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Sequential Programming
Single processor has access certain amount of memory.
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Shared Memory Programming
Multiple CPUs/cores share access to a global memory space via a high-speed memory bus. This 
global memory space allows the processors to efficiently exchange or share access to data.
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Shared Memory Programming
Multiple CPUs/cores share access to a global memory space via a high-speed memory bus. This 
global memory space allows the processors to efficiently exchange or share access to data.
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Hyperthreading
Simultaneous multithreading (SMT) and Hyper-Threading (HT) are technologies that enable 
more efficient utilization of processor resources by allowing multiple threads to run on a 
single physical core simultaneously. 

The ability to switch between these threads creates an illusion of simultaneous execution, 
although at any given time the CPU is processing only one thread per core.

Technologies like Intel's Hyper-Threading allow the processor to issue instructions from 
multiple threads in a single cycle requiring complex control logic to manage instruction 
dependencies and allocate resources among threads.
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Hyperthreading: pros & cons
Advantages
• better utilization of CPU resources
• reducing idle time
• handling multiple threads concurrently

Drawbacks
• resource contention often sharing the same hardware resources like caches and 

translation lookaside buffers. As threads compete for the same resources, potentially 
causing performance degradation

• More power consumption by keeping additional hardware resources active to support 
simultaneous thread execution

• Security Concerns such as side-channel attacks, where one thread may exploit shared 
resources to gain unauthorized access to sensitive information from another thread
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CPU caches

Memory

L2 Cache

L3/4 Cache

L1 Cache
CPU

Slow

Big

Fast

Small

During each read query, it is first 
checked in CPU’s L1 cache, if it is 
found then returned, else check L2 
cache and so on till L3 cache or L4 
cache



Slide 9

CPU caches
• CPU cache stores 

frequently 
accessed data 
and instructions, 
enabling the 
processor to 
retrieve this 
information 
quickly when 
needed. 
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Shared Memory programming

• Determine the 
number of processors:

• cat  /proc/cpuinfo
• nproc
• lscpu
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OpenMP - Open 
Multi-Processing
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Overview

OpenMP is a portable (v. 1.0 1997, v.  5.1 -2020), scalable model and API 
that gives programmers a simple and flexible interface for developing 
parallel applications for platforms ranging from the desktop to the 
supercomputer. 

Produced by a large consortium, suh as AMD, Cray, Fujitsu, HP, IBM, Intel, 
or NVIDIA
• Languages: C, C++, Fortran, Python, etc.
• OS: Linux, Windows, etc.

Tutorial: computing.llnl.gov/tutorials/openMP
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Compilers

• GCC ( -fopenmp)
• clang( -fopenmp)/LLVM (Low-Level Virtual Machine)
• Intel Classic and Next-gen Compilers 
• AOCC(AMD Optimizing C/C++ Compiler), AOMP (AMD 

Optimizing Multi-Processing Compiler), 
• ROCmCC (Radeon Open Compute C Compiler)
• IBM XL (-qsmp=omp )
• … and many more



Slide 14

Aims

• Standards for variety of shared 
memory architectures/platforms. Standardization

• A simple and limited set of 
directives. Lean and Mean

• Capability to incrementally 
parallelize a serial programEase of Use

• Fortran, C, and C++ 
Portability

Runtime 
Library 

(threads 
in OS)

Application 
(directive 
compiler)

Environment 
variables 

(use)



Slide 15

Execution Model – Fork/Join
• Initially only master thread is active.
• Master thread executes sequential code.
• Fork: Master thread creates or awakens additional threads to 

execute parallel code.
• Join: At end of parallel code created threads die or are 

suspended.
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Parallel programming
Matrix product(N×N)
• spawn T threads
• Each thread computes N/T rows of the resultmatrix
• the computations performed by each thread are logically 

independent from the others

Sum of the elements of a (N×N) matrix
• Result is a scalar
• Spawn T threads
• Each thread computes the sum of N/T rows
• One thread computes the sum of the results of the other threads
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Standard C
#include <stdio.h>
#include <time.h>
#include <omp.h>
void simulate (int steps)  {
double result = 0.0; 
for (int i = 0; i < steps; i++) { 
result += i * i; 
} 
printf("Result: %f\n", result); 
}
main() {
int steps = 10000000000;; 
double start_time, end_time;
start_time = omp_get_wtime(); 
simulate(steps); 
end_time = omp_get_wtime(); 
printf("Time with 1 processor: %f seconds\n", end_time - start_time); 
}

gcc –fopenmp – o single single.c
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Syntax

