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N-particle Hamiltonians

I Consider a system of N non-relativistic particles in Rν .
I configuration space: X = X1 × · · · × XN , Xi = Rν , with

x = (x1, · · · , xN),
I xi , Di = i−1∂xi position , momentum of particle i ,

D = (D1, · · · ,DN) X#-valued selfadjoint operator.
I Hilbert space

H = ⊗N
i=1L

2(Xi ) = L2(X ).

I statistics of the particles easily incorporated and will be
forgotten.
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N-particle Hamiltonians

I N−particle Hamiltonian:

H =
N∑
i=1

− 1
2mi

∆i +
∑
i<j

vij(xi − xj),

mi mass of particle i , vij : Rν → R interaction potential
between particles i and j .
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Collision planes

I Inside X subspaces where two or more particles collide are very
important.

I If 1 ≤ i 6= j ≤ N we set

X(ij) ··= {x ∈ X : xi = xj}.

I complete the set of collision subspaces by intersections.
I one obtains a family of subspaces Xa, indexed by the set A of

partitions of {1, . . . ,N}.
I a = {C1, . . . ,Ck}, the Ci correspond to clusters of a.
I write (ij) ≤ a if xi and xj are in the same cluster of a and set

Xa = {x ∈ X : xi = xj if (ij) ≤ a}.
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Collision planes

I set A is equipped with an order relation defined by a ≤ b if
Xa ⊃ Xb (a is finer than b).

I minimal partition is amin = {{1}, . . . , {N}}
I maximal partition is amax = {{1, . . . ,N}}.
I associated subspaces are

Xamin = X , Xamax = {x ∈ X : xi = xj ∀i , j}.
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Separation of the center of mass

I H commutes with translations:

u(x1, · · · , xn) 7→ u(x1 − v , · · · , xn − v), v ∈ Rd ,

I equivalently H commutes with translations eiy ·Dx for y ∈ Xamax

I we can write H and H as direct integrals:

H =

ˆ ⊕
Rν∗
H(p)dp, H =

ˆ
Rν∗

H(p)dp.

I explicit version of H(p) and H(p): (in the old times, done
with ’Jacobi coordinates’).

I kinetic part in H equal to 1
2D

2
x for ξ ·ξ =

∑N
i=1

1
mi
ξ2i , ξ ∈ X#.
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Separation of the center of mass

I ξ ·ξ dual (aka inverse) of x · x =
∑N

i=1 mix
2
i .

I Set X amax = X⊥amax , identify X ∼ X amax ⊕ Xamax .
I we get

V (x) =
N∑
i=1

vij(xi − xj) =·· V (xamax)

I D2
x = (Dxamax )2 + (Dxamax )2.

I we take p = ξamax :

H(ξamax) = L2(X amax),

H(ξamax) = Hamax + 1
2(ξamax)2

Hamax ··= 1
2(Dxamax )2 + V (xamax).
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Agmon Hamiltonians

I fix a finite dimensional Euclidean space X (automatically
equipped with a Lebesgue measure).

I fix a family {Xa : a ∈ A} of subspaces of X closed under
intersections and containing X .

I set a ≤ b if Xa ⊃ Xb, a, b ∈ A.
so Xamin = X and Xamax =

⋂
a∈A Xa.

I we can assume that Xamax = {0}. (If not separate the ’center
of mass’ as explained above).

I ’number of particles’: consider a chain a1 < · · · < ak
connecting a1 = amin to ak = amax.

I number of particles is the maximal length of such chains.
(reflects the complexity of the lattice of subspaces
{Xa : a ∈ A}.
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Agmon Hamiltonians

I set
X a ··= X⊥a , x = xa + xa, a ∈ A.

I by duality we can similarly split

X# = X a# ⊕⊥ X#
a , ξ = ξa + ξa.

I for a ∈ A we fix a real function va : X → R such that

va(x) = va(x + ya), ∀ya ∈ Xa.

I a Agmon Hamiltonian is

H =
1
2
D2
x +

∑
a∈A

va, acting on H = L2(X ).
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Agmon Hamiltonians

I for a ∈ A set

V a(x) =
∑
b≤a

vb(x), function on X a,

I and

Ha =
1
2

(Da
x )2 + V a(xa), acting on Ha = L2(X a).

Since X = X amax we have H = Hamax .
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Agmon Hamiltonians

I we have

H = Ha + Ia,

Ha = Ha + 1
2D

2
xa , Ia(x) =

∑
b 6=a vb(x).

I Ha describes the non interacting clusters of a, whose centers
of masses move freely.

I Ia is the intercluster potential.
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Agmon Hamiltonians

Advantages of this framework:
I notational and conceptual simplification.
I easy to incorporate particles of infinite masses (very heavy

nuclei):
I add to the above family the subspaces {x ∈ RNd : xj = 0} and

their intersections,
I on can consider also multi-particle interactions, for example

with potential vijk(xi − xj , xj − xk), for vijk : R2d → R,
associated to the subspace X(ijk) = {x ∈ X : xi = xj = xk}.
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Pair potentials

I typical 2−body potentials decay near infinity and have a
Coulomb type singularity at 0.

I a natural assumption: va(xa)(−∆a + 1)−1 is compact on
L2(X a).

