{x_a}) + \mathrm{i}tH^a} \mathrm{e}^{-itH} \mathbb{1}_{Z_a}(P^{\pm})$$

exist.

• $\Omega^{\pm}_{\mathrm{lr},a}$ are partial isometries with

$$\mathsf{Dom}\,\Omega^{\pm}_{\mathrm{lr},a} = \mathrm{Ran}\mathbb{1}_{\mathrm{pp}}(H^{a}), \ \mathrm{Ran}\Omega^{\pm}_{\mathrm{lr},a} = \mathrm{Ran}\mathbb{1}_{Z_{a}}(P^{\pm}).$$

Long-range *N*-particle case

the wave operators are complete

$$\oplus_{\boldsymbol{a}\in\mathcal{A}}\operatorname{Ran}\Omega^{\pm}_{\operatorname{sr},\boldsymbol{a}}=L^{2}(X).$$

One has

$$\Omega_{\mathrm{lr},a}^{\pm*}P^{\pm}\mathbb{1}_{Z_a}(P^{\pm})=D_{x_a}\Omega_{\mathrm{lr},a}^{\pm*}\mathbb{1}_{Z_a}(P^{\pm}).$$

Scattering Theory of Quantum N-particle systems

イロト イヨト イヨト イヨト

Thank your for your attention !

Scattering Theory of Quantum *N*-particle systems