SCATTERING THEORY OF CLASSICAL PARTICLES

JAN DEREZIŃSKI

Department of Mathematical Methods in Physics

Quantum scattering theory is very well developed, both 1-body and N-body. Asymptotic completeness of quantum N-body systems used to be considered an important question of mathematical physics. Classical scattering theory is less famous. It was usually studied as a tool for the quantum case.

In my talk I will describe two topics.

- 1. Classical scattering theory of a particle in an external potential. Its analysis is later needed in quantum long-range scattering.
- 2. Classical scattering theory of N-body systems. Can be viewed as a spin-off of the quantum N-body scattering. Quantum results are much more satisfactory than classical ones.

Classical paricle in external potential

Let V be a potential on \mathbb{R}^d decaying at infinity. Consider the classical Hamiltonian

$$H := \frac{1}{2}p^2 + V(x)$$
 (1)

with the equations of motion

$$\frac{\mathrm{d}x}{\mathrm{d}t} = p, \quad \frac{\mathrm{d}p}{\mathrm{d}t} = -\nabla V(x). \tag{2}$$

Clearly, if $t \mapsto x(t), p(t)$ solves (2), then H(x(t), p(t)) is constant. It is called the energy of the trajectory $t \to x(t)$. **Theorem 0.1.** Assume that

$$\nabla V(x) \leq C \langle x \rangle^{-1-\mu}, \quad \mu > 0.$$
 (3)

Let x(t) be a trajectory for t > 0. Then there are 3 possibilities

- 1. Trapped trajectory: x(t) is bounded.
- 2. Almost bounded trajectory: x(t) is un unbounded but $\lim_{t \to \infty} \frac{x(t)}{t} = 0.$ This implies that H = 0.
- 3. Scattering trajectory: $\lim_{t\to\infty} \frac{x(t)}{t}$ exists and is not zero. This implies that H > 0.

We would like to classify all scattering trajectories.

Theorem 0.2. Assume the short range condition

$$|\nabla V(x)|, \ |\nabla^2 V(x)| \le C \langle x \rangle^{-2-\mu}, \quad \mu > 0.$$
(4)

Then for every scattering trajectory x(t) there exist asymptotic position $y^{\pm} \in \mathbb{R}^d$ and asymptotic momentum $\xi^{\pm} \in \mathbb{R}^d \setminus \{0\}$ such that

$$\lim_{t \to \pm \infty} \left(x(t) - t\xi^{\pm} - y^{\pm} \right) = 0.$$
 (5)

Conversely, for every $y^{\pm} \in \mathbb{R}^d$, $\xi^{\pm} \in \mathbb{R}^d \setminus \{0\}$ there exists a unique scattering trajectory $x^{\pm}(t)$ such that

$$\lim_{t \to \pm \infty} \left(x^{\pm}(t) - t\xi^{\pm} - y^{\pm} \right) = 0.$$
 (6)

The above construction does not apply e.g. to Coulomb potentials. Its trajectories do not have the asymptotics $t\xi^{\pm} + y^{\pm}$ because of logarithmic corrections. However, the following fact is almost immediate:

Theorem 0.3. Assume the long-range condition

$$\nabla V(x) \leq C \langle x \rangle^{-1-\mu}, \quad \mu > 0.$$
 (7)

Then for every scattering trajectory x(t) there exists the asymptotic momentum

$$\lim_{t \to \pm \infty} p(t) \neq 0. \tag{8}$$

Under slightly stronger assumptions one can describe scattering trajectories more precisely also in the long-range case:

Theorem 0.4. Assume a stronger long-range condition $\nabla V(x) \leq C \langle x \rangle^{-1-\mu}, \quad \nabla^2 V(x) \leq C \langle x \rangle^{-2-\mu}, \quad \mu > 0.$

- 1. Suppose that two scattering trajectories have the same asymptotic momentum: $\lim_{t \to \pm \infty} p_1(t) = \lim_{t \to \pm \infty} p_2(t)$. Then there exists the relative asymptotic position $\lim_{t \to \pm \infty} (x_1(t) x_2(t))$.
- 2. Let $x_0(t)$ be a scattering trajectory. Let $y^{\pm} \in \mathbb{R}^d$. Then there exist unique trajectories $x^{\pm}(t)$ such that

$$\lim_{t \to \infty} p^{\pm}(t) = \lim_{t \to \pm \infty} p_0(t), \tag{9}$$

$$\lim_{t \to \infty} \left(x^{\pm}(t) - x_0(t) \right) = y^{\pm}.$$
 (10)

Thus, if for every $\xi \neq 0$ we fix reference trajectories $x_0^{\pm}(t,\xi)$, we can classify all scattering trajectories.