I note that va(xa)(−∆ + 1)−1 not compact on L2(X ) (unless
a = amax). By Kato-Rellich we obtain:

Theorem
H with domain H2(X ) is selfadjoint and bounded from below on
L2(X ).
I for standard N−body Hamiltonians with Coulomb interactions

vij(x) =
qiqj
|x |

and d = 3 first important result of Kato (

’stability of matter of the first kind’).
Scattering Theory of Quantum N-particle systems



N−particle Hamiltonians
N-particle Hamiltonians: basic theory

The Mourre estimate
Scattering theory

Asymptotic velocity
Asymptotic completeness for short-range N-particle systems
Asymptotic completeness for long-range N-particle systems

The HVZ theorem

I describes the essential spectrum of H (important result from
the 60’s, nowadays very easy to prove).

I important role played by the thresholds:
I the set of thresholds of a subsystem a ∈ A is

T a :=
⋃
b<a

σpp(Hb).

I T amax will be simply denoted by T .
I set also Σa := inf(T a) and Σ := Σamax = inf(T ).
I easy to show using trial functions (the ’variational argument’)

that inf σ(Ha) ≤ T a.
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I by energy conservation, Σa − Σ is the minimal energy needed
to decompose the system into freely moving clusters of a.

I −Σ is the minimal energy needed to fully decompose the
system.
Note that σpp(Ha

min) = {0} hence Σ ≤ 0.

Theorem
Let H be an N−particle Hamiltonian with Xamax = {0}. Then the
essential spectrum of H is equal to

σess(H) = [Σ,∞[.
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Partitions of unity

We split the configuration space X into regions describing different
cluster decompositions.
I set

Za = Xa \ ∪b 6≤aXb.

I {Za}a∈A is a partition of X .
I thicken the Za into

Z ε,δa = {x ∈ X : |xa| < ε, |xb| ≥ δ for b 6≤ a},
I construct a partition of unity {qa}a∈A such that

supp qa ⊂ Z ε,δa ,
∑
a∈A

qa(x) = 1,

|∂αx qa(x)| ≤ Cα, 0 ≤ qa(x) ≤ 1.
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Functional calculus formula

recall the celebrated Hellfer-Sjöstrand formula:
I let χ ∈ C∞0 (R). Then there exist a function χ̃ ∈ C∞0 (C),

called an almost-analytic extension of χ, such that
I

χ̃
∣∣
R = χ, |∂χ̃∂z (z)| ≤ CN |Imz |N , N ∈ N.

I if H selfadjoint operator on a Hilbert space H then

χ(H) =
i

2π

ˆ
C

∂χ̃

∂z
(z)(z − H)−1dz ∧ dz .

Scattering Theory of Quantum N-particle systems



N−particle Hamiltonians
N-particle Hamiltonians: basic theory

The Mourre estimate
Scattering theory

Asymptotic velocity
Asymptotic completeness for short-range N-particle systems
Asymptotic completeness for long-range N-particle systems

Proof of the HVZ theorem

I prove by induction on k that σess(H
a) = [Σa,+∞[ for all a

with ]a ≤ k .
I the hard part is ⊂ ( ⊃ proved with Weyl sequences).
I assume that the theorem holds for all a < amax and consider

H = Hamax .
I choose χ ∈ C∞0 (R) with suppχ ⊂]−∞,Σ[. Then

χ(H) =
∑
a∈A

χ(H)qa(
x

R
), R � 1.

I on support of qa, the interaction potential Ia is o(R0), so we
can replace χ(H) by χ(Ha) modulo a small error (use HS
formula).
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Proof of the HVZ theorem

I one gets
χ(H) =

∑
a∈A

χ(Ha)qa(
x

R
) + o(R0).

I since Ha = Ha + 1
2D

2
xa , χ(Ha) = 0 for a 6= amax because of

support of χ,
I χ(H)qamax( x

R ) compact for any χ, because qamax has compact
support.

I Therefore χ(H) is compact (norm limit of compact operators).
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The Mourre estimate

I study of the nature of the essential spectrum of H
revolutionized in the 80’s by the Mourre method (positivity of
a commutator).

I let H,A be two selfadjoint operators on a Hilbert space H.
I one requires that H is of class C 1(A), ie

R 3 t 7→ eitA(H + i)−1e−itA is strongly C 1.
I the commutator [H, iA] makes then sense as a bounded

hermitian form on DomH.
I the Mourre estimate holds at λ ∈ R if there exists an open

interval ∆ 3 λ, c > 0 and K compact such that:

1l∆(H)[H, iA]1l∆(H) ≥ c1l∆(H) + K . (3.1)

I the strict Mourre estimate holds at λ if one can take K = 0.
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The Mourre estimate

I assuming higher regularity of H w.r.t. eitA one deduces from
the strict Mourre estimate at λ weighted estimates on
(H − λ∓ i0)−1.(original motivation of the Mourre method).

I these resolvent estimates are not necessary for the
time-dependent scattering theory that we will describe here.
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The virial theorem

I the virial theorem states that

1l{λ}(H)[H, iA]1l{λ}(H) = 0.

