
Slide 1

Shared and
Dsitrbuted
Memory

Programming
Dr. Hrachya Astsatryan,
Institute for Informatics and Automation Problems,
National Academy of Sciences of Armenia,
E-mail: hrach@sci.am

Slide 2

INTRODUCTION TO
THREADING

1

Slide 3

Sequential Programming
Single processor has access certain amount of memory.

Processor

Interconnect

Memory

Slide 4

Shared Memory Programming
Multiple CPUs/cores share access to a global memory space via a high-speed memory bus. This
global memory space allows the processors to efficiently exchange or share access to data.

Processor

Processor unit

Processor

Processor unit

Processor

Processor unit

Processor

Processor unit

Interconnect

Memory

Thread 0 Thread 1 Thread 2 Thread 3

Slide 5

Shared Memory Programming
Multiple CPUs/cores share access to a global memory space via a high-speed memory bus. This
global memory space allows the processors to efficiently exchange or share access to data.

Processor

Processor unit

Processor

Processor unit

Processor

Processor unit

Processor

Processor unit

Interconnect

Memory

Thread 0 Thread 1 Thread 2 Thread 3

0xAA0032FF

0xFA0032FA

Slide 6

Hyperthreading
Simultaneous multithreading (SMT) and Hyper-Threading (HT) are technologies that enable
more efficient utilization of processor resources by allowing multiple threads to run on a
single physical core simultaneously.

The ability to switch between these threads creates an illusion of simultaneous execution,
although at any given time the CPU is processing only one thread per core.

Technologies like Intel's Hyper-Threading allow the processor to issue instructions from
multiple threads in a single cycle requiring complex control logic to manage instruction
dependencies and allocate resources among threads.

Slide 7

Hyperthreading: pros & cons
Advantages
• better utilization of CPU resources
• reducing idle time
• handling multiple threads concurrently

Drawbacks
• resource contention often sharing the same hardware resources like caches and

translation lookaside buffers. As threads compete for the same resources, potentially
causing performance degradation

• More power consumption by keeping additional hardware resources active to support
simultaneous thread execution

• Security Concerns such as side-channel attacks, where one thread may exploit shared
resources to gain unauthorized access to sensitive information from another thread

Slide 8

CPU caches

Memory

L2 Cache

L3/4 Cache

L1 Cache
CPU

Slow

Big

Fast

Small

During each read query, it is first
checked in CPU’s L1 cache, if it is
found then returned, else check L2
cache and so on till L3 cache or L4
cache

Slide 9

CPU caches
• CPU cache stores

frequently
accessed data
and instructions,
enabling the
processor to
retrieve this
information
quickly when
needed.

Processor
Core 1

L1

L3

L2

Core 2

L1

L2

Core 3

L1

L2

Core n

L1

L2

RAM

CPU caches

Slide 10

Shared Memory programming

• Determine the
number of processors:

• cat /proc/cpuinfo
• nproc
• lscpu

Slide 11

OpenMP - Open
Multi-Processing

2

Slide 12

Overview

OpenMP is a portable (v. 1.0 1997, v. 5.1 -2020), scalable model and API
that gives programmers a simple and flexible interface for developing
parallel applications for platforms ranging from the desktop to the
supercomputer.

Produced by a large consortium, suh as AMD, Cray, Fujitsu, HP, IBM, Intel,
or NVIDIA
• Languages: C, C++, Fortran, Python, etc.
• OS: Linux, Windows, etc.

Tutorial: computing.llnl.gov/tutorials/openMP

Slide 13

Compilers

• GCC (-fopenmp)
• clang(-fopenmp)/LLVM (Low-Level Virtual Machine)
• Intel Classic and Next-gen Compilers
• AOCC(AMD Optimizing C/C++ Compiler), AOMP (AMD

Optimizing Multi-Processing Compiler),
• ROCmCC (Radeon Open Compute C Compiler)
• IBM XL (-qsmp=omp)
• … and many more

Slide 14

Aims

• Standards for variety of shared
memory architectures/platforms. Standardization

• A simple and limited set of
directives. Lean and Mean

• Capability to incrementally
parallelize a serial programEase of Use

• Fortran, C, and C++
Portability

Runtime
Library

(threads
in OS)

Application
(directive
compiler)

Environment
variables

(use)

Slide 15

Execution Model – Fork/Join
• Initially only master thread is active.
• Master thread executes sequential code.
• Fork: Master thread creates or awakens additional threads to

execute parallel code.
• Join: At end of parallel code created threads die or are

suspended.

Master

Fork

Fork

Fork

Fork Join Master

Fork

Fork

Fork

Fork

Slide 16

Parallel programming
Matrix product(N×N)
• spawn T threads
• Each thread computes N/T rows of the resultmatrix
• the computations performed by each thread are logically

independent from the others

Sum of the elements of a (N×N) matrix
• Result is a scalar
• Spawn T threads
• Each thread computes the sum of N/T rows
• One thread computes the sum of the results of the other threads

Slide 17

Standard C
#include <stdio.h>
#include <time.h>
#include <omp.h>
void simulate (int steps) {
double result = 0.0;
for (int i = 0; i < steps; i++) {
result += i * i;
}
printf("Result: %f\n", result);
}
main() {
int steps = 10000000000;;
double start_time, end_time;
start_time = omp_get_wtime();
simulate(steps);
end_time = omp_get_wtime();
printf("Time with 1 processor: %f seconds\n", end_time - start_time);
}

gcc –fopenmp – o single single.c

Slide 18

Syntax

C/C++
• #pragma omp construct [clause [clause] . . .]

