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Benefits

• Each processor has its memory, creating 
isolated memory spaces across the system.

• Data communication between processors occurs through a 
fabric, requiring explicit send and receive operations.

• Communication between processors involves manual 
coordination, with programmers specifying the data to be sent 
and received.

• Synchronization between processors is directly tied to 
communication, meaning data synchronization occurs 
automatically when a receive operation completes.
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Distributed Memory Programming Paradigm

Communication Network

Each node has rapid access to its own local memory and access to the 
memory of other nodes via some sort of communications network
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Message Passing 
Interface (MPI)
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MPI
The MPI is a message passing library standard based on the consensus of the MPI 
Forum, which has over 40 participating organizations, including vendors, 
researchers, software library developers, and users. 
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Usage benefits

• Supports wide variety of platforms including support for 
heterogeneous parallel architectures.

• Provides source code portability. MPI programs should compile 
and run as-is on any platform.

• Debugging
• Dynamic process management. More control over data location 

and flow within a parallel application
• A great deal of functionality, including a number of different 

types of functions
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Basic futures
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MPI Implementations: OpenMPI

The Open MPI Project is an open source MPI 
implementation that is developed and maintained by a 
consortium of academic, research, and industry partners. 
Open MPI is therefore able to combine the expertise, 
technologies, and resources from all across the High 
Performance Computing community in order to build the 
best MPI library available.
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MPI Implementations: MPICH
MPICH is a high performance and widely portable 
implementation of MPI standard too. MPICH and its 
derivatives form the most widely used implementations 
of MPI in the world. They are used exclusively on nine of 
the top 10 supercomputers (June 2015 ranking), 
including the world’s fastest supercomputer: Tianhe-2.
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MPI Implementations
• OpenMPI Java - provides Java bindings for MPI, allowing Java programmers to 

develop parallel and distributed applications using the MPI standard for 
communication and synchronization.

• MPI4Py - Python interface to the MPI standard, enabling Python developers to 
create parallel and distributed applications using MPI functionality, such as 
point-to-point communication, collective operations, and process management.

• others
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Alternatives
• OpenSHMEM - programming model designed for partitioned global address 

space (PGAS) architectures.
• Coarray Fortran - extends Fortran with a SPMD parallel programming model, 

allowing for simple syntax for parallelism without requiring explicit message 
passing.

• Unified Parallel C (UPC) - extension of the C programming language that 
provides a shared memory programming model for distributed memory 
architectures, facilitating parallel programming.

• Chapel - parallel programming language developed by Cray, designed for 
productivity and performance on large-scale systems, featuring a 
multithreaded execution model and support for task parallelism.

• X10 - high-performance programming language designed for parallel 
computing, featuring constructs for parallelism, distribution, and asynchrony.
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Starting MPI
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Serial C: Hello

#include <stdio.h>

main (int argc, char *argv[]) 

{

printf("Hello world!\n");

}
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MPI Structure
MPI Include 

file main ()

Initialize MPI 
environment

Message 
Passing & 

work

Terminate 
MPI 

environment
Program end
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MPI: Include library
#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[]) 
{

printf("Hello world!\n");
return 0;

}
Every C/C++ MPI program must include the MPI header file (which 
contains the MPI function type declarations)
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MPI: Initialize and Terminate 
Statement needed in every program before any other MPI 
code. accepts the argc and argv variables that are provided as 
arguments to main  
• MPI_Init (&argc, &argv);  - initializes MPI environment ( first 

statement of the program)

Last statement of MPI code must be. Program will not 
terminate without this statement 
• MPI_Finalize();   - cleans up the MPI environment. No other 

MPI routine can be called after this call
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MPI: C
#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[]) 
{
int error;
error = MPI_Init(&argc, &argv);

printf("Hello world!\n");
error = MPI_Finalize();
return 0;
}
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MPI: Compilation
mpicc -o first first.c 