C/C++
• #pragma omp construct [clause [clause ] . . . ] 

F77 
• C$OMP construct [clause [clause ] . . . ] 

F90 
• !$OMP construct [clause [clause ] . . . ]
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Accessing Library Functions
• C/C++
#include <omp.h>
. . . 
void omp_set_num_threads (int num_threads);  
• F77  
include "omp_lib.h" 
. . . 
call omp_set_num_threads (num_threads) ; 
• F90  
USE omp_lib 
. . . 
call omp_set_num_threads (num_threads) ; 
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Timing Functions
• C/C++
double omp_get_wtime (void) 
double omp_get_wtick (void) 

• Fortran  
double precision function OMP_GET_WTIME () 
double precision function OMP_GET_WTICK () 
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Standard C
#include <stdio.h>
#include <time.h>
#include <omp.h>
void simulate (int steps)  {
double result = 0.0;
#pragma omp parallel for reduction(+:result) 
for (int i = 0; i < steps; i++) { 
result += i * i; 
} 
printf("Result: %f\n", result); 
}
main() {
int steps = 10000000000;; 
double start_time, end_time;
start_time = omp_get_wtime(); 
omp_set_num_threads(2); 
simulate(steps); 
end_time = omp_get_wtime(); 
printf("Time with 2 processor: %f seconds\n", end_time - start_time); 
}

gcc –fopenmp – o myexecutable myprogram.c
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OpenMP 
Environmental 

Variables
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Get Variables
There are 17 different library routines, we will cover just a few 
of them now. 
• int omp_get_max_threads (void)  - maximum number of 

threads that the run-time system will let our program create.
• int omp_get_num_procs (void) - the number of processors the 

parallel program can use.
• int omp_get_num_threads (void) - the number of threads that 

are currently active. 
• int omp_get_thread_num (void) - retums the thread's 

identification number. If there are n active threads. the thread 
identification numbers range from 0 to n-1
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Set Variables

• void omp_set_num_threads { int t /* :--Tumber of threads desired 
*/ } -  Sets the desired number of parallel threads for subsequent 
executions of parallel regions. The number of threads may exceed 
the number of available processors, in which case multiple threads 
may be mapped to the same processor. This call must be made 
from a serial portion of a program.

• void omp_ set_dynamic (int k  / i = ON, 0 = FALSE / - It used to 
enable or disable dynamic threads. If dynamic threads are enabled, 
the run-time system may adjust the number of active threads to the 
humber of physical processors available.
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Get & Set

The value of an environment variable called OMP_NUM_THREADS provides 
a default number of threads for parallel sections of code.

In Unix script we can write:

export OMP_NUM_THREADS = Number

int num_threads;
num_threads = omp_get_num_procs ();
omp_set_num_threads(num_threads);
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OpenMP Directives
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Parallel
#pragma omp parallel - the code inside the region is executed 
by multiple threads.

main() {

int i,n;

for (i=0; i<=n; i++) {
               sum = sum+i; 

   }
}
return 0;
}

#include <omp.h>
main() {

int i,n=10, sum=0;
#pragma omp parallel 
{
for (i=0; i<=n; i++) {
               sum = sum+i; 
   }
printf (“1\n”);
}
return 0;
}
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Parallel for
• #pragma omp parallel for  - parallelizing loops. It allows the 

iterations of a loop to be executed concurrently across multiple 
threads, distributing the workload among the available processor 
cores

main() {

int i;
for (i=0; i<=n; i++) {
               sum = 
sum+i; 

   }
return 0;
}

#include <omp.h>
main() {

int i,n=10, sum=0;
#pragma omp parallel for
for (i=0; i<=n; i++) {
               sum = sum+i; 
   }
printf (“1\n”);

return 0;
}
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Loop scheduling  - static
#pragma omp parallel for schedule(static[, chunk]) - divides the 
iteration space of a parallel loop into blocks of a specified size. These 
blocks are then assigned to threads in a round-robin fashion. 

Suppose you have a loop with 100 iterations that you want to 
parallelize using OpenMP with 4 threads.
If you use a static schedule with a chunk size of 10, each thread will be 
assigned a block of 10 iterations statically. So, thread 1 will handle 
iterations 0-9, thread 2 will handle iterations 10-19, and so on. This 
allocation is fixed at the beginning and remains the same throughout 
the loop.
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Loop scheduling  - dynamic
#pragma omp parallel for schedule(dynamic[, chunk]) - divides 
the iteration space into blocks of a specified size (or 1 if not specified). 
These blocks are dynamically scheduled to threads in the order in 
which threads finish processing previous blocks. This means that 
threads may receive new blocks of iterations as they become available, 
allowing for better load balancing.

