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Quantum scattering theory is very well developed, both 1-body
and N-body. Asymptotic completeness of quantum N-body sys-
tems used to be considered an important question of mathematical
physics. Classical scattering theory is less famous. It was usually
studied as a tool for the quantum case.

In my talk | will describe two topics.

1. Classical scattering theory of a particle in an external potential.

lts analysis is later needed in quantum long-range scattering.

2. Classical scattering theory of N-body systems. Can be viewed as
a spin-off of the quantum N-body scattering. Quantum results

are much more satisfactory than classical ones.



Classical paricle in external potential

Let V be a potential on R? decaying at infinity. Consider the

classical Hamiltonian

1
H = 5}92 + V(x) (1)
with the equations of motion
dx dp
—_— _— = — . 2
T=p L=V 2

Clearly, if t — x(t), p(t) solves (2), then H (x(t), p(t)) is constant.
It is called the energy of the trajectory t — ().



Theorem O0.1. Assume that

VVi(z)| < Clx)y™ ", >0 (3)
Let x(t) be a trajectory fort > 0. Then there are 3 possibilities
1. Trapped trajectory: z(t) is bounded.
2. Almost bounded trajectory: x(t) is un unbounded but

lim 28 = 0. This implies that H = 0.

t—oo !
3. Scattering trajectory: 75lim @ exists and is not zero. This
—00

implies that H > 0,

We would like to classify all scattering trajectories.



Theorem 0.2. Assume the short range condition
VV ()|, [VV(2)] < Cla) ", p>0. (4)

Then for every scattering trajectory x(t) there exist asymptotic
position y£ € R and asymptotic momentum £ € RN{0}
such that

lim (z(t) —t&" —y™) =0. (5)

t—+o00

Conversely, for every y= € RY, €& € RN\{0} there exists a

unique scattering trajectory x=(t) such that

lim (2*(t) —t&" —y™) =0. (6)

t—+o0






The above construction does not apply e.g. to Coulomb poten-
tials. Its trajectories do not have the asymptotics t£* +y* because

of logarithmic corrections. However, the following fact is almost

immediate:

Theorem 0.3. Assume the long-range condition
VV(z)| < Cla) ", u>0. (7)

Then for every scattering trajectory x(t) there exists the asymp-

totic momentum

lim p(t) # 0. (8)

t—+o0

Under slightly stronger assumptions one can describe scattering

trajectories more precisely also in the long-range case:



Theorem 0.4. Assume a stronger long-range condition
VV(z) < Clx)y 7, VV()| <COl) " u>0.

1. Suppose that two scattering trajectories have the same asymp-

totic momentum: tilinoopl(t) = tl}inoop2<t>. Then there ex-

ists the relative asymptotic position lim (z1(t) — 22(t)).
t—=+o00

2. Let xo(t) be a scattering trajectory. Let y* € RY. Then

there exist unique trajectories x=(t) such that

lim p=(t) = lim_po(t), (9)
lim (z(¢) — zo(t)) =y (10)

t+oo






Thus, if for every & # 0 we fix reference trajectories z (t, £), we
can classify all scattering trajectories.
For a large class of boundary conditions which are not screened

by the potential one can solve the following problem:

Theorem 0.5. Impose the assumption of the previous theo-
rem. Suppose that b,e > 0. Then there exists a > 0 such that
if [yl > a, |&] > b, % > —1 + €, then for any t there ex-
ists a unique family of trajectories s — x(s,t,y,&) depending

continuously on parameters such that

r(0,t,y,§) =y, bplt,ty§) =¢ (11)



X(5,t,y,8 )




The Lagrangian of our particle is L(z, &) := 32* — V(z). Define
the action along the trajectory s — x(s,t,y, &)

S(t,y, &) = /Ot (%j}(s,t, y, £)* — V(x(s,t,y,f))ds. (12)

S(t,y, &) is the generating function of the dynamics:

V,S(t,y, &) =p0,t,y,8), VeS(ty &) =t t,y§), (13)

It also satisfies the Hamilton-Jacobi equation
1
hS(t,y, &) = 552 +V(VeS(t,y,9)) (14)

= S(VSyO) + V). (9



Using this construction, with various ¥ in different momentum

patches if needed, we can construct a function
R x (R\{0}) > (t,€) = S(t,¢) (16)
such that for any b > 0 there exists T" such that for [£| > b, [t| > T
0,5(1,€) = o€ + V (VeS(t,6)). (17

This function provides a choice of reference scattering trajectories
and can be used in the construction of quantum modified Mgller
operators. Note that if V =0, then S(¢,&) = £&°.