I formally obvious by ’undoing’ the commutator.
I rigorous proof requires a lot of care, since A is unbounded.
I first consequence: if the Mourre estimate holds at λ then the

eigenvalues of H cannot accumulate at λ.
I second consequence: if the Mourre estimate holds at λ and
λ 6∈ σpp(H) then the strict Mourre estimate holds at λ.
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Best constant in the Mourre estimate

I nice polishing of various arguments, due to Amrein-Boutet de
Monvel-Georgescu .

I set ρ(λ)= larger c such that

1l∆(H)[H, iA]1l∆(H) ≥ c1l∆(H).

I ρ(λ) best constant in the strict Mourre estimate at λ.
I define ρ̃(λ) similarly, adding a compact error term.
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Best constant in the Mourre estimate

virial theorem can be rephrased by stating that
I if λ ∈ σpp(H) and ρ̃(λ) > 0, then ρ(λ) = 0.
I if λ 6∈ σpp(H) then ρ(λ) = ρ̃(λ).
I if H = H1 ⊗H2, H = H1 ⊗ 1l + 1l⊗H2, A = A1 ⊗ 1l + 1l⊗A2,

and Hi bounded from below then:

ρ(λ) = inf
λ1+λ2=λ

ρ1(λ1) + ρ2(λ2).

I (looks easy but rather tricky to prove).
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Mourre estimate for N-body Hamiltonians

I set A = 1
2(x ·Dx + Dx ·x) (generator of dilations).

I the expression x∇xV is understood as [V , iA] (allows to ’undo
the commutator’ if needed).

I stronger assumption:

(1−∆a)−1xa∇xav
a(1−∆a)−1compact on L2(X a), a ∈ A.

Theorem
For λ ∈ [Σ,∞[, let d(λ) := inf{λ− τ | τ ≤ λ, τ ∈ T }. Then for
any ε > 0, λ ∈ [Σ,∞[, there exists an open interval ∆ containing λ
and a compact operator K such that

1l∆(H)[H, iA]1l∆(H) ≥ 2 (d(λ)− ε) 1l∆(H) + K . (3.2)

Scattering Theory of Quantum N-particle systems



N−particle Hamiltonians
N-particle Hamiltonians: basic theory

The Mourre estimate
Scattering theory

Asymptotic velocity
Asymptotic completeness for short-range N-particle systems
Asymptotic completeness for long-range N-particle systems

Mourre estimate for N-body Hamiltonians

I T is a closed countable set and σpp(H) can accumulate only
at T .

I with terminology introduced above (3.2) means that
ρ̃(λ) ≥ 2d(λ).

I Using trial functions one can show that ρ̃(λ) = 2d(λ).
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Idea of proof

I applying recursively the abstract theory to Ha for a < amax
gives that T is a closed countable set.

I it suffices prove Mourre estimate by induction on ]amax. If
]amax = 1 then H = 1

2D
2
x , [H, iA] = D2

x .
I assume that Mourre estimate holds for all Ha with a 6= amax.
I use a partition of unity as before but with

∑
a∈A q2

a(x) = 1.
I controlling double commutator terms gives

χ(H)[H, iA]χ(H) =
∑
a∈A

qa(
x

R
)χ(H)[H, iA]χ(H)qa(

x

R
) + O(R−2).

Scattering Theory of Quantum N-particle systems



N−particle Hamiltonians
N-particle Hamiltonians: basic theory

The Mourre estimate
Scattering theory

Asymptotic velocity
Asymptotic completeness for short-range N-particle systems
Asymptotic completeness for long-range N-particle systems

Idea of proof

I on support of qa, one can replace H by Ha modulo small
errors, so

χ(H)[H, iA]χ(H) =
∑
a∈A

qa(
x

R
)χ(Ha)[Ha, iA]χ(Ha)qa(

x

R
) + o(R0).

(3.3)
I write L2(X ) = L2(X a)⊗ L2(Xa) so Ha = Ha ⊗ 1l + 1l⊗ 1

2D
2
xa ,

A = Aa ⊗ 1l + 1l⊗ Aa.
I for a 6= amax Mourre estimate for Ha gives
ρa(λ) ≥ 2 inf{λ− τ a : τ a ∈ T a ∪ σpp(Ha)}.

I since [1
2D

2
xa , iAa] = D2

xa , abstract result for tensor products
gives:

ρa(λ) = inf
λa+λa=λ

ρa(λa) + 2|λa| ≥ 2 inf{λ− τ : τ ∈ T , τ ≤ λ}.
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Idea of proof

I for λ ∈ R \ T for all ε > 0 there exists χ ∈ C∞0 (R) with
χ(λ) 6= 0 such that for all a < amax:

χ(Ha)[Ha, iA]χ(Ha) ≥ 2 (d(λ)− ε)χ2(Ha).

I winding back the partition of unity gives:

χ(H)[H, iA]χ(H) ≥ 2 (d(λ)− ε)χ2(H) + K1(R) + K2(R) + o(R0).