Compiler Language Script Name
GNU C mpicc
Intel C mpiicc
PGI C mpipgcc
GNU C++ mpiCC
Intel C++ mpiicpc
PGI C++ mpipgCC
GNU Fortran mpif77
Intel Fortran mpiifort
PGI Fortran Mpipgf77/mpipgf90
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MPI execution
mpirun, and mpiexec  execute both serial and parallel jobs. 
(/usr/lib64/mpich/bin/)

• mpirun [ options ] <program> [ <args> ]

• -np  (-n in case of mpiexec) - run this many copies of the 
program on the given nodes 

• -hosts wn1,wn2, etc..
• -hostfile
• wn1:2
• wn2:2
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Identifying 
processors
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Groups

A group is an ordered set of processes 
• Each process is associated with a rank 
• Ranks are contiguous and start from zero 

• Groups allow collective operations to work on a subset of 
processes.

Ranks also used to specify source and destination of 
communications.
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Communicator

• A communicator can be thought of as a handle to an object 
(group attribute) that describes a group of processes 

• An intracommunicator is used for communication within a single 
group 

• An intercommunicator is used for communication between 2 
disjoint groups 
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MPI_COMM_WORLD - 
predefined communicator 
that includes all MPI 
processes
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MPI_Comm_rank
• Returns the rank of the calling MPI process within the specified 

communicator. 

• Initially, each process will be assigned a unique integer rank 
between 0 and number of tasks - 1 within the communicator 
MPI_COMM_WORLD. 

• If a process becomes associated with other communicators, it 
will have a unique rank within each of these as well.

MPI_Comm_rank (comm,rank);
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MPI_Comm_rank
#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[]) 
{
int error, rank;
error = MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

printf(”The current process ID is %d \n”, rank);

error = MPI_Finalize();
return 0;
}
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MPI_Comm_size

• Returns the total number of MPI processes in the specified 
communicator, such as MPI_COMM_WORLD. If the 
communicator is MPI_COMM_WORLD, then it represents the 
number of MPI tasks available to your application.

MPI_Comm_size (comm,rank);
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MPI_Comm_size
#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[]) 
{
int error, rank, size;
error = MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf(”The current process ID is %d from %d\n”,rank, size);

error = MPI_Finalize();
return 0;
}
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MPI Com. & Groups

Returns the version and subversion of the MPI standard 
that's implemented by the library.

• MPI_Get_version (&version,&subversion)

• MPI_Get_processor_name obtains the actual name of the 
processor on which the process is executing.

• MPI_Get_processor_name(processor_name, &name_len);
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MPI_Comm_size
#include <mpi.h>
#include <stdio.h>
int main (int argc, char *argv[]) {
int error, rank, size, version, subversion;
char processor_name[MPI_MAX_PROCESSOR_NAME];
int name_len;
error = MPI_Init(&argc, &argv);
MPI_Get_version (&version,&subversion);
MPI_Get_processor_name(processor_name, &name_len);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf ("version=%d, subversion=%d\n", version, subversion);
printf(”The current process ID is %d from %d from processor %s\n”, 
rank, size, processor_name);
error = MPI_Finalize(); return 0;
}
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MPI Com. & Groups: MPI_Wtime () 

• MPI_Wtime () - Returns an elapsed wall clock 
time in seconds (double precision) on the 
calling processor.
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MPI Com. & Groups: MPI_Wtime () 
#include <mpi.h>
#include <stdio.h>
main (int argc, char *argv[]) {
int error, rank, size;
double starttime, endtime;
error = MPI_Init(&argc, &argv);
starttime = MPI_Wtime();
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf(”The current process ID is %d from %d\n”,rank, size);
endtime   = MPI_Wtime(); 
printf("The execution is took %f seconds\n",endtime-
starttime); 
error = MPI_Finalize();
}
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First 
communications: 

point to point
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Source and Destination

Communication Network

 Sender (source)  Receiver (destination)

Pending messages challenges ? 
Where is the data?
What type of data?