Recall that almost bounded trajectories statisfy lim

Their energy is always 0.

Here is an example: If V(x) = —|z|™#, then

x(t) = ctT,

t—00

z(t)

t

(18)



N-body Schrodinger Hamiltonians
Consider a system of n non-relativistic particles interacting with

pair potentials. We suppose that the configuration space of the ith

particle is X; = R? ¢ =1,...,n. The Hamiltonian is
H-Y szpz + D Vilai—ay). (19)
1=1 1<i<i<n

Note that the Hamiltonian is invariant wrt Galileian transforma-

tions.



The configuration space X = X; @ --- & X, is equipped with

the scalar product

n
T A 20)
1=1

The minus Laplacian wrt this product is

"1
A=) Ep?. (21)
1=1

The kinetic energy is the half of (21).



We will say cluster for a subset of {1,...,n}. An example of a
cluster is a pair {i,j}.

A cluster decomposition is a partition of {1,... n} into clusters.
We denote by A the set of cluster decompositions.

Let a, b be cluster decompositions. We say that b < a if b is finer
than a. In particular, {1}...{n} is the minimal and {1,...,n} is
the maximal element of A.

For any cluster decomposition a € A we define the corresponding

collision plane
X ={(z1,...,0p) € X |z, =25, (1,5) <a}. (22

We set X% .= XaL. Clearly, X = X, ® X,



For every a € A we have the corresponding factorization of the
configuration space into internal and external degrees of freedom,
the cluster Hamiltonian H,, the internal Hamiltonian H® and the

external interaction:

X—X X, (23)
_p + Z V;]
(1,5)<a
1, 1 1, .
z—pa+2(p) +Va(2®) = gpa+ HY, (24)
ZVZJ Ti — Tj), (25)
(1j)La

H=H,+ I,(x). (26)



For instance, here is the separation of the center-of-mass motion:

1 n
H=Hgy = —529%1 ..... n) T HUomt, (27)
1
The free Hamiltonian is Hy gy = §p2. (28)
Note that H{li-int =0
If a = {c1,...,cr} (a cluster decomposition a consists of clusters
Cl,...,Cp) , then
k
Xo=()Xe X=X"D- ®X% (29)



(12)




Xy Ko

X (12)

Center-of-Imass configuration space of 3-body



sphere in center-of-mass
configuration space
gt 4-body system

4)
A (24)
(24)
(12) (12)(34) 23) o
(13 (14)
(34
14)R3)



It is probably impossible to classify all scattering trajectories of
classical N-body systems in a similar way as in the quantum case.
Thus classical N-body scattering theory is much less satisfactory
than the quantum one.

However, there are some results. They can be viewed as a spin-off

of the theory developed for the quantum case.



Theorem 0.6. Suppose that
VVil < Clxij)™ 7, >0 (30)

Then for every trajectory x(t) = (x1(t), ..., x,(t)) there exists
asymptotic velocity
t
jim 2. (31)

t——+00

If the asymptotic velocity 1s zero, then

-

z(t)] < C{t)7. (32)



Theorem 0.7. Suppose that the asymptotic velocity ptis con-
tained in Xo\ Upgz, Xo-
(1) Short range case. If |[VV;;| < C{zy) %", u > 0.

then there exists

lim (2,(t) — tps). (33)

t——+00

(2) Long range case. Suppose that i > /3 — 1 and
Vil < Clay)™ 0 VAV < Clag) 7", (34)

Then there exists a unique trajectory T,(t) of 1p2+1,(z,)

such that
im (z4(t) — T4(t)) exists. (35)

t——+00



Sketch of proof.

3 (rt) = 20) = VI, (2(1)) — Valu(rlt) (30

= O(V*1,)O(2"(t)) = ()2 M{t)%n. (37)
(37) is twice integrable if

2 38

2+ 1 < M- (38)

Thus we need to solve the quadratic equation u? + 2u — 2 = 0,
which yields ;. = v/3 — 1 ~ 0.73.

In the quantum case, for potentials decaying as z™# with 4 >
v/3 — 1 a much more satisfactory result can be shown: asymptotic

completeness.
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