I

K1(R) = qamax( x
R )χ(Hamax)[Hamax , iA]χ(Hamax)qamax( x

R ),

K2(R) = qamax( x
R )χ2(Hamax)qamax( x

R ),

are compact (qamax compactly supported).
I pick R � 1 to obtain Mourre estimate for H.
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Wave operators

I consider first 1-particle case:

H =
1
2
D2
x + V (x), H0 =··

1
2
D2
x ,

potential V tends to 0 at infinity.
I describe the asymptotic behavior when t → ±∞ of e−itHu for

u ∈ Hc(H).
I the case of bound states u ∈ Hpp(H) is obvious (superposition

of oscillations).
I assume that

V (x) ∈ O(〈x〉−µ), for µ > 0 when x →∞.
I V is short-range if µ > 1 long-range if 0 < µ ≤ 1.
I Coulomb potential is long-range.
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Wave operators

I time-dependent method starts with wave operators

Ω± ··= s− lim
t→±∞

eitHe−itH0 .

I proof of the existence of Ω± easy in the short-range case for
N = 1. (Cook method).

I asymptotic completeness is the statement that
RanΩ± = Hc(H).

I means that for any u ∈ Hc(H), there exists u± such that

lim
t→±∞

e−itHu − e−itH0u± = 0.

I if asymptotic completeness holds asymptotic behavior of
e−itHu for all u ∈ L2(X ) is completely understood.
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Wave operators in the N-body case

I In the N-particle case other scattering scenarios are possible:
freely moving stable clusters of particles can form.

breakup

rearrangement

elastic scattering
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I Several wave operators needed to exhaust all the possibilities.
I

Ω±a ··= s− lim
t→±∞

eitHe−itHa1lpp(Ha).

note that Ω±amax = 1lpp(Hamax).
I existence of Ω±a is easy in the short-range case by the Cook

method.
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I easy to see that for a 6= b RanΩ±a and RanΩ±b are mutually
orthogonal.

I asymptotic completeness is the statement that:⊕
a∈A

RanΩ±a = L2(X ).

I much more difficult !
I additional difficulty in the long-range case: free motion of the

center of masses has to be modified (already present in the
1-particle case). One needs modified wave operators.
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Historical sketch of N-particle asymptotic completeness

I brief sketch of the N−body asymptotic completeness via
time-dependent methods:

I Enss 1978 2-particles, 1986-1989 3-particle short and long
range.

I Sigal-Soffer 1987, elegant proof by Graf 1990 N-particle
short-range.

I Derezinski 1993, Zielinski 1994, Sigal-Soffer 1994 N−particle
long-range.

I Gérard 1993, Skibsted 2003 3−particle long range decay µ > 1
2

I Yafaev 1996 counterexample for 3-particle 0 < µ < 1
2 .
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Unitary dynamics

I one needs often to consider also time-dependent Hamiltonians.
I unitary dynamics: strongly continuous map

R× R 3 (t, s) 7→ U(t, s) ∈ B(H) with

U(t, s) unitary , U(s, s) = 1l,U(t, u)U(u, s) = U(t, s), ∀t, u, s ∈ R.

I what is the generator H(t) of U(t, s)?
I one can require that for B some strictly positive operator

∂sU(t, s)B−1 = iU(t, s)H(s)B−1, DomB ⊂ DomH(s),

hence
∂tB

−1U(t, s) = −iB−1H(t)U(t, s).

I choose the reference initial time s = 0 and set U(t) ··= U(t, 0).
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Heisenberg derivatives

I fundamental rule: do not consider evolution of states (too
complicated) but of observables.

I replace Schroedinger equation by Heisenberg equation.
I if Ui (t, s), i = 1, 2 are two unitary dynamics with generators

Hi (t), set

2D1Φ(t) = ∂tΦ(t) + i(H2(t)Φ(t)− Φ(t)H1(t)),

for Φ : R→ B(H) of class C 1. If H1(t) = H2(t) = H(t),
denote 2D1 simply by D.
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Cook method

I Cook method is the simplest and oldest method to show
existence of limits like wave operators.

I based on L1 in time arguments.
I simplest version: if Ui (t, s) are generated by Hi (t) and

H2(t) = H1(t) + V (t) with ‖V (t)‖B(H) ∈ L1(R), then

s− lim
t→±∞

U2(0, t)U1(t, 0) exists.

proof obvious (time derivative is integrable in norm).
I sufficient to show existence of wave operators, not for

completeness.
I does not take advantage of the Hilbert space structure, (works

on Banach spaces).
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Propagation estimates

I better to rely on more symmetric L2 in time estimates.
I assume R 3 t 7→ Φ(t) ∈ B(H) uniformly bounded and there

exist C0 > 0 and operator valued functions B(t) and Bi (t),
i = 1, . . . , n, such that

DΦ(t) ≥ C0B
∗(t)B(t)−

n∑
i=1

B∗i (t)Bi (t),

∞́

1
‖Bi (t)U(t)φ‖2dt ≤ Ci‖φ‖2, i = 1, . . . , n.

Then there exists C such thatˆ ∞
1
‖B(t)U(t)φ‖2dt ≤ C‖φ‖2. (4.1)
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Existence of limits

I assume that R 3 t 7→ Φ(t) ∈ B(H) is uniformly bounded and

|(ψ2|2D1Φ(t)ψ1)| ≤
n∑

i=1
‖B2i (t)ψ2‖‖B1i (t)ψ1‖, with

∞́

1
‖B2i (t)U2(t)φ‖2dt ≤ C‖φ‖2, φ ∈ H, i = 1, . . . , n,

∞́

1
‖B1i (t)U1(t)φ‖2dt ≤ C‖φ‖2, φ ∈ H, i = 1, . . . , n.

