
Slide 1

Distributed
Memory

Programming
Dr. Hrachya Astsatryan,
Institute for Informatics and Automation Problems,
National Academy of Sciences of Armenia,
E-mail: hrach@sci.am

Slide 2

Distributed memory
programming

1

Slide 3

Benefits

• Each processor has its memory, creating
isolated memory spaces across the system.

• Data communication between processors occurs through a
fabric, requiring explicit send and receive operations.

• Communication between processors involves manual
coordination, with programmers specifying the data to be sent
and received.

• Synchronization between processors is directly tied to
communication, meaning data synchronization occurs
automatically when a receive operation completes.

Slide 4

Distributed Memory Programming Paradigm

Communication Network

Each node has rapid access to its own local memory and access to the
memory of other nodes via some sort of communications network

Slide 5

Message Passing
Interface (MPI)

2

Slide 6

MPI
The MPI is a message passing library standard based on the consensus of the MPI
Forum, which has over 40 participating organizations, including vendors,
researchers, software library developers, and users.

Slide 7

Usage benefits

• Supports wide variety of platforms including support for
heterogeneous parallel architectures.

• Provides source code portability. MPI programs should compile
and run as-is on any platform.

• Debugging
• Dynamic process management. More control over data location

and flow within a parallel application
• A great deal of functionality, including a number of different

types of functions

Slide 8

Basic futures

Manage

communicat
e between

pairs of
processors

communicati
ons

operations
among

groups of
processors

Arbitrary
data types

Slide 9

MPI Implementations: OpenMPI

The Open MPI Project is an open source MPI
implementation that is developed and maintained by a
consortium of academic, research, and industry partners.
Open MPI is therefore able to combine the expertise,
technologies, and resources from all across the High
Performance Computing community in order to build the
best MPI library available.

Slide 10

MPI Implementations: MPICH
MPICH is a high performance and widely portable
implementation of MPI standard too. MPICH and its
derivatives form the most widely used implementations
of MPI in the world. They are used exclusively on nine of
the top 10 supercomputers (June 2015 ranking),
including the world’s fastest supercomputer: Tianhe-2.

Slide 11

MPI Implementations
• OpenMPI Java - provides Java bindings for MPI, allowing Java programmers to

develop parallel and distributed applications using the MPI standard for
communication and synchronization.

• MPI4Py - Python interface to the MPI standard, enabling Python developers to
create parallel and distributed applications using MPI functionality, such as
point-to-point communication, collective operations, and process management.

• others

Slide 12

Alternatives
• OpenSHMEM - programming model designed for partitioned global address

space (PGAS) architectures.
• Coarray Fortran - extends Fortran with a SPMD parallel programming model,

allowing for simple syntax for parallelism without requiring explicit message
passing.

• Unified Parallel C (UPC) - extension of the C programming language that
provides a shared memory programming model for distributed memory
architectures, facilitating parallel programming.

• Chapel - parallel programming language developed by Cray, designed for
productivity and performance on large-scale systems, featuring a
multithreaded execution model and support for task parallelism.

• X10 - high-performance programming language designed for parallel
computing, featuring constructs for parallelism, distribution, and asynchrony.

Slide 13

Starting MPI

3

Slide 14

Serial C: Hello

#include <stdio.h>

main (int argc, char *argv[])

{

printf("Hello world!\n");

}

Slide 15

MPI Structure
MPI Include

file main ()

Initialize MPI
environment

Message
Passing &

work

Terminate
MPI

environment
Program end

Slide 16

MPI: Include library
#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[])
{

printf("Hello world!\n");
return 0;

}
Every C/C++ MPI program must include the MPI header file (which
contains the MPI function type declarations)

Slide 17

MPI: Initialize and Terminate
Statement needed in every program before any other MPI
code. accepts the argc and argv variables that are provided as
arguments to main
• MPI_Init (&argc, &argv); - initializes MPI environment (first

statement of the program)

Last statement of MPI code must be. Program will not
terminate without this statement
• MPI_Finalize(); - cleans up the MPI environment. No other

MPI routine can be called after this call

Slide 18

MPI: C
#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[])
{
int error;
error = MPI_Init(&argc, &argv);

printf("Hello world!\n");
error = MPI_Finalize();
return 0;
}

Slide 19

MPI: Compilation
mpicc -o first first.c

Compiler Language Script Name
GNU C mpicc
Intel C mpiicc
PGI C mpipgcc
GNU C++ mpiCC
Intel C++ mpiicpc
PGI C++ mpipgCC
GNU Fortran mpif77
Intel Fortran mpiifort
PGI Fortran Mpipgf77/mpipgf90

Slide 20

MPI execution
mpirun, and mpiexec execute both serial and parallel jobs.
(/usr/lib64/mpich/bin/)

• mpirun [options] <program> [<args>]

• -np (-n in case of mpiexec) - run this many copies of the
program on the given nodes

• -hosts wn1,wn2, etc..
• -hostfile
• wn1:2
• wn2:2

Slide 21

Identifying
processors

4

Slide 22

Groups

A group is an ordered set of processes
• Each process is associated with a rank
• Ranks are contiguous and start from zero

• Groups allow collective operations to work on a subset of
processes.

