HPC projects

Hrachya Astsatryan, Hélene Hénon

June 20, 2024

1 Project 1 : Euler scheme for the advection equation

The advection equation in 1D is :

ou Ou
54—%—0 (1)

where u(z,t), € [0, L,] is a scalar (wave), advected during time ¢.
We consider the initial condition :

T
uo(w) = u(,0) = exp(~3) )
The true solution is :

ut(x,t) = uo(x —t) (3)

We consider a periodic boundary condition, meaning «(0,t) = u(10, ).

But we want to solve it by using finite differences (https://en.wikipedia.org/wiki/Finite_
difference_method) and the explicit Euler scheme (https://en.wikipedia.org/wiki/Euler_method).
Here is the according scheme, using a upwind scheme :

n+l

u;

n n __ ,mn
UiJruz' Ui—1

At Az =0 (4)

where:

e Az is the spatial step size, defined as Ax = %, with N, being the number of spatial grid points.

o At is the time step size, defined based on the Courant-Friedrichs-Lewy (CFL) condition for
stability: At < CA—?, where ¢pax is the maximum wave speed (which is 1 in this case, since the
advection speed is 1).

By appropriately choosing Az and At, we can ensure numerical stability and accuracy of the finite
difference scheme.
When we rearrange it :

At At
up™t = (1~ Tx)u? + EU?A (5)
We can write this equation in matrix form :
Un+1 = AU™ (6)
with, by posing a = %
1—a 0 0 a
uf ug“ a l1—a O e 0
u® n+1
Un — 1 Un+1 — 1 A = O
: ot : a 1l—a 0
UN, 1 U 0O - 0 a 1l-a


https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Euler_method

—_

. Implement the Euler scheme in sequential
2. Parallelize using OpenMP

3. Parallelize using MPI by sending as few messages as possible!

W

. Trace the speedup (https://en.wikipedia.org/wiki/Speedup)

2 Project 2 : Solving Laplace’s equation with Jacobi method
Laplace’s equation in 1D is :

o°T
D 0 (7)

where T'(x),2 € R is a twice-differentiable real-valued function, representing the temperature.

This function is defined on a domain [0, L], with boundary condition such that 7'(0) = 15°C = ¢
and T(L) = 35°C == ¢y.

By using a finite differences scheme of second order, we can have the following scheme :

Tit1 — 2T+ T

=0 8
A2 (8)
where Ax = NL, with N, being the number of spatial grid points.
This can be written in matrix form such that AU = b with, by posing a = —Aiz and b = ﬁ:
a b 0 --- 0
. Ty Co
b a b . : T 0
A= - . U= : b=
: b oa b Ty cL
0O -+ 0 b a

We want to solve this linear system using the Jacobi method, element based formula (https:
//en.wikipedia.org/wiki/Jacobi_method).

1. Implement this in sequential
2. Parallelize using OpenMP

3. Parallelize using MPI by sending as few messages as possible!

N

. Trace the speedup (https://en.wikipedia.org/wiki/Speedup)


https://en.wikipedia.org/wiki/Speedup
https://en.wikipedia.org/wiki/Jacobi_method
https://en.wikipedia.org/wiki/Jacobi_method
https://en.wikipedia.org/wiki/Speedup

	Project 1 : Euler scheme for the advection equation
	Project 2 : Solving Laplace's equation with Jacobi method