I then the limit

s− lim
t→+∞

U∗2 (t)Φ(t)U1(t) exists.
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What is a selfadjoint operator ?

I provocative but meaningful definition:
I a (possibly non densely defined) selfadjoint operator on H is a

continuous ∗-morphism γ : C∞(R) 7→ B(H).
I a densely defined selfadjoint operator on H is a continuous
∗-morphism γ : C∞(R) 7→ B(H) such that
s− limR→+∞ γ(χR) = 1l for χR(λ) = χ(R−1λ) with
χ ∈ C∞(R) and χ(0) = 1l.

I there is a unique selfadjoint operator H such that γ(χ) = χ(H)
for all χ ∈ C∞(R). γ uniquely extends to B(R) (space of
bounded Borel functions), using the monotone class theorem.

I replacing R by Rn one obtains the definition of a commuting
family (H1, · · · ,Hn) of selfadjoint operators.
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I Jan Derezinski invented the notion of asymptotic velocity.
I gives a bird’s eye view of scattering theory and asymptotic

completeness.
I a crucial tool in his proof of completeness for long-range

potentials.
I assume that ∂αxav

a(xa) ∈ O(〈xa〉−µ), µ > 0, |α| ≤ 1.
I then

s− lim
t→±∞

eitHχ(
x

t
)e−itH =·· γ±(χ) exist, χ ∈ C∞(X ).

I γ±(χ) = χ(P±), P± future/past asymptotic velocity.
I P± commute with H.

Interpretation: x(t) = eitHxe−itH is the position at time t,
x(t)

t
the average velocity at time t, P± their limits when

t → ±∞.
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Properties of the asymptotic velocity

I Recall that for
Za = Xa \ ∪b 6≤aXb,

the {Za}a∈A are a partition of unity.
I therefore we have

1l =
∑
a∈A

1lZa(P±).

I u = 1lZa(P±)u then e−itHu for t → ±∞ is decomposed into
independent clusters of a, whose size is o(t).

Scattering Theory of Quantum N-particle systems



N−particle Hamiltonians
N-particle Hamiltonians: basic theory

The Mourre estimate
Scattering theory

Asymptotic velocity
Asymptotic completeness for short-range N-particle systems
Asymptotic completeness for long-range N-particle systems

Properties of the asymptotic velocity

I in particular for a = amax, Zamax = {0} and if
u ∈ Ran1l{0}(P±) then

s− lim
t→±∞

1l[δ,+∞[(
|x |
t

)e−Hu = 0, ∀δ > 0,

ie x(t) is of size o(t), u is an ’almost bound state’.
I the Mourre estimate implies the following fundamental result:

1l{0}(P±) = 1lpp(H),

ie almost bound states are necessarily bound states.
I not true in the classical case !
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Joint energy-velocity spectrum

I since [H,P±] = 0 on can study the joint energy-velocity
spectrum.

I it gives a first ’spectral’ understanding of scattering theory.

Theorem
The joint energy-velocity spectrum is

σ(H,P±) =
⋃
a∈A
{(ξa, τ +

1
2
ξ2a) : ξa ∈ Xa, τ ∈ σpp(Ha)}.
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Joint energy-velocity spectrum

bound states

free channel

2−cluster channels
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Energy-momentum spectrum in relativistic QFT

I similar result in relativistic QFT.
I if the theory is invariant under the Poincaré group, one can

study the energy-momentum spectrum (space-time
translations).

I typical spectrum is shown in the next slide. Parabolas are
replaced by hyperbolas (and Galilei group by Lorentz group).
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Energy-momentum spectrum in relativistic QFT

vacuum

continuous spectrum

1-particle state
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Asymptotic absolute continuity

I one can ask about the nature of the spectral measure of P±.
I a result in this direction is the following (called asymptotic

absolute continuity):
I assume that ∇αxava ∈ O(〈xa〉−|α|−µ) for |α| ≤ 1 and µ > 1

2 .
I then if a ∈ A and θ ⊂ Za is of measure zero on Xa one has

1lθ(P±) = 0.
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Large velocity estimates

I the Heisenberg derivative of x is Dx , controlled by H.
I if total energy is bounded, the position x cannot grow faster

than Ct.
I (not true for the N-body problem of Celestial Mechanics !)
I Let χ ∈ C∞0 (R). Then there exists θ > 0 such that

1)

ˆ +∞

1
‖1l[θ,θ′](

|x |
t

)χ(H)e−itHu‖2 dt
t
≤ C‖u‖2.

Moreover

2) lim
t→±∞

1l[θ,+∞[(
|x |
t

)χ(H)e−itHu = 0.

I statement 2) means exactly that P± is densely defined.
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I proof of 1): take Φ(t) = χ(H)F ( xt )χ(H),
I DΦ(t) = 1

2χ(H)(Dx − x
t ) · ∇F ( xt ) + h.c.)χ(H).

I take F (x) = f (|x |), with f ′ = 1l[θ,θ′].

f

I since Dχ(H) is bounded we get that

DΦ(t) ≤ −C

t
χ(H)1l[θ,θ′](

|x |
t

)χ(H)

negative Heisenberg derivative.
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I proof of 2): replace Φ(t) by ΦR(t) = χ(H)F ( x
Rt )χ(H), for

R � 1.
I we want to show that s− limt→±∞ eitHΦ1(t)e−itH = 0.
I DΦR(t) is controlled by terms under the integral in 1) so
I s− limt→±∞ eitHΦR(t)e−itH exists.
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I keeping track of R in computation of DΦR(t) one obtains that

s− lim
R→+∞

s− lim
t→±∞

eitHΦR(t)χ(H)e−itH = 0.