How much data is sent?
To whom is the data sent?

How does the receiver know which data to collect?
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Message

• source - the sending process
• destination - the receiving process
• communicator - specifies a group of processes to which 

both source and destination belong
• tag - used to classify messages. For example, one tag value 

can be used for messages containing data and another tag 
value for messages containing status information

envelope 
+ 

message body
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Message body

Buffer - the 
message data;

Datatype - the 
type of the 

message data;

Count - the 
number of items 
of type datatype 

in buffer.

• For example the buffer can be an array, where the dimension is given 
by count, and the type of the array elements is given by datatype. 

• Using datatypes and counts, rather than bytes and bytecounts, allows 
structured data and noncontiguous data to be handled smoothly.
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Send Message

• int MPI_Send(void *buf, int count, MPI_Datatype dtype, int dest, int 
tag, MPI_Comm comm);

• All arguments are input arguments. An error code is returned by the 
function.

Envelope
•Destination
•Tag
•Communicator

Body
•Buffer
•Count
•datatype

MPI_Send
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Receive Message

• int MPI_Recv(void *buf, int count, MPI_Datatype dtype, int source, int tag, 
MPI_Comm comm, MPI_Status *status);

• buf and status are output arguments; the rest are inputs. An error code is 
returned by the function.

• * - for the source (accept a message from any process) and the tag 
(accept a message with any tag value). If wildcards are not used, the call 
can accept messages from only the specified sending process, and with 
only the specified tag value. Communicator wildcards are not available.

Envelope
• Destination
• Tag
• Communicator

Body
• Buffer
• Count
• datatype

status MPI_Recv
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send/recv example
#include <mpi.h>
#include <stdio.h>
int main (int argc, char *argv[])  {
int error, rank,i;
MPI_Status status;
double myarray[80];
for (i=0;i<80;i=i+1) myarray[i]=i;
error = MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if( rank == 0 ) MPI_Send(myarray, 80, MPI_DOUBLE, 1, 11, 
MPI_COMM_WORLD);
else if( rank == 1 )  {
MPI_Recv(myarray, 80, MPI_DOUBLE, 0, 11, MPI_COMM_WORLD, 
&status);
printf ("%f\n",myarray[50]); }
error = MPI_Finalize();
return 0;
}
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send/recv deadlock
#include <mpi.h>
#include <stdio.h>
int main (int argc, char *argv[])  {
int error, rank,i;
MPI_Status status;
double myarray[80];
for (i=0;i<80;i=i+1) myarray[i]=i;
error = MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if( rank == 0 ) {MPI_Recv(myarray, 80, MPI_DOUBLE, 0, 11, 
MPI_COMM_WORLD, &status);
MPI_Send(myarray, 80, MPI_DOUBLE, 1, 11, MPI_COMM_WORLD);}
else if( rank == 1 )  {
MPI_Recv(myarray, 80, MPI_DOUBLE, 0, 11, MPI_COMM_WORLD, 
&status);
printf ("%f\n",myarray[50]); }
error = MPI_Finalize();
return 0;
}
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Send Message

Memory usage/speed up?

MPI Buffer and 
transfer later 

on

Left program's 
variables, until 

the
destination 
receives it

MPI_Send

Complete

Initiate
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send nonblocking
• int MPI_Isend(void *buf, int count, MPI_Datatype dtype, int dest, int tag, 

MPI_Comm comm, MPI_Request *request);

• The request handle identifies the send operation that was posted. The request 
handle can be used to check the status of the posted send or to wait for its 
completion.

• None of the arguments passed to MPI_ISEND should be read or written until 
the send operation it invokes is completed.

Complete

Initiate
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receive nonblocking
int MPI_Irecv(void *buf, int count, MPI_Datatype dtype, int source, int tag, 
MPI_Comm comm, MPI_Request *request);

The request handle identifies the send operation that was posted. The 
request handle can be used to check the status of the posted recv or to 
wait for its completion.