Ranks also used to specify source and destination of
communications.

Slide 23

Communicator

• A communicator can be thought of as a handle to an object
(group attribute) that describes a group of processes

• An intracommunicator is used for communication within a single
group

• An intercommunicator is used for communication between 2
disjoint groups

Slide 24

`

Communicator

P
5

P
3

P
8

P
9

P
6

P
4

P
2

P
1

P
7

MPI_COMM_WORLD -
predefined communicator
that includes all MPI
processes

Slide 25

MPI_Comm_rank
• Returns the rank of the calling MPI process within the specified

communicator.

• Initially, each process will be assigned a unique integer rank
between 0 and number of tasks - 1 within the communicator
MPI_COMM_WORLD.

• If a process becomes associated with other communicators, it
will have a unique rank within each of these as well.

MPI_Comm_rank (comm,rank);

Slide 26

MPI_Comm_rank
#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[])
{
int error, rank;
error = MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

printf(”The current process ID is %d \n”, rank);

error = MPI_Finalize();
return 0;
}

Slide 27

MPI_Comm_size

• Returns the total number of MPI processes in the specified
communicator, such as MPI_COMM_WORLD. If the
communicator is MPI_COMM_WORLD, then it represents the
number of MPI tasks available to your application.

MPI_Comm_size (comm,rank);

Slide 28

MPI_Comm_size
#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[])
{
int error, rank, size;
error = MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf(”The current process ID is %d from %d\n”,rank, size);

error = MPI_Finalize();
return 0;
}

Slide 29

MPI Com. & Groups

Returns the version and subversion of the MPI standard
that's implemented by the library.

• MPI_Get_version (&version,&subversion)

• MPI_Get_processor_name obtains the actual name of the
processor on which the process is executing.

• MPI_Get_processor_name(processor_name, &name_len);

Slide 30

MPI_Comm_size
#include <mpi.h>
#include <stdio.h>
int main (int argc, char *argv[]) {
int error, rank, size, version, subversion;
char processor_name[MPI_MAX_PROCESSOR_NAME];
int name_len;
error = MPI_Init(&argc, &argv);
MPI_Get_version (&version,&subversion);
MPI_Get_processor_name(processor_name, &name_len);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf ("version=%d, subversion=%d\n", version, subversion);
printf(”The current process ID is %d from %d from processor %s\n”,
rank, size, processor_name);
error = MPI_Finalize(); return 0;
}

Slide 31

MPI Com. & Groups: MPI_Wtime ()

• MPI_Wtime () - Returns an elapsed wall clock
time in seconds (double precision) on the
calling processor.

Slide 32

MPI Com. & Groups: MPI_Wtime ()
#include <mpi.h>
#include <stdio.h>
main (int argc, char *argv[]) {
int error, rank, size;
double starttime, endtime;
error = MPI_Init(&argc, &argv);
starttime = MPI_Wtime();
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf(”The current process ID is %d from %d\n”,rank, size);
endtime = MPI_Wtime();
printf("The execution is took %f seconds\n",endtime-
starttime);
error = MPI_Finalize();
}

Slide 33

First
communications:

point to point

5

Slide 34

Source and Destination

Communication Network

 Sender (source) Receiver (destination)

Pending messages challenges ?
Where is the data?
What type of data?

How much data is sent?
To whom is the data sent?

How does the receiver know which data to collect?

Slide 35

Message

• source - the sending process
• destination - the receiving process
• communicator - specifies a group of processes to which

both source and destination belong
• tag - used to classify messages. For example, one tag value

can be used for messages containing data and another tag
value for messages containing status information

envelope
+

message body

Slide 36

Message body

Buffer - the
message data;

Datatype - the
type of the

message data;

Count - the
number of items
of type datatype

in buffer.

• For example the buffer can be an array, where the dimension is given
by count, and the type of the array elements is given by datatype.

• Using datatypes and counts, rather than bytes and bytecounts, allows
structured data and noncontiguous data to be handled smoothly.

Slide 37

Send Message

• int MPI_Send(void *buf, int count, MPI_Datatype dtype, int dest, int
tag, MPI_Comm comm);

• All arguments are input arguments. An error code is returned by the
function.