I ΦR(t)− Φ1(t) supported in θ ≤ |x |t ≤ θ
′, so

I
´ +∞
1 ‖(ΦR(t)− Φ1)e−itHχ(H)u‖2 dt

t <∞, hence
I s− limt→±∞ eitH(ΦR(t)− Φ1(t))χ(H)e−itH = 0.
I taking R → +∞ gives s− limt→±∞ eitHΦ1(t)χ(H)e−itH = 0.
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Phase-space propagation estimates: 1−particle case

I free case (V = 0): let R(x) = 1
2x

2 and
Φ(t) = 1

2(Dx − x
t ) · ∇R( xt ) + h.c.) + R( xt ).

I then

DΦ(t) = ∂tΦ(t) + [
1
2
D2
x , iΦ(t)] =

1
t
‖Dx −

x

t
‖2 ≥ 0.

I problem: Φ(t) is not bounded.
I solution: replace Φ(t) by χ(H)F ( xt )Φ(t)F ( xt )χ(H), F

supported in |x | ≤ R , R � 1.
I extra terms coming from DF ( xt ) are controlled by large

velocity estimates.
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Phase-space propagation estimates: 1−particle case

I assume now that V (x) ∈ O(〈x〉−µ), µ > 0.
I extra term in DΦ(t) is −∇R( xt ) · ∇xV (x), not controlled.
I solution: modify R(x) such that ∇xR(x) = 0 in |x | ≤ ε,

keeping ∇2
xR(x) ≥ 0.

I for example take R(x) = max(1
2ε

2, 1
2x

2) (convex !).
I if necessary smooth out R by convolution w.r.t. ε.
I then if ∇xV (x) ∈ O(〈x〉−1−µ), extra term is O(t−1−µ),

integrable in norm.
I We obtain

´ +∞
1 ‖1l[θ,ω′]( xt )(Dx − x

t )e−itHu‖2 dt
t ≤ C‖u‖2.

I example of a phase space propagation estimate.
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the Graf function

I Graf ingenious construction: modify R(x) in the N-body case:
modify R(x) = 1

2x
2 so that

I 1) R(x) depends only on xa near Za.
I 2) ∇2

xR(x) ≥ πa near Za, where πa : X → Xa orthogonal
projection.

I one chooses

Rρ(x) =
1
2

max
a∈A
{x2

a + ρa}, ρ = (ρa)a∈A.

Rρ satisfies 1) and 2) for ρ in some open set.
I smooth out Rρ w.r.t. ρ:

R(x) =

ˆ
Rρ(x)f (ρ)dρ, for

ˆ
f (ρ)dρ = 1,
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Phase-space propagation estimates: N-particle case

I properties 1) 2) still satisfied.
I recall that Z ε,δa ⊂ X defined by

|xa| ≤ ε, |xb| ≥ δ ∀b 6≤ a.

I if x
t ∈ Z ε,δa , then clusters of a have distance at least δ|t| and

size ε|t|.
I let χ ∈ C∞0 (R), F ∈ C∞0 (X ). Then
ˆ +∞

1
‖χ(H)F (

x

t
)1l

Z ε,δa
(
x

t
)(Dxa −

xa
t

)e−itHu‖2 dt
t
≤ C‖u‖2.
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Phase-space propagation estimates: N-particle case

I propagation observable:
Φ(t) = 1

2((Dx − x
t ) · ∇R( xt ) + h.c.) + R( xt ).

I add energy cutoffs χ(H) and large distance cutoffs F ( xt ).
I DΦ(t) = ∂tΦ(t) + [1

2D
2
x , iΦ(t)] + [V (x), iΦ(t)].

I first two terms can be computed exactly as
1
t

(Dx −
x

t
) · ∇2R(

x

t
)(Dx −

x

t
) ≥ c

∑
a∈A

1lZa(
x

t
)(Dxa −

xa
t

)2.

I for x
t ∈ Z ε,δa split the second term as

−∇xaV
a(xa) · ∇xaR(

x

t
)−∇x Ia(x) · ∇xR(

x

t
)

I first term is 0, because near Za, ∇xR depends only on xa.
I second term is O(t−1−µ) so integrable in norm. 2
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Asymptotic velocity

I goal: prove that for F ∈ C∞0 (X ) (dense in C∞(X )):

s− lim
t→±∞

eitHF (
x

t
)e−itH exists.

I we can take F in a C 0 dense subspace of C∞0 (X ): good
choice: F (x) depends only on xa near Xa.

I set
Φ(t) = F (

x

t
) +∇F (

x

t
) · (Dx −

x

t
).

DΦ(t) = (D − x

t
) · ∇2F (

x

t
)(Dx −

x

t
)−∇F (

x

t
) · ∇V (x).

1) first term is integrable along the evolution by phase space
propagation estimates.
2) second term is O(t−1−µ) in norm.
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Asymptotic velocity

I therefore

s− lim
t→±∞

eitH(F (
x

t
) +∇F (

x

t
) · (Dx −

x

t
))e−itH exists.