F77
• C$OMP construct [clause [clause] . . .]

F90
• !$OMP construct [clause [clause] . . .]

Slide 19

Accessing Library Functions
• C/C++
#include <omp.h>
. . .
void omp_set_num_threads (int num_threads);
• F77
include "omp_lib.h"
. . .
call omp_set_num_threads (num_threads) ;
• F90
USE omp_lib
. . .
call omp_set_num_threads (num_threads) ;

Slide 20

Timing Functions
• C/C++
double omp_get_wtime (void)
double omp_get_wtick (void)

• Fortran
double precision function OMP_GET_WTIME ()
double precision function OMP_GET_WTICK ()

Slide 21

Standard C
#include <stdio.h>
#include <time.h>
#include <omp.h>
void simulate (int steps) {
double result = 0.0;
#pragma omp parallel for reduction(+:result)
for (int i = 0; i < steps; i++) {
result += i * i;
}
printf("Result: %f\n", result);
}
main() {
int steps = 10000000000;;
double start_time, end_time;
start_time = omp_get_wtime();
omp_set_num_threads(2);
simulate(steps);
end_time = omp_get_wtime();
printf("Time with 2 processor: %f seconds\n", end_time - start_time);
}

gcc –fopenmp – o myexecutable myprogram.c

Slide 22

OpenMP
Environmental

Variables

3

Slide 23

Get Variables
There are 17 different library routines, we will cover just a few
of them now.
• int omp_get_max_threads (void) - maximum number of

threads that the run-time system will let our program create.
• int omp_get_num_procs (void) - the number of processors the

parallel program can use.
• int omp_get_num_threads (void) - the number of threads that

are currently active.
• int omp_get_thread_num (void) - retums the thread's

identification number. If there are n active threads. the thread
identification numbers range from 0 to n-1

Slide 24

Set Variables

• void omp_set_num_threads { int t /* :--Tumber of threads desired
*/ } - Sets the desired number of parallel threads for subsequent
executions of parallel regions. The number of threads may exceed
the number of available processors, in which case multiple threads
may be mapped to the same processor. This call must be made
from a serial portion of a program.

• void omp_ set_dynamic (int k / i = ON, 0 = FALSE / - It used to
enable or disable dynamic threads. If dynamic threads are enabled,
the run-time system may adjust the number of active threads to the
humber of physical processors available.

Slide 25

Get & Set

The value of an environment variable called OMP_NUM_THREADS provides
a default number of threads for parallel sections of code.

In Unix script we can write:

export OMP_NUM_THREADS = Number

int num_threads;
num_threads = omp_get_num_procs ();
omp_set_num_threads(num_threads);

Slide 26

OpenMP Directives

4

Slide 27

Parallel
#pragma omp parallel - the code inside the region is executed
by multiple threads.

main() {

int i,n;

for (i=0; i<=n; i++) {
 sum = sum+i;

 }
}
return 0;
}

#include <omp.h>
main() {

int i,n=10, sum=0;
#pragma omp parallel
{
for (i=0; i<=n; i++) {
 sum = sum+i;
 }
printf (“1\n”);
}
return 0;
}

Slide 28

Parallel for
• #pragma omp parallel for - parallelizing loops. It allows the

iterations of a loop to be executed concurrently across multiple
threads, distributing the workload among the available processor
cores

main() {

int i;
for (i=0; i<=n; i++) {
 sum =
sum+i;

 }
return 0;
}

#include <omp.h>
main() {

int i,n=10, sum=0;
#pragma omp parallel for
for (i=0; i<=n; i++) {
 sum = sum+i;
 }
printf (“1\n”);

return 0;
}

Slide 29

Loop scheduling - static
#pragma omp parallel for schedule(static[, chunk]) - divides the
iteration space of a parallel loop into blocks of a specified size. These
blocks are then assigned to threads in a round-robin fashion.

Suppose you have a loop with 100 iterations that you want to
parallelize using OpenMP with 4 threads.
If you use a static schedule with a chunk size of 10, each thread will be
assigned a block of 10 iterations statically. So, thread 1 will handle
iterations 0-9, thread 2 will handle iterations 10-19, and so on. This
allocation is fixed at the beginning and remains the same throughout
the loop.

Slide 30

Loop scheduling - dynamic
#pragma omp parallel for schedule(dynamic[, chunk]) - divides
the iteration space into blocks of a specified size (or 1 if not specified).
These blocks are dynamically scheduled to threads in the order in
which threads finish processing previous blocks. This means that
threads may receive new blocks of iterations as they become available,
allowing for better load balancing.

