
HPC projects

Hrachya Astsatryan, Hélène Hénon

June 20, 2024

1 Project 1 : Euler scheme for the advection equation

The advection equation in 1D is :

∂u

∂t
+

∂u

∂x
= 0 (1)

where u(x, t), x ∈ [0, Lx] is a scalar (wave), advected during time t.
We consider the initial condition :

u0(x) = u(x, 0) = exp(−x

2
) (2)

The true solution is :

ut(x, t) = u0(x− t) (3)

We consider a periodic boundary condition, meaning u(0, t) = u(10, t).
But we want to solve it by using finite differences (https://en.wikipedia.org/wiki/Finite_

difference_method) and the explicit Euler scheme (https://en.wikipedia.org/wiki/Euler_method).
Here is the according scheme, using a upwind scheme :

un+1
i − un

i

∆t
+

un
i − un

i−1

∆x
= 0 (4)

where:

• ∆x is the spatial step size, defined as ∆x = Lx

Nx
, with Nx being the number of spatial grid points.

• ∆t is the time step size, defined based on the Courant-Friedrichs-Lewy (CFL) condition for
stability: ∆t ≤ ∆x

cmax
, where cmax is the maximum wave speed (which is 1 in this case, since the

advection speed is 1).

By appropriately choosing ∆x and ∆t, we can ensure numerical stability and accuracy of the finite
difference scheme.

When we rearrange it :

un+1
i = (1− ∆t

∆x
)un

i +
∆t

∆x
un
i−1 (5)

We can write this equation in matrix form :

Un+1 = AUn (6)

with, by posing a = ∆t
∆x

Un =


un
0

un
1
...

un
Nx−1

 Un+1 =


un+1
0

un+1
1
...

un+1
Nx−1

 A =



1− a 0 · · · 0 a
a 1− a 0 · · · 0

0
. . .

. . .
. . .

...
...

. . . a 1− a 0
0 · · · 0 a 1− a



1

https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Euler_method


1. Implement the Euler scheme in sequential

2. Parallelize using OpenMP

3. Parallelize using MPI by sending as few messages as possible!

4. Trace the speedup (https://en.wikipedia.org/wiki/Speedup)

2 Project 2 : Solving Laplace’s equation with Jacobi method

Laplace’s equation in 1D is :

∂2T

∂x2
= 0 (7)

where T (x), x ∈ R is a twice-differentiable real-valued function, representing the temperature.
This function is defined on a domain [0, L], with boundary condition such that T (0) = 15◦C = c0

and T (L) = 35◦C == cL.
By using a finite differences scheme of second order, we can have the following scheme :

Ti+1 − 2Ti + Ti−1

∆x2
= 0 (8)

where ∆x = L
Nx

with Nx being the number of spatial grid points.

This can be written in matrix form such that AU = b with, by posing a = − 2
∆x2 and b = 1

∆x2 :

A =



a b 0 · · · 0

b a b
. . .

...
...

. . .
. . .

. . .
...

...
. . . b a b

0 · · · 0 b a


U =


T0

T1

...
TNx−1

 b =


c0
0
...
cL


We want to solve this linear system using the Jacobi method, element based formula (https:

//en.wikipedia.org/wiki/Jacobi_method).

1. Implement this in sequential

2. Parallelize using OpenMP

3. Parallelize using MPI by sending as few messages as possible!

4. Trace the speedup (https://en.wikipedia.org/wiki/Speedup)

2

https://en.wikipedia.org/wiki/Speedup
https://en.wikipedia.org/wiki/Jacobi_method
https://en.wikipedia.org/wiki/Jacobi_method
https://en.wikipedia.org/wiki/Speedup

	Project 1 : Euler scheme for the advection equation
	Project 2 : Solving Laplace's equation with Jacobi method