For a large class of boundary conditions which are not screened by the potential one can solve the following problem:

Theorem 0.5. Impose the assumption of the previous theorem. Suppose that $b, \epsilon > 0$. Then there exists a > 0 such that if |y| > a, $|\xi| > b$, $\frac{y \cdot \xi}{|y||\xi|} > -1 + \epsilon$, then for any t there exists a unique family of trajectories $s \mapsto x(s,t,y,\xi)$ depending continuously on parameters such that

$$x(0,t,y,\xi) = y, \quad p(t,t,y,\xi) = \xi.$$
 (11)

The Lagrangian of our particle is $L(x, \dot{x}) := \frac{1}{2}\dot{x}^2 - V(x)$. Define the action along the trajectory $s \mapsto x(s, t, y, \xi)$

$$S(t, y, \xi) := \int_0^t \left(\frac{1}{2} \dot{x}(s, t, y, \xi)^2 - V(x(s, t, y, \xi)) \right) \mathrm{d}s.$$
(12)

 $S(t,y,\xi)$ is the generating function of the dynamics:

$$\nabla_y S(t, y, \xi) = p(0, t, y, \xi), \quad \nabla_\xi S(t, y, \xi) = x(t, t, y, \xi), \quad (13)$$

It also satisfies the Hamilton-Jacobi equation

$$\partial_t S(t, y, \xi) = \frac{1}{2}\xi^2 + V\big(\nabla_\xi S(t, y, \xi)\big) \tag{14}$$

$$= \frac{1}{2} \left(\nabla_y S(t, y, \xi) \right)^2 + V(y).$$
 (15)

Using this construction, with various y in different momentum patches if needed, we can construct a function

$$\mathbb{R} \times (\mathbb{R}^d \setminus \{0\}) \ni (t,\xi) \mapsto S(t,\xi)$$
(16)

such that for any b > 0 there exists T such that for $|\xi| > b$, |t| > T

$$\partial_t S(t,\xi) = \frac{1}{2}\xi^2 + V\big(\nabla_\xi S(t,\xi)\big). \tag{17}$$

This function provides a choice of reference scattering trajectories and can be used in the construction of quantum modified Møller operators. Note that if V = 0, then $S(t, \xi) = \frac{t}{2}\xi^2$. Recall that almost bounded trajectories statisfy $\lim_{t\to\infty}\frac{x(t)}{t}=0.$ Their energy is always 0.

Here is an example: If $V(x)=-|x|^{-\mu}\text{, then}$

$$x(t) = ct^{\frac{2}{2+\mu}}.$$
 (18)

N-body Schrödinger Hamiltonians

Consider a system of n non-relativistic particles interacting with pair potentials. We suppose that the configuration space of the *i*th particle is $X_i = \mathbb{R}^d$, i = 1, ..., n. The Hamiltonian is

$$H = \sum_{i=1}^{n} \frac{1}{2m_i} p_i^2 + \sum_{1 \le i < j \le n} V_{ij}(x_i - x_j).$$
(19)

Note that the Hamiltonian is invariant wrt Galileian transformations. The configuration space $X := X_1 \oplus \cdots \oplus X_n$ is equipped with the scalar product

$$\langle x_1, \dots, x_n | x_1, \dots, x_n \rangle = \sum_{i=1}^n m_i x_i^2.$$
(20)

The minus Laplacian wrt this product is

$$-\Delta := \sum_{i=1}^{n} \frac{1}{m_i} p_i^2.$$
 (21)

The kinetic energy is the half of (21).

We will say cluster for a subset of $\{1, \ldots, n\}$. An example of a cluster is a pair $\{i, j\}$.

A cluster decomposition is a partition of $\{1, \ldots, n\}$ into clusters. We denote by \mathcal{A} the set of cluster decompositions.

