SCATTERING THEORY OF CLASSICAL PARTICLES

JAN DEREZIŃSKI
Department of Mathematical Methods in Physics

FACULTY OF -潧HYSICS

Quantum scattering theory is very well developed, both 1-body and N-body. Asymptotic completeness of quantum N-body systems used to be considered an important question of mathematical physics. Classical scattering theory is less famous. It was usually studied as a tool for the quantum case.
In my talk I will describe two topics.

1. Classical scattering theory of a particle in an external potential. Its analysis is later needed in quantum long-range scattering.
2. Classical scattering theory of N-body systems. Can be viewed as a spin-off of the quantum N-body scattering. Quantum results are much more satisfactory than classical ones.

Classical paricle in external potential

Let V be a potential on \mathbb{R}^{d} decaying at infinity. Consider the classical Hamiltonian

$$
\begin{equation*}
H:=\frac{1}{2} p^{2}+V(x) \tag{1}
\end{equation*}
$$

with the equations of motion

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=p, \quad \frac{\mathrm{~d} p}{\mathrm{~d} t}=-\nabla V(x) . \tag{2}
\end{equation*}
$$

Clearly, if $t \mapsto x(t), p(t)$ solves (2), then $H(x(t), p(t))$ is constant. It is called the energy of the trajectory $t \rightarrow x(t)$.

Theorem 0.1. Assume that

$$
\begin{equation*}
\nabla V(x) \mid \leq C\langle x\rangle^{-1-\mu}, \quad \mu>0 \tag{3}
\end{equation*}
$$

Let $x(t)$ be a trajectory for $t>0$. Then there are 3 possibilities

1. Trapped trajectory: $x(t)$ is bounded.
2. Almost bounded trajectory: $x(t)$ is un unbounded but $\lim _{t \rightarrow \infty} \frac{x(t)}{t}=0$. This implies that $H=0$.
3. Scattering trajectory: $\lim _{t \rightarrow \infty} \frac{x(t)}{t}$ exists and is not zero. This implies that $H>0$.

We would like to classify all scattering trajectories.

Theorem 0.2. Assume the short range condition

$$
\begin{equation*}
|\nabla V(x)|,\left|\nabla^{2} V(x)\right| \leq C\langle x\rangle^{-2-\mu}, \quad \mu>0 \tag{4}
\end{equation*}
$$

Then for every scattering trajectory $x(t)$ there exist asymptotic position $y^{ \pm} \in \mathbb{R}^{d}$ and asymptotic momentum $\xi^{ \pm} \in \mathbb{R}^{d} \backslash\{0\}$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \pm \infty}\left(x(t)-t \xi^{ \pm}-y^{ \pm}\right)=0 \tag{5}
\end{equation*}
$$

Conversely, for every $y^{ \pm} \in \mathbb{R}^{d}, \xi^{ \pm} \in \mathbb{R}^{d} \backslash\{0\}$ there exists a unique scattering trajectory $x^{ \pm}(t)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \pm \infty}\left(x^{ \pm}(t)-t \xi^{ \pm}-y^{ \pm}\right)=0 \tag{6}
\end{equation*}
$$

The above construction does not apply e.g. to Coulomb potentials. Its trajectories do not have the asymptotics $t \xi^{ \pm}+y^{ \pm}$because of logarithmic corrections. However, the following fact is almost immediate:

Theorem 0.3. Assume the long-range condition

$$
\begin{equation*}
\nabla V(x) \mid \leq C\langle x\rangle^{-1-\mu}, \quad \mu>0 \tag{7}
\end{equation*}
$$

Then for every scattering trajectory $x(t)$ there exists the asymptotic momentum

$$
\begin{equation*}
\lim _{t \rightarrow \pm \infty} p(t) \neq 0 \tag{8}
\end{equation*}
$$

Under slightly stronger assumptions one can describe scattering trajectories more precisely also in the long-range case:

Theorem 0.4. Assume a stronger long-range condition

$$
\nabla V(x)\left|\leq C\langle x\rangle^{-1-\mu}, \quad \nabla^{2} V(x)\right| \leq C\langle x\rangle^{-2-\mu}, \quad \mu>0
$$

1. Suppose that two scattering trajectories have the same asymptotic momentum: $\lim _{t \rightarrow \pm \infty} p_{1}(t)=\lim _{t \rightarrow \pm \infty} p_{2}(t)$. Then there ex$i s t s$ the relative asymptotic position $\lim _{t \rightarrow \pm \infty}\left(x_{1}(t)-x_{2}(t)\right)$.
2. Let $x_{0}(t)$ be a scattering trajectory. Let $y^{ \pm} \in \mathbb{R}^{d}$. Then there exist unique trajectories $x^{ \pm}(t)$ such that

$$
\begin{gather*}
\lim _{t \pm \infty} p^{ \pm}(t)=\lim _{t \rightarrow \pm \infty} p_{0}(t) \tag{9}\\
\lim _{t \pm \infty}\left(x^{ \pm}(t)-x_{0}(t)\right)=y^{ \pm} \tag{10}
\end{gather*}
$$

Thus, if for every $\xi \neq 0$ we fix reference trajectories $x_{0}^{ \pm}(t, \xi)$, we can classify all scattering trajectories.

