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Quantum scattering theory is very well developed, both 1-body

and N -body. Asymptotic completeness of quantum N -body sys-

tems used to be considered an important question of mathematical

physics. Classical scattering theory is less famous. It was usually

studied as a tool for the quantum case.

In my talk I will describe two topics.

1. Classical scattering theory of a particle in an external potential.

Its analysis is later needed in quantum long-range scattering.

2. Classical scattering theory of N -body systems. Can be viewed as

a spin-off of the quantum N -body scattering. Quantum results

are much more satisfactory than classical ones.



Classical paricle in external potential

Let V be a potential on Rd decaying at infinity. Consider the

classical Hamiltonian

H :=
1

2
p2 + V (x) (1)

with the equations of motion

dx

dt
= p,

dp

dt
= −∇V (x). (2)

Clearly, if t 7→ x(t), p(t) solves (2), then H
(
x(t), p(t)

)
is constant.

It is called the energy of the trajectory t→ x(t).



Theorem 0.1. Assume that

∇V (x)| ≤ C〈x〉−1−µ, µ > 0. (3)

Let x(t) be a trajectory for t > 0. Then there are 3 possibilities

1. Trapped trajectory: x(t) is bounded.

2. Almost bounded trajectory: x(t) is un unbounded but

lim
t→∞

x(t)
t = 0. This implies that H = 0.

3. Scattering trajectory: lim
t→∞

x(t)
t exists and is not zero. This

implies that H > 0.

We would like to classify all scattering trajectories.



Theorem 0.2. Assume the short range condition

|∇V (x)|, |∇2V (x)| ≤ C〈x〉−2−µ, µ > 0. (4)

Then for every scattering trajectory x(t) there exist asymptotic

position y± ∈ Rd and asymptotic momentum ξ± ∈ Rd\{0}
such that

lim
t→±∞

(
x(t)− tξ± − y±

)
= 0. (5)

Conversely, for every y± ∈ Rd, ξ± ∈ Rd\{0} there exists a

unique scattering trajectory x±(t) such that

lim
t→±∞

(
x±(t)− tξ± − y±

)
= 0. (6)
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The above construction does not apply e.g. to Coulomb poten-

tials. Its trajectories do not have the asymptotics tξ±+y± because

of logarithmic corrections. However, the following fact is almost

immediate:

Theorem 0.3. Assume the long-range condition

∇V (x)| ≤ C〈x〉−1−µ, µ > 0. (7)

Then for every scattering trajectory x(t) there exists the asymp-

totic momentum

lim
t→±∞

p(t) 6= 0. (8)

Under slightly stronger assumptions one can describe scattering

trajectories more precisely also in the long-range case:



Theorem 0.4. Assume a stronger long-range condition

∇V (x)| ≤ C〈x〉−1−µ, ∇2V (x)| ≤ C〈x〉−2−µ, µ > 0.

1. Suppose that two scattering trajectories have the same asymp-

totic momentum: lim
t→±∞

p1(t) = lim
t→±∞

p2(t). Then there ex-

ists the relative asymptotic position lim
t→±∞

(
x1(t)− x2(t)

)
.

2. Let x0(t) be a scattering trajectory. Let y± ∈ Rd. Then

there exist unique trajectories x±(t) such that

lim
t±∞

p±(t) = lim
t→±∞

p0(t), (9)

lim
t±∞

(
x±(t)− x0(t)

)
= y±. (10)
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Thus, if for every ξ 6= 0 we fix reference trajectories x±0 (t, ξ), we

can classify all scattering trajectories.

For a large class of boundary conditions which are not screened

by the potential one can solve the following problem:

Theorem 0.5. Impose the assumption of the previous theo-

rem. Suppose that b, ε > 0. Then there exists a > 0 such that

if |y| > a, |ξ| > b, y·ξ
|y||ξ| > −1 + ε, then for any t there ex-

ists a unique family of trajectories s 7→ x(s, t, y, ξ) depending

continuously on parameters such that

x(0, t, y, ξ) = y, p(t, t, y, ξ) = ξ. (11)
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The Lagrangian of our particle is L(x, ẋ) := 1
2ẋ

2− V (x). Define

the action along the trajectory s 7→ x(s, t, y, ξ)

S(t, y, ξ) :=

∫ t

0

(1

2
ẋ(s, t, y, ξ)2 − V (x(s, t, y, ξ)

)
ds. (12)

S(t, y, ξ) is the generating function of the dynamics:

∇yS(t, y, ξ) = p(0, t, y, ξ), ∇ξS(t, y, ξ) = x(t, t, y, ξ), (13)

It also satisfies the Hamilton-Jacobi equation

∂tS(t, y, ξ) =
1

2
ξ2 + V

(
∇ξS(t, y, ξ)

)
(14)

=
1

2

(
∇yS(t, y, ξ)

)2
+ V (y). (15)



Using this construction, with various y in different momentum

patches if needed, we can construct a function

R× (Rd\{0}
)
3 (t, ξ) 7→ S(t, ξ) (16)

such that for any b > 0 there exists T such that for |ξ| > b, |t| > T

∂tS(t, ξ) =
1

2
ξ2 + V

(
∇ξS(t, ξ)

)
. (17)

This function provides a choice of reference scattering trajectories

and can be used in the construction of quantum modified Møller

operators. Note that if V = 0, then S(t, ξ) = t
2ξ

2.