Let a, b be cluster decompositions. We say that $b \le a$ if b is finer than a. In particular, $\{1\} \dots \{n\}$ is the minimal and $\{1, \dots, n\}$ is the maximal element of A.

For any cluster decomposition $a \in \mathcal{A}$ we define the corresponding collision plane

$$X_a := \{ (x_1, \dots, x_n) \in X \mid x_i = x_j, \ (i, j) \le a \}.$$
 (22)

We set $X^a := X_a^{\perp}$. Clearly, $X = X_a \oplus X^a$,

For every $a \in \mathcal{A}$ we have the corresponding factorization of the configuration space into internal and external degrees of freedom, the cluster Hamiltonian H_a , the internal Hamiltonian H^a and the external interaction:

For instance, here is the separation of the center-of-mass motion:

$$H = H_{\{1,\dots,n\}} = -\frac{1}{2}p_{\{1,\dots,n\}}^2 + H^{\{1,\dots,n\}}.$$
 (27)

The free Hamiltonian is $H_{\{1\}...\{n\}} = \frac{1}{2}p^2$. (28) Note that $H^{\{1\}...\{n\}} = 0$.

If $a = \{c_1, \ldots, c_k\}$ (a cluster decomposition a consists of clusters c_1, \ldots, c_k) , then

$$X_a = \bigcap_{i=1}^k X_{c_i}, \qquad X^a = X^{c_1} \oplus \dots \oplus X^{c_k}.$$
(29)

It is probably impossible to classify all scattering trajectories of classical N-body systems in a similar way as in the quantum case. Thus classical N-body scattering theory is much less satisfactory than the quantum one.

However, there are some results. They can be viewed as a spin-off of the theory developed for the quantum case.

Theorem 0.6. Suppose that

$$\nabla V_{ij} \leq C \langle x_{ij} \rangle^{-1-\mu}, \quad \mu > 0.$$
(30)

Then for every trajectory $x(t) = (x_1(t), \ldots, x_n(t))$ there exists asymptotic velocity

$$\lim_{t \to +\infty} \frac{x(t)}{t}.$$
 (31)

If the asymptotic velocity is zero, then

$$|x(t)| \le C \langle t \rangle^{\frac{\mu}{2+\mu}}.$$
(32)

Theorem 0.7. Suppose that the asymptotic velocity p_a^+ is contained in $X_a \setminus \bigcup_{b \not\subset a} X_b$.

(1) Short range case. If $|\nabla V_{ij}| \leq C \langle x_{ij} \rangle^{-2-\mu}$, $\mu > 0$. then there exists

$$\lim_{t \to +\infty} \left(x_a(t) - tp_a^+ \right). \tag{33}$$

(2) Long range case. Suppose that $\mu > \sqrt{3} - 1$ and

$$|\nabla V_{ij}| \le C \langle x_{ij} \rangle^{-1-\mu}, \quad |\nabla^2 V_{ij}| \le C \langle x_{ij} \rangle^{-2-\mu}, \quad (34)$$

Then there exists a unique trajectory $\tilde{x}_a(t)$ of $\frac{1}{2}p_a^2 + I_a(x_a)$ such that

$$\lim_{t \to +\infty} \left(x_a(t) - \tilde{x}_a(t) \right) \quad exists. \tag{35}$$

Sketch of proof.

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \left(x_a(t) - \tilde{x}_a(t) \right) = \nabla_a I_a \left(x(t) \right) - \nabla_a I_a \left(x_a(t) \right)$$
(36)

$$= O\left(\nabla^2 I_a\right) O\left(x^a(t)\right) = \langle t \rangle^{-2-\mu} \langle t \rangle^{\frac{2}{2+\mu}}.$$
(37)

(37) is twice integrable if

$$\frac{2}{2+\mu} < \mu. \tag{38}$$

Thus we need to solve the quadratic equation $\mu^2 + 2\mu - 2 = 0$, which yields $\mu = \sqrt{3} - 1 \approx 0.73$.

In the quantum case, for potentials decaying as $x^{-\mu}$ with $\mu > \sqrt{3} - 1$ a much more satisfactory result can be shown: asymptotic completeness.

THANK YOU

FOR YOUR ATTENTION!