None of the arguments passed to MPI_Irecv should be read or written 
until the send operation it invokes is completed.

Complete

Initiate
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Complete

MPI_ISEND or MPI_IRECV can subsequently wait for the 
posted operation to complete by calling MPI_WAIT

int MPI_Wait( MPI_Request *request, MPI_Status *status );

a request handle (returned when the send or receive was posted)

for receive, information on the message received; for send, may contain 
an error code

Complete

Initiate
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Send modes
Standard

• MPI internal buffer and transferred asynchronously to the destination process, or the source 
and destination processes synchronize on the message. 

Synchronous
• the sending process may assume the destination process has begun receiving the message. 

The destination process need not be done receiving the message, but it must have begun 
receiving the message.

Ready
• a matching receive has already been posted at the destination process before ready mode 

send is called. If a matching receive has not been posted at the destination, the result is 
undefined

Buffered
• requires MPI to use buffering

A receiving process can use the same call to MPI_RECV or MPI_IRECV, regardless of the send mode used 
to send the message.
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Send

Send Mode Blocking 
Function

Nonblocking 
Function

Standard (will complete when buffer is 
available for use)

MPI_SEND MPI_ISEND

Synchronous (will complete only until a 
matching receive has been posted and 
transfer has started)

MPI_SSEND MPI_ISSEND

Ready (send starts only if a matching 
receive has been posted )

MPI_RSEND MPI_IRSEND

Buffered (as soon as the user buffer is 
copied to the system buffer )

MPI_BSEND MPI_IBSEND
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Collective 
communications
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Overview
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MPI_COMM_WORLD - 
predefined communicator that 
includes all MPI processes

Collective communication routines 
transmit data among all processes in 
a group.
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Stop processes until all processes within a communicator reach the barrier, which is 
useful for different cases, such as in measuring the performance

int MPI_Barrier (MPI_Comm comm )

Barrier

P0

P1
P2

P3

Barrier

P0 P1 P2 P3

Barrier

P0 P1
P2

P3
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Enables to copy data from the memory of the root processor to the same memory locations for 
other processors in the communicator.

int MPI_Bcast ( void* buffer, int count, MPI_Datatype datatype, int rank, MPI_Comm comm )

Broadcast

AP0

P1

P2

P3

AP0

AP1

AP2

AP3



Slide 51

Reduce

MPI_Reduce

collect data 
from each 
processor

reduce 
these data 
to a single 

value

store the 
reduced 

result on the 
root 

processor
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Reduce

MPI_REDUCE combines the elements provided in the send buffer, applies the specified 
operation (sum, min, max, ...), and returns the result to the receive buffer of the root process.

A0P0

A1P1

A2P2

A3P3

A su
m

P0

AP1

AP2

AP3

A0+A1+A2+A3
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Reduce
Operation Description
MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bit-wise and
MPI_LOR logical or
MPI_BOR bit-wise or
MPI_LXOR logical xor
MPI_BXOR logical xor
MPI_MINLOC computes a global minimum and an index attached to the 

minimum value
MPI_MAXLOC computes a global maximum and an index attached to the rank
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Gather
Each process (including the root process) sends the contents of its send buffer to the root 
process. The root process receives the messages and stores them in rank order.

The gather also could be accomplished by each process calling MPI_SEND and the
root process calling MPI_RECV N times to receive all of the messages.

A0P0

A1P1

A2P2

A3P3

A0 A1 A2 A3P0

P1

P2

P3
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Gather
int MPI_Gather ( void* send_buffer, int send_count, MPI_datatype send_type, void* recv_buffer, int 
recv_count, MPI_Datatype recv_type, int rank, MPI_Comm comm )

Parameter In/Out Description

send_buffer in starting address of send buffer
send_count in number of elements in send buffer
send_type in data type of send buffer elements
recv_buffer out starting address of receive buffer
recv_count in number of elements in receive buffer for a 

single
receive

recv_type in data type of elements in receive buffer
recv_rank in rank of receiving process
comm in mpi communicator
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AllGather
After the data are gathered into processor 0, you could then MPI_BCAST 
the gathered data to all of the other processors. It is more convenient and 
efficient to gather and broadcast with the single MPI_ALLGATHER 
operation.