I next show (by computing its Heisenberg derivative) that

s− lim
t→±∞

eitH(∇F (
x

t
) · (Dx −

x

t
)e−itH exists.

I this observable is integrable along the evolution hence the limit
has to be 0.

I therefore s− limt→±∞ eitHF ( xt )e−itH = F (P±) exists.
I the fact that [H,P±] = 0 is a general property (valid for all

asymptotic observables).
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Minimal velocity estimate

I construction of asymptotic velocity not sufficient to prove
asymptotic completeness, even in the short-range case.

I one needs the additional spectral information:
1l{0}P±) = 1lpp(H).
(almost bound states are bound states).

I this will follow from a minimal velocity estimate due to Graf:
let χ ∈ C∞0 (R) with suppχ ∩ T ∪ σpp(H) = ∅.

I then there exists ε0 > 0 such that
ˆ +∞

1
‖1l[0,ε](

x

t
)χ(H)eitHu‖2 dt

t
≤ C‖u‖2.
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Minimal velocity estimate

I set M(t) = J( xt ) + 1
2((Dx − x

t ) · ∇J( xt ) + h.c.), J depends
only on xa near Za, J(x) = 1 in |x | ≤ ε.

I take
Φ(t) = χ(H)M(t)χ(H)

A

t
χ(H)M(t)χ(H).

I when computing DΦ(t), terms coming from DM(t) will be
controlled.

I one has DA
t = − A

t2
+ [H,iA]

t .
I because of the Mourre estimate χ(H)[H, iA]χ(H) ≥ cχ2(H).
I choosing ε� 1 we can ensure that

M(t)χ(H)At χ(H)M(t) ≤ c
2M(t)χ(H)χ(H)M(t).
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Minimal velocity estimate

I we obtain DΦ(t) ≥ c
2χ(H)M2(t)χ(H) modulo already

controlled errors. This proves minimal velocity estimate.
I since we know that s− limt→±∞ eitHχ(H)1l[0,ε]( xt )χ(H)e−itH

exists, we obtain that
I

s− lim
t→±∞

eitHχ(H)1l[0,ε](
x

t
)χ(H)e−itH = 0.

I by an easy density argument, this shows that

1l{0}(P±) = 1lpp(H).
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Asymptotic completeness for short-range N-particle systems

I existence and completeness of short-range wave operators
follows very easily from properties of asymptotic velocity.

I it can be neatly formulated as follows: assume that
va(xa) ∈ O(〈xa〉)−µ for µ > 1. Then

I the limits

1) s− lim
t→±∞

eitHe−itHa1lpp(Ha) =·· Ω±sr,a exist.

I the limits

2) s− lim
t→±∞

eitHae−itH1lZa(P±) = Ω±∗sr,a exist.

I Ω±sr,a are partial isometries with

Dom Ω±sr,a = Ran1lpp(Ha), RanΩ±sr,a = Ran1lZa(P±).
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Asymptotic completeness for short-range N-particle systems

I the proofs of 1) and 2) are similar: denoting by P±(a), P
±(a) the

asymptotic velocities for Ha, Ha we get

P±(a) = (Dxa ,P
±(a)).

I therefore using Mourre estimate for Ha, we get
1lpp(Ha) = 1lZa(P±(a)).

I proof of 2): let u ∈ Ran1lZa(P±). By density we can assume
that u = F (P±)u = χ(H)u for F supported near Za,
χ ∈ C∞0 (R).

I so it suffices to prove the existence of

lim
t→±∞

χ(Ha)F (
x

t
)χ(H)eitHaF (

x

t
)e−itHu.
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Asymptotic completeness for short-range N-particle systems

I we compute asymmetric Heisenberg derivative for H2 = Ha,
H1 = H:

2D1χ(Ha)M(t)χ(H),

I for M(t) = (F ( xt )− 1
2((Dx − x

t ) · ∇F ( xt ) + h.c.).
I it equals

χ(Ha)DM(t)χ(H) + χ(Ha)iIa(x)M(t)χ(H).

I first term is integrable along the evolution (use phase space
propagation estimates for H and Ha).

I second term is O(t−µ) in norm so integrable by short-range
condition.
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Asymptotic completeness for short-range N-particle systems

I To complete the proof of asymptotic completeness, use:
I

1l =
∑
a∈A

1lZa(P±), (spectral theorem !)

I and Zamax = {0}, 1l{0}(P±) = 1lpp(H).
I therefore

⊕a∈ARanΩ±sr,a = L2(X ).
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Modified dynamics 1-particle case

I consider 1-particle Hamiltonian: H = 1
2D

2
x + V (x),

∂αx V (x) ∈ O(〈x〉)−µ−|α|, µ > 0.
I the short-range wave operators

s− lim
t→±∞

eitHe−it 1
2D

2
x do not exist !