Envelope
•Destination
•Tag
•Communicator

Body
•Buffer
•Count
•datatype

MPI_Send

Slide 38

Receive Message

• int MPI_Recv(void *buf, int count, MPI_Datatype dtype, int source, int tag,
MPI_Comm comm, MPI_Status *status);

• buf and status are output arguments; the rest are inputs. An error code is
returned by the function.

• * - for the source (accept a message from any process) and the tag
(accept a message with any tag value). If wildcards are not used, the call
can accept messages from only the specified sending process, and with
only the specified tag value. Communicator wildcards are not available.

Envelope
• Destination
• Tag
• Communicator

Body
• Buffer
• Count
• datatype

status MPI_Recv

Slide 39

send/recv example
#include <mpi.h>
#include <stdio.h>
int main (int argc, char *argv[]) {
int error, rank,i;
MPI_Status status;
double myarray[80];
for (i=0;i<80;i=i+1) myarray[i]=i;
error = MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if(rank == 0) MPI_Send(myarray, 80, MPI_DOUBLE, 1, 11,
MPI_COMM_WORLD);
else if(rank == 1) {
MPI_Recv(myarray, 80, MPI_DOUBLE, 0, 11, MPI_COMM_WORLD,
&status);
printf ("%f\n",myarray[50]); }
error = MPI_Finalize();
return 0;
}

Slide 40

send/recv deadlock
#include <mpi.h>
#include <stdio.h>
int main (int argc, char *argv[]) {
int error, rank,i;
MPI_Status status;
double myarray[80];
for (i=0;i<80;i=i+1) myarray[i]=i;
error = MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if(rank == 0) {MPI_Recv(myarray, 80, MPI_DOUBLE, 0, 11,
MPI_COMM_WORLD, &status);
MPI_Send(myarray, 80, MPI_DOUBLE, 1, 11, MPI_COMM_WORLD);}
else if(rank == 1) {
MPI_Recv(myarray, 80, MPI_DOUBLE, 0, 11, MPI_COMM_WORLD,
&status);
printf ("%f\n",myarray[50]); }
error = MPI_Finalize();
return 0;
}

Slide 41

Send Message

Memory usage/speed up?

MPI Buffer and
transfer later

on

Left program's
variables, until

the
destination
receives it

MPI_Send

Complete

Initiate

Slide 42

send nonblocking
• int MPI_Isend(void *buf, int count, MPI_Datatype dtype, int dest, int tag,

MPI_Comm comm, MPI_Request *request);

• The request handle identifies the send operation that was posted. The request
handle can be used to check the status of the posted send or to wait for its
completion.

• None of the arguments passed to MPI_ISEND should be read or written until
the send operation it invokes is completed.

Complete

Initiate

Slide 43

receive nonblocking
int MPI_Irecv(void *buf, int count, MPI_Datatype dtype, int source, int tag,
MPI_Comm comm, MPI_Request *request);

The request handle identifies the send operation that was posted. The
request handle can be used to check the status of the posted recv or to
wait for its completion.

None of the arguments passed to MPI_Irecv should be read or written
until the send operation it invokes is completed.

Complete

Initiate

Slide 44

Complete

MPI_ISEND or MPI_IRECV can subsequently wait for the
posted operation to complete by calling MPI_WAIT

int MPI_Wait(MPI_Request *request, MPI_Status *status);

a request handle (returned when the send or receive was posted)

for receive, information on the message received; for send, may contain
an error code

Complete

Initiate

Slide 45

Send modes
Standard

• MPI internal buffer and transferred asynchronously to the destination process, or the source
and destination processes synchronize on the message.

Synchronous
• the sending process may assume the destination process has begun receiving the message.

The destination process need not be done receiving the message, but it must have begun
receiving the message.

Ready
• a matching receive has already been posted at the destination process before ready mode

send is called. If a matching receive has not been posted at the destination, the result is
undefined

Buffered
• requires MPI to use buffering

A receiving process can use the same call to MPI_RECV or MPI_IRECV, regardless of the send mode used
to send the message.

Slide 46

Send

Send Mode Blocking
Function

Nonblocking
Function

Standard (will complete when buffer is
available for use)

MPI_SEND MPI_ISEND

Synchronous (will complete only until a
matching receive has been posted and
transfer has started)

MPI_SSEND MPI_ISSEND

Ready (send starts only if a matching
receive has been posted)

MPI_RSEND MPI_IRSEND

Buffered (as soon as the user buffer is
copied to the system buffer)

MPI_BSEND MPI_IBSEND

Slide 47

Collective
communications

6

Slide 48

Overview

`

P
5

P
3

P
8

P
9

P
6

P
4

P
2

P
1

P
7

MPI_COMM_WORLD -
predefined communicator that
includes all MPI processes

Collective communication routines
transmit data among all processes in
a group.