With a dynamic schedule and a chunk size of 10, the iterations will be
dynamically distributed among the threads. Initially, each thread might receive a
block of 10 iterations. But as threads finish their work, they will request more
work from the pool of remaining iterations. So, if thread 1 finishes its block early,
it might request another block of iterations to work on, and so forth.

Slide 31

Loop scheduling - guided
#pragma omp parallel for schedule(guided[, chunk]) - similar to
dynamic schedule, but the size of the blocks decreases dynamically
over time. Initially, larger blocks are assigned to threads, but as the
computation progresses, the block size decreases. This can be useful
for balancing load in situations where the workload per iteration may
vary.

In guided scheduling, the block size decreases over time. Initially, larger blocks
of iterations are assigned to threads, but as threads finish their work, the block
size decreases. For example, if the initial chunk size is 50, thread 1 might get
iterations 0-49, thread 2 might get iterations 50-99, but as threads finish their
work, subsequent blocks might be smaller, like 25 or 10 iterations each.

Slide 32

Barrier
#pragma omp barrier – useful for I/O, memory allocation and
deallocation, implementation of the single-creator parallel-
executor pattern

• Threads wait until all threads of the current Team have reached
the barrier

• All work sharing constructs contain an implicit barrier at the
end

#pragma omp barrier
 printf("Thread %d: After barrier, sum = %d\n", thread_id,
sum);

Slide 33

Critical
• #pragma omp critical - specifies a critical section of code that

can only be executed by one thread at a time. Used to avoid
race conditions.

#pragma omp parallel {
 int thread_sum = 0;
 #pragma omp for for (int i = 0; i < 10; ++i) {
 thread_sum += i;
} // Critical section ensures that only one thread at a time can update the shared
'sum' variable
#pragma omp critical
sum += thread_sum;
}

Slide 34

Atomic
• #pragma omp atomic - specifies that a variable update

should be performed atomically, without interference from
other threads. It's typically used for simple operations like
incrementing or updating a shared variable.

#pragma omp parallel {
 #pragma omp for for (int i = 0; i < 10; ++i) {
 #pragma omp atomic
 sum += i;
 }
}

Slide 35

Section and Sections
• #pragma omp section - Specifies a section of code in a

sections directive.
• #pragma omp sections - divides the enclosed code into

sections, each of which is executed by one thread.
#pragma omp parallel {
 #pragma omp sections {
 // Section 1: executed by one thread
 #pragma omp section {}
 // Section 2: executed by another thread
 #pragma omp section {}
}

Slide 36

Single
• #pragma omp single
imposes that only one of the existing threads performs the
following computation (impossible to choose which one though)

Slide 37

Reduction
• #pragma omp reduction - Specifies a reduction operation for a

variable in a parallel loop. Reduction operations typically involve
combining values from multiple threads into a single result. Common
reduction operations include summing elements of an array, finding
the maximum or minimum value, or performing bitwise operations
like bitwise AND or OR.

#pragma omp parallel{
 #pragma omp for reduction(operator:variable)
 for (int i = 0; i < n; ++i) {
 // Loop body
 }
}

Slide 38

Data sharing

5

Slide 39

Shared vs private
• Shared: Shared data is a single copy in memory that all

threads can access. This allows for data to be visible and
accessible to all threads, enabling them to read and write to
the same memory locations.

• Private: Private data is data that is unique to each thread,
with each thread having its own copy of the data. This data is
placed in the thread's stack, so other threads cannot access
it. As a result, the same private data can hold different values
for each thread since each thread works with its own isolated
copy.

Slide 40

Implicit rules

• Shared – declared outside
of a parallelsection (e.g. n)

• Private - loop iteration
variables are automatically
cast as private by the
compiler (e.g. i)

• Private – declared inside a
parallelsection are
private(e.g. sum)

int i=0;
Int n=10;

#pragma omp parallel for
for (i=0; i<=n; i++) {
 int sum = sum+i;

 }

Slide 41

Shared vs private
• shared(<variables list>) clause

#pragma omp parallel shared(a)
{
… // a is shared by all threads
}

• private(<variables list>) clause

#pragma omp parallel private(b)
{
… // each thread has its own uninitialized copy of b
}

Slide 42

Book References

https://www.openmp.org/resources/openmp-books/

	Shared and Dsitrbuted Memory Programming
	1
	Sequential Programming
	Shared Memory Programming
	Shared Memory Programming (2)
	Hyperthreading
	Hyperthreading: pros & cons
	CPU caches
	CPU caches (2)
	Shared Memory programming
	2
	Overview
	Compilers
	Aims
	Execution Model – Fork/Join
	Parallel programming
	Standard C
	Syntax
	Accessing Library Functions
	Timing Functions
	Standard C (2)
	3
	Get Variables
	Set Variables
	Get & Set
	4
	Parallel
	Parallel for
	Loop scheduling - static
	Loop scheduling - dynamic
	Loop scheduling - guided
	Barrier
	Critical
	Atomic
	Section and Sections
	Single
	Reduction
	5
	Shared vs private
	Implicit rules
	Shared vs private (2)
	Book References