I the ’long-range tail’ of the potential cannot be forgotten.
I purely classical problem, can be completely understood in

classical mechanics.
I one needs to modify the free dynamics: various equivalent

ways to do it.
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Modified dynamics 1-particle case

I time-dependent modifiers: choose a solution of the
Hamilton-Jacobi equation:

∂tS(t, ξ) =
1
2
ξ2 + Vt(∇ξS(t, ξ)),

I Vt(x) time-dependent potential, equal to V (x) in |x | ≥ ε|t|.
I boundary condition for S(t, ξ) is S(t, ξ) = 1

2 tξ
2 + O(t1−µ),

when t → ±∞.
I not unique, no canonical choice.
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Modified dynamics 1-particle case

I one introduces the modified wave operators:

Ω±lr ··= s− lim
t→±∞

e itHeiS(t,Dx ).

I Completeness of wave operators is as before statement that:

RanΩ±lr = 1lc(H)L2(X ).

I existence easy to prove (stationary phase arguments).
I completeness more difficult: nice time-dependent proof by

Sigal
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Modified dynamics 1-particle case

I first step: replace V (x) by Vt(x) as above, satisfying
∂αx Vt(x) ∈ O(t−µ−|α|) (use minimal velocity estimates).

I let U(t, s) unitary dynamics generated by
H(t) = 1

2D
2
x + Vt(x).

I using asymptotic velocity one shows that

s− lim
t→±∞

U(0, t)e−itH1lc(H) exist.

I it remains to show that

s− lim
t→±∞

eiS(t,Dx )U(t, 0) exists.
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Modified dynamics 1-particle case

I compute Heisenberg derivative w.r.t. H(t):

D(x −∇ξS(t,Dx))

= Dx +∇xVt(x)∇2
ξS(t,Dx)− ∂t∇ξS(t,Dx)

= (∇xVt(x)−∇xVt(∇ξS(t,Dx)))∇2
ξS(t,Dx)

= ∇2
xVt(x)(x − (∇ξS(t,Dx)))∇2

ξS(t,Dx)

= O(t−1−µ)(x −∇ξS(t,Dx)).

I Gronwall’s inequality then gives Sigal’s estimate:

‖(x −∇ξS(t,Dx))U(t, 0)〈x〉−1‖ ∈ O(1).
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I show that s− limt→±∞ eiS(t,Dx )U(t, 0) exists by naive Cook
method:

I show that (∂tS(t,Dx)− H(t))U(t, 0)u integrable in norm.
I we need to show

‖(Vt(∇ξS(t,Dx))− Vt(x))U(t, 0)u‖ ∈ L1(dt).

I pdo calculus gives Vt(∇ξS(t,Dx))− Vt(x)) =
O(t−1−µ)(x −∇ξS(t,Dx)) + O(t−1−µ).

I this is in L1(dt) for u ∈ Dom〈x〉 by Sigal’s estimate.
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Long-range N-particle case

I let u ∈ Ran1lZa(P±). Then:
I size of the clusters of a is o(t), distance between clusters of a

greater than C |t|.
I We can replace Ia(x) by Ia,t(x), with ∂x Ia,t(x) ∈ O(t−|α|−µ),

Ia,t(x) = Ia(x) near Za.
I the usual argument gives the existence of

Ω±a,sep = s− lim
t→±∞

Ua(0, t)e−itHRan1lZa(P±),

I where Ua(t, x) unitary dynamics generated by
Ha(t) = 1

2D
2
xa + Ha + Ia,t(x).

I main problem: Ua(t, 0) still couples motion in X a and in Xa.
I one would like to replace Ia,t(x) by Ia,t(0, xa) ie set xa = 0.
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Bound on the size of the clusters

I by Taylor’s formula Ia,t(x)− Ia,t(0, xa) ∈ O(t−1−µ)|xa|.
I so the key is to estimate the size of the clusters of a when

u ∈ Ran1lZa(P±), ie replace the o(t) estimate by O(tδ) for
some 0 < δ < 1.

I Jan Derezinski managed to prove that if u ∈ Ran1lZa(P±) then

lim
t→±∞

1l[θ,+∞[(
|xa|
tδ

)e−itHu = 0,

I for δ = 2(2 + µ)−1. Proof uses the function r(x) = (2R(x))
1
2

(modification of |x |).
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Long-range N-particle case

I if 2(2 + µ)−1 < µ ie µ >
√
3− 1, then one can replace Ia,t(x)

by Ia,t(0, xa) on the evolution of such states.
I choose a solution of Hamilton-Jacobi equation:

∂tSa(t, ξa) =
1
2
ξ2a + Ia,t(0,∇ξaS(t, ξa)),

Sa(t, ξa) =
1
2
ξ2a + O(t1−µ).
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Long-range N-particle case

I one obtains the following theorem
I assume that ∇αx va(xa) ∈ O(〈xa〉)−|α|−µ for µ >

√
3− 1.

Then the limits

1) Ω±lr,a = s− limt→±∞ eiHe−iSa(t,Dxa )−itHa1lpp(Ha)

2) Ω±∗lr,a = s− limt→±∞ eiSa(t,Dxa )+itHae−itH1lZa(P±)

exist.
I Ω±lr,a are partial isometries with

Dom Ω±lr,a = Ran1lpp(Ha), RanΩ±lr,a = Ran1lZa(P±).
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Long-range N-particle case

I the wave operators are complete

⊕a∈ARanΩ±sr,a = L2(X ).

One has
Ω±∗lr,aP

±1lZa(P±) = DxaΩ±∗lr,a1lZa(P±).
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Thank your for your attention !
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