For a large class of boundary conditions which are not screened by the potential one can solve the following problem:

Theorem 0.5. Impose the assumption of the previous theorem. Suppose that $b, \epsilon>0$. Then there exists $a>0$ such that if $|y|>a,|\xi|>b, \frac{y \cdot \xi}{|y||\xi|}>-1+\epsilon$, then for any t there exists a unique family of trajectories $s \mapsto x(s, t, y, \xi)$ depending continuously on parameters such that

$$
\begin{equation*}
x(0, t, y, \xi)=y, \quad p(t, t, y, \xi)=\xi \tag{11}
\end{equation*}
$$

The Lagrangian of our particle is $L(x, \dot{x}):=\frac{1}{2} \dot{x}^{2}-V(x)$. Define the action along the trajectory $s \mapsto x(s, t, y, \xi)$

$$
\begin{equation*}
S(t, y, \xi):=\int_{0}^{t}\left(\frac{1}{2} \dot{x}(s, t, y, \xi)^{2}-V(x(s, t, y, \xi)) \mathrm{d} s\right. \tag{12}
\end{equation*}
$$

$S(t, y, \xi)$ is the generating function of the dynamics:

$$
\begin{equation*}
\nabla_{y} S(t, y, \xi)=p(0, t, y, \xi), \quad \nabla_{\xi} S(t, y, \xi)=x(t, t, y, \xi) \tag{13}
\end{equation*}
$$

It also satisfies the Hamilton-Jacobi equation

$$
\begin{align*}
\partial_{t} S(t, y, \xi) & =\frac{1}{2} \xi^{2}+V\left(\nabla_{\xi} S(t, y, \xi)\right) \tag{14}\\
& =\frac{1}{2}\left(\nabla_{y} S(t, y, \xi)\right)^{2}+V(y) \tag{15}
\end{align*}
$$

Using this construction, with various y in different momentum patches if needed, we can construct a function

$$
\begin{equation*}
\mathbb{R} \times\left(\mathbb{R}^{d} \backslash\{0\}\right) \ni(t, \xi) \mapsto S(t, \xi) \tag{16}
\end{equation*}
$$

such that for any $b>0$ there exists T such that for $|\xi|>b,|t|>T$

$$
\begin{equation*}
\partial_{t} S(t, \xi)=\frac{1}{2} \xi^{2}+V\left(\nabla_{\xi} S(t, \xi)\right) \tag{17}
\end{equation*}
$$

This function provides a choice of reference scattering trajectories and can be used in the construction of quantum modified Møller operators. Note that if $V=0$, then $S(t, \xi)=\frac{t}{2} \xi^{2}$.

Recall that almost bounded trajectories statisfy $\lim _{t \rightarrow \infty} \frac{x(t)}{t}=0$. Their energy is always 0 .

Here is an example: If $V(x)=-|x|^{-\mu}$, then

$$
\begin{equation*}
x(t)=c t^{\frac{2}{2+\mu}} . \tag{18}
\end{equation*}
$$

N-body Schrödinger Hamiltonians

Consider a system of n non-relativistic particles interacting with pair potentials. We suppose that the configuration space of the i th particle is $X_{i}=\mathbb{R}^{d}, i=1, \ldots, n$. The Hamiltonian is

$$
\begin{equation*}
H=\sum_{i=1}^{n} \frac{1}{2 m_{i}} p_{i}^{2}+\sum_{1 \leq i<j \leq n} V_{i j}\left(x_{i}-x_{j}\right) . \tag{19}
\end{equation*}
$$

Note that the Hamiltonian is invariant wrt Galieian transformations.

The configuration space $X:=X_{1} \oplus \cdots \oplus X_{n}$ is equipped with the scalar product

$$
\begin{equation*}
\left\langle x_{1}, \ldots, x_{n} \mid x_{1}, \ldots, x_{n}\right\rangle=\sum_{i=1}^{n} m_{i} x_{i}^{2} \tag{20}
\end{equation*}
$$

The minus Laplacian wrt this product is

$$
\begin{equation*}
-\Delta:=\sum_{i=1}^{n} \frac{1}{m_{i}} p_{i}^{2} \tag{21}
\end{equation*}
$$

The kinetic energy is the half of (21).

We will say cluster for a subset of $\{1, \ldots, n\}$. An example of a cluster is a pair $\{i, j\}$.
A cluster decomposition is a partition of $\{1, \ldots, n\}$ into clusters. We denote by \mathcal{A} the set of cluster decompositions.

Let a, b be cluster decompositions. We say that $b \leq a$ if b is finer than a. In particular, $\{1\} \ldots\{n\}$ is the minimal and $\{1, \ldots, n\}$ is the maximal element of \mathcal{A}.