A0P0

A1P1

A2P2

A3P3

A0 A1 A2 A3P0

P1

P2

P3

A0 A1 A2 A3

A0 A1 A2 A3

A0 A1 A2 A3
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Scatter
The MPI_SCATTER routine is a one-to-all communication. Different data are sent
from the root process to each process (in rank order). When MPI_SCATTER is called, the root 
process breaks up a set of contiguous memory locations into equal chunks and sends one chunk 
to each processor. 

A B C DP0

P1

P2

P3

AP0

BP1

CP2

DP3
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Summary

P0 P1 P2* P3

a b c d

a b c d

a,b,c,d
a,b,c,
d

e,f,g,
h

i,j,k,l m,n,o,
p

a

SBuf SBuf SBuf SBuf

P0 P1 P2* P3

a,b,c,d
a,b,c,
d

a,b,c,
d

a,b,c,d a,b,c,d

a b c d

a,e,i,
m

b,f,j,n c,g,k,o d,h,l,p

a a a a

RBuf RBuf RBuf RBuf

Function
Gather
Allgathe
r
Scatter
AlltoAll
Bcast
Memory
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Datatypes
MPI Datatype C Type

MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED_CH
AR

unsigned char

MPI_UNSIGNED_SH
ORT

unsigned short 
int

MPI Datatype C Type

MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LO
NG

unsigned long 
int

MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE (none)
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Datatypes
MPI Datatype C Type

MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED_CH
AR

unsigned char

MPI_UNSIGNED_SH
ORT

unsigned short 
int

MPI Datatype C Type

MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LO
NG

unsigned long 
int

MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE (none)
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Coll. Communications: example
#include <mpi.h>
#include <stdio.h>
int main (int argc, char *argv[]) {
int rank, buf;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if(rank == 0) { buf = 1; }
printf(”process %d: before Bcast buf is %d\n", rank, buf);
MPI_Bcast(&buf, 1, MPI_INT, 0, MPI_COMM_WORLD);
printf(”process %d: after Bcast buf is %d\n", rank, buf);
MPI_Finalize();
return 0;
}
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Coll. Communications: example
#include <mpi.h>
#include <stdio.h>
int main(int argc, char** argv) {
int rank, buf, first, last, sum,i,n,result;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank== 0) N = atoi(argv[1]); MPI_Bcast(&N, 1, MPI_INT, 0, 
MPI_COMM_WORLD); 
first = N/numproc * rank + 1; 
last = N/numproc * (rank+1); 
for (i=first; i <= last; ++i) sum +=i; MPI_Reduce(&sum, &result, 1, 
MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD); 
if (rank==0) printf("Sum= %d\n", result); 
MPI_Finalize();
return 0;
}
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How to run MPI Job?

7



Slide 64

SLURM script
!/bin/bash -l
#SBATCH --job-name=mpi-job # Job name
#SBATCH --time=2:0:0 # Maximum runtime (1 hour)
#SBATCH --nodes=1 # Number of nodes requested
#SBATCH --ntasks-per-node=4 # Number of MPI tasks per node

mpiicc -o hello-mpi hello-mpi.c

mpirun -np 4 ./hello-mpi
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Mixed MPI/OpenMP
!/bin/bash -l
#SBATCH --job-name=mpi-job # Job name
#SBATCH --time=2:0:0 # Maximum runtime (1 hour)
#SBATCH --nodes=2 # Number of nodes requested
#SBATCH --ntasks-per-node=1 # Number of MPI tasks per node
#SBATCH --cpus-per-task=4 # Number of CPU cores per task

mpiicc -o hello-mpi hello-mpi.c

mpirun -np 2 ./hello-mpi
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