Recall that almost bounded trajectories statisfy lim
t→∞

x(t)
t = 0.

Their energy is always 0.

Here is an example: If V (x) = −|x|−µ, then

x(t) = ct
2

2+µ . (18)



N -body Schrödinger Hamiltonians
Consider a system of n non-relativistic particles interacting with

pair potentials. We suppose that the configuration space of the ith

particle is Xi = Rd, i = 1, . . . , n. The Hamiltonian is

H =

n∑
i=1

1

2mi
p2i +

∑
1≤i<j≤n

Vij(xi − xj). (19)

Note that the Hamiltonian is invariant wrt Galileian transforma-

tions.



The configuration space X := X1 ⊕ · · · ⊕ Xn is equipped with

the scalar product

〈x1, . . . , xn|x1, . . . , xn〉 =

n∑
i=1

mix
2
i . (20)

The minus Laplacian wrt this product is

−∆ :=

n∑
i=1

1

mi
p2i . (21)

The kinetic energy is the half of (21).



We will say cluster for a subset of {1, . . . , n}. An example of a

cluster is a pair {i, j}.
A cluster decomposition is a partition of {1, . . . , n} into clusters.

We denote by A the set of cluster decompositions.

Let a, b be cluster decompositions. We say that b ≤ a if b is finer

than a. In particular, {1} . . . {n} is the minimal and {1, . . . , n} is

the maximal element of A.

For any cluster decomposition a ∈ A we define the corresponding

collision plane

Xa := {(x1, . . . , xn) ∈ X | xi = xj, (i, j) ≤ a}. (22)

We set Xa := X⊥a . Clearly, X = Xa ⊕Xa,



For every a ∈ A we have the corresponding factorization of the

configuration space into internal and external degrees of freedom,

the cluster Hamiltonian Ha, the internal Hamiltonian Ha and the

external interaction:

X = Xa ⊕Xa, (23)

Ha :=
1

2
p2 +

∑
(i,j)≤a

Vij(xi − xj)

=
1

2
p2a +

1

2
(pa)2 + Va(x

a) =
1

2
p2a + Ha, (24)

Ia :=
∑
(ij)6≤a

Vij(xi − xj), (25)

H = Ha + Ia(x). (26)



For instance, here is the separation of the center-of-mass motion:

H = H{1,...,n} = −1

2
p2{1,...,n} + H{1,...,n}. (27)

The free Hamiltonian is H{1}...{n} =
1

2
p2. (28)

Note that H{1}...{n} = 0.

If a = {c1, . . . , ck} (a cluster decomposition a consists of clusters

c1, . . . , ck) , then

Xa =

k⋂
i=1

Xci, Xa = Xc1 ⊕ · · · ⊕Xck. (29)
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Center-of-mass configuration space of 3-body 
system
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of 4-body system



It is probably impossible to classify all scattering trajectories of

classical N -body systems in a similar way as in the quantum case.

Thus classical N -body scattering theory is much less satisfactory

than the quantum one.

However, there are some results. They can be viewed as a spin-off

of the theory developed for the quantum case.



Theorem 0.6. Suppose that

|∇Vij| ≤ C〈xij〉−1−µ, µ > 0. (30)

Then for every trajectory x(t) = (x1(t), . . . , xn(t)) there exists

asymptotic velocity

lim
t→+∞

x(t)

t
. (31)

If the asymptotic velocity is zero, then

|x(t)| ≤ C〈t〉
µ

2+µ . (32)



Theorem 0.7. Suppose that the asymptotic velocity p+a is con-

tained in Xa\
⋃
b6⊂aXb.

(1) Short range case. If |∇Vij| ≤ C〈xij〉−2−µ, µ > 0.

then there exists

lim
t→+∞

(
xa(t)− tp+a ). (33)

(2) Long range case. Suppose that µ >
√

3− 1 and

|∇Vij| ≤ C〈xij〉−1−µ, |∇2Vij| ≤ C〈xij〉−2−µ, (34)

Then there exists a unique trajectory x̃a(t) of
1
2p

2
a+Ia(xa)

such that

lim
t→+∞

(
xa(t)− x̃a(t)

)
exists. (35)



Sketch of proof.

d2

dt2
(
xa(t)− x̃a(t)

)
= ∇aIa

(
x(t)

)
−∇aIa

(
xa(t)

)
(36)

= O
(
∇2Ia

)
O
(
xa(t)

)
= 〈t〉−2−µ〈t〉

2
2+µ . (37)

(37) is twice integrable if

2

2 + µ
< µ. (38)

Thus we need to solve the quadratic equation µ2 + 2µ − 2 = 0,

which yields µ =
√

3− 1 ≈ 0.73.

In the quantum case, for potentials decaying as x−µ with µ >√
3− 1 a much more satisfactory result can be shown: asymptotic

completeness.
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