For any cluster decomposition $a \in \mathcal{A}$ we define the corresponding collision plane

$$
\begin{equation*}
X_{a}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X \mid x_{i}=x_{j},(i, j) \leq a\right\} \tag{22}
\end{equation*}
$$

We set $X^{a}:=X_{a}^{\perp}$. Clearly, $X=X_{a} \oplus X^{a}$,

For every $a \in \mathcal{A}$ we have the corresponding factorization of the configuration space into internal and external degrees of freedom, the cluster Hamiltonian H_{a}, the internal Hamiltonian H^{a} and the external interaction:

$$
\begin{align*}
X & =X_{a} \oplus X^{a} \tag{23}\\
H_{a} & :=\frac{1}{2} p^{2}+\sum_{(i, j) \leq a} V_{i j}\left(x_{i}-x_{j}\right) \\
& =\frac{1}{2} p_{a}^{2}+\frac{1}{2}\left(p^{a}\right)^{2}+V_{a}\left(x^{a}\right)=\frac{1}{2} p_{a}^{2}+H^{a} \tag{24}\\
I_{a} & :=\sum_{(i j) \nsubseteq a} V_{i j}\left(x_{i}-x_{j}\right), \tag{25}\\
H & =H_{a}+I_{a}(x) . \tag{26}
\end{align*}
$$

For instance, here is the separation of the center-of-mass motion:

$$
\begin{equation*}
H=H_{\{1, \ldots, n\}}=-\frac{1}{2} p_{\{1, \ldots, n\}}^{2}+H^{\{1, \ldots, n\}} \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\text { The free Hamiltonian is } \quad H_{\{1\} \ldots\{n\}}=\frac{1}{2} p^{2} . \tag{28}
\end{equation*}
$$

Note that $H^{\{1\} \ldots\{n\}}=0$.
If $a=\left\{c_{1}, \ldots, c_{k}\right\}$ (a cluster decomposition a consists of clusters c_{1}, \ldots, c_{k}), then

$$
\begin{equation*}
X_{a}=\bigcap_{i=1}^{k} X_{c_{i}}, \quad X^{a}=X^{c_{1}} \oplus \cdots \oplus X^{c_{k}} \tag{29}
\end{equation*}
$$

It is probably impossible to classify all scattering trajectories of classical N-body systems in a similar way as in the quantum case. Thus classical N-body scattering theory is much less satisfactory than the quantum one.

However, there are some results. They can be viewed as a spin-off of the theory developed for the quantum case.

Theorem 0.6. Suppose that

$$
\begin{equation*}
\left|\nabla V_{i j}\right| \leq C\left\langle x_{i j}\right\rangle^{-1-\mu}, \quad \mu>0 \tag{30}
\end{equation*}
$$

Then for every trajectory $x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ there exists asymptotic velocity

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{x(t)}{t} \tag{31}
\end{equation*}
$$

If the asymptotic velocity is zero, then

$$
\begin{equation*}
|x(t)| \leq C\langle t\rangle^{\frac{\mu}{2+\mu}} \tag{32}
\end{equation*}
$$

Theorem 0.7. Suppose that the asymptotic velocity p_{a}^{+}is contained in $X_{a} \backslash \bigcup_{b \not \subset a} X_{b}$.
(1) Short range case. If $\left|\nabla V_{i j}\right| \leq C\left\langle x_{i j}\right\rangle^{-2-\mu}, \quad \mu>0$.
then there exists

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left(x_{a}(t)-t p_{a}^{+}\right) \tag{33}
\end{equation*}
$$

(2) Long range case. Suppose that $\mu>\sqrt{3}-1$ and

$$
\begin{equation*}
\left|\nabla V_{i j}\right| \leq C\left\langle x_{i j}\right\rangle^{-1-\mu}, \quad\left|\nabla^{2} V_{i j}\right| \leq C\left\langle x_{i j}\right\rangle^{-2-\mu} \tag{34}
\end{equation*}
$$

Then there exists a unique trajectory $\tilde{x}_{a}(t)$ of $\frac{1}{2} p_{a}^{2}+I_{a}\left(x_{a}\right)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left(x_{a}(t)-\tilde{x}_{a}(t)\right) \quad \text { exists. } \tag{35}
\end{equation*}
$$

Sketch of proof.

$$
\begin{align*}
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left(x_{a}(t)-\tilde{x}_{a}(t)\right) & =\nabla_{a} I_{a}(x(t))-\nabla_{a} I_{a}\left(x_{a}(t)\right) \tag{36}\\
=O\left(\nabla^{2} I_{a}\right) O\left(x^{a}(t)\right) & =\langle t\rangle^{-2-\mu}\langle t\rangle^{\frac{2}{2+\mu}} . \tag{37}
\end{align*}
$$

(37) is twice integrable if

$$
\begin{equation*}
\frac{2}{2+\mu}<\mu \tag{38}
\end{equation*}
$$

Thus we need to solve the quadratic equation $\mu^{2}+2 \mu-2=0$, which yields $\mu=\sqrt{3}-1 \approx 0.73$.

In the quantum case, for potentials decaying as $x^{-\mu}$ with $\mu>$ $\sqrt{3}-1$ a much more satisfactory result can be shown: asymptotic completeness.

THANK YOU

FOR YOUR ATTENTION!