With a dynamic schedule and a chunk size of 10, the iterations will be 
dynamically distributed among the threads. Initially, each thread might receive a 
block of 10 iterations. But as threads finish their work, they will request more 
work from the pool of remaining iterations. So, if thread 1 finishes its block early, 
it might request another block of iterations to work on, and so forth.
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Loop scheduling  - guided
#pragma omp parallel for schedule(guided[, chunk]) - similar to 
dynamic schedule, but the size of the blocks decreases dynamically 
over time. Initially, larger blocks are assigned to threads, but as the 
computation progresses, the block size decreases. This can be useful 
for balancing load in situations where the workload per iteration may 
vary. 

In guided scheduling, the block size decreases over time. Initially, larger blocks 
of iterations are assigned to threads, but as threads finish their work, the block 
size decreases. For example, if the initial chunk size is 50, thread 1 might get 
iterations 0-49, thread 2 might get iterations 50-99, but as threads finish their 
work, subsequent blocks might be smaller, like 25 or 10 iterations each.
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Barrier
#pragma omp barrier – useful for I/O, memory allocation and 
deallocation, implementation of the single-creator parallel-
executor pattern

• Threads wait until all threads of the current Team have reached 
the barrier

• All work sharing constructs contain an implicit barrier at the 
end 

#pragma omp barrier        
 printf("Thread %d: After barrier, sum = %d\n", thread_id, 
sum);
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Critical
• #pragma omp critical - specifies a critical section of code that 

can only be executed by one thread at a time. Used to avoid 
race conditions.

#pragma omp parallel { 
   int thread_sum = 0; 
   #pragma omp for for (int i = 0; i < 10; ++i) { 
      thread_sum += i; 
} // Critical section ensures that only one thread at a time can update the shared 
'sum' variable 
#pragma omp critical 
sum += thread_sum; 
}
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Atomic 
• #pragma omp atomic - specifies that a variable update 

should be performed atomically, without interference from 
other threads. It's typically used for simple operations like 
incrementing or updating a shared variable. 

#pragma omp parallel {
  #pragma omp for for (int i = 0; i < 10; ++i) { 
      #pragma omp atomic 
     sum += i; 
    } 
}
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Section and Sections
• #pragma omp section - Specifies a section of code in a 

sections directive.
• #pragma omp sections - divides the enclosed code into 

sections, each of which is executed by one thread.
#pragma omp parallel { 
    #pragma omp sections { 
       // Section 1: executed by one thread 
     #pragma omp section {} 
     // Section 2: executed by another thread 
    #pragma omp section {} 
}
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Single
• #pragma omp single
imposes that only one of the existing threads performs the 
following computation (impossible to choose which one though)
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Reduction
• #pragma omp reduction - Specifies a reduction operation for a 

variable in a parallel loop. Reduction operations typically involve 
combining values from multiple threads into a single result. Common 
reduction operations include summing elements of an array, finding 
the maximum or minimum value, or performing bitwise operations 
like bitwise AND or OR.

#pragma omp parallel{
    #pragma omp for reduction(operator:variable)
    for (int i = 0; i < n; ++i) {
        // Loop body
    }
}
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Data sharing
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Shared vs private
• Shared: Shared data is a single copy in memory that all 

threads can access. This allows for data to be visible and 
accessible to all threads, enabling them to read and write to 
the same memory locations.

• Private: Private data is data that is unique to each thread, 
with each thread having its own copy of the data. This data is 
placed in the thread's stack, so other threads cannot access 
it. As a result, the same private data can hold different values 
for each thread since each thread works with its own isolated 
copy.
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Implicit rules

• Shared – declared outside 
of a parallelsection (e.g. n)

• Private - loop iteration 
variables are automatically 
cast as private by the 
compiler (e.g. i)

• Private – declared inside a 
parallelsection are 
private(e.g. sum)

int i=0;
Int n=10;

#pragma omp parallel for
for (i=0; i<=n; i++) {
             int  sum = sum+i; 

   }
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Shared vs private
• shared(<variables list>) clause

#pragma omp parallel shared(a)
{
… // a is shared by all threads
}

• private(<variables list>) clause

#pragma omp parallel private(b)
{
…  // each thread has its own uninitialized copy of b
}
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Book References

https://www.openmp.org/resources/openmp-books/
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