Slide 49

Stop processes until all processes within a communicator reach the barrier, which is
useful for different cases, such as in measuring the performance

int MPI_Barrier (MPI_Comm comm)

Barrier

P0

P1
P2

P3

Barrier

P0 P1 P2 P3

Barrier

P0 P1
P2

P3

Slide 50

Enables to copy data from the memory of the root processor to the same memory locations for
other processors in the communicator.

int MPI_Bcast (void* buffer, int count, MPI_Datatype datatype, int rank, MPI_Comm comm)

Broadcast

AP0

P1

P2

P3

AP0

AP1

AP2

AP3

Slide 51

Reduce

MPI_Reduce

collect data
from each
processor

reduce
these data
to a single

value

store the
reduced

result on the
root

processor

Slide 52

Reduce

MPI_REDUCE combines the elements provided in the send buffer, applies the specified
operation (sum, min, max, ...), and returns the result to the receive buffer of the root process.

A0P0

A1P1

A2P2

A3P3

A su
m

P0

AP1

AP2

AP3

A0+A1+A2+A3

Slide 53

Reduce
Operation Description
MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bit-wise and
MPI_LOR logical or
MPI_BOR bit-wise or
MPI_LXOR logical xor
MPI_BXOR logical xor
MPI_MINLOC computes a global minimum and an index attached to the

minimum value
MPI_MAXLOC computes a global maximum and an index attached to the rank

Slide 54

Gather
Each process (including the root process) sends the contents of its send buffer to the root
process. The root process receives the messages and stores them in rank order.

The gather also could be accomplished by each process calling MPI_SEND and the
root process calling MPI_RECV N times to receive all of the messages.

A0P0

A1P1

A2P2

A3P3

A0 A1 A2 A3P0

P1

P2

P3

Slide 55

Gather
int MPI_Gather (void* send_buffer, int send_count, MPI_datatype send_type, void* recv_buffer, int
recv_count, MPI_Datatype recv_type, int rank, MPI_Comm comm)

Parameter In/Out Description

send_buffer in starting address of send buffer
send_count in number of elements in send buffer
send_type in data type of send buffer elements
recv_buffer out starting address of receive buffer
recv_count in number of elements in receive buffer for a

single
receive

recv_type in data type of elements in receive buffer
recv_rank in rank of receiving process
comm in mpi communicator

Slide 56

AllGather
After the data are gathered into processor 0, you could then MPI_BCAST
the gathered data to all of the other processors. It is more convenient and
efficient to gather and broadcast with the single MPI_ALLGATHER
operation.

A0P0

A1P1

A2P2

A3P3

A0 A1 A2 A3P0

P1

P2

P3

A0 A1 A2 A3

A0 A1 A2 A3

A0 A1 A2 A3

Slide 57

Scatter
The MPI_SCATTER routine is a one-to-all communication. Different data are sent
from the root process to each process (in rank order). When MPI_SCATTER is called, the root
process breaks up a set of contiguous memory locations into equal chunks and sends one chunk
to each processor.

A B C DP0

P1

P2

P3

AP0

BP1

CP2

DP3

Slide 58

Summary

P0 P1 P2* P3

a b c d

a b c d

a,b,c,d
a,b,c,
d

e,f,g,
h

i,j,k,l m,n,o,
p

a

SBuf SBuf SBuf SBuf

P0 P1 P2* P3

a,b,c,d
a,b,c,
d

a,b,c,
d

a,b,c,d a,b,c,d

a b c d

a,e,i,
m

b,f,j,n c,g,k,o d,h,l,p

a a a a

RBuf RBuf RBuf RBuf

Function
Gather
Allgathe
r
Scatter
AlltoAll
Bcast
Memory

Slide 59

Datatypes
MPI Datatype C Type

MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED_CH
AR

unsigned char

MPI_UNSIGNED_SH
ORT

unsigned short
int

MPI Datatype C Type

MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LO
NG

unsigned long
int

MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE (none)

Slide 60

Datatypes
MPI Datatype C Type

MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED_CH
AR

unsigned char

MPI_UNSIGNED_SH
ORT

unsigned short
int

MPI Datatype C Type

MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LO
NG

unsigned long
int

MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE (none)

Slide 61

Coll. Communications: example
#include <mpi.h>
#include <stdio.h>
int main (int argc, char *argv[]) {
int rank, buf;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if(rank == 0) { buf = 1; }
printf(”process %d: before Bcast buf is %d\n", rank, buf);
MPI_Bcast(&buf, 1, MPI_INT, 0, MPI_COMM_WORLD);
printf(”process %d: after Bcast buf is %d\n", rank, buf);
MPI_Finalize();
return 0;
}

Slide 62

Coll. Communications: example
#include <mpi.h>
#include <stdio.h>
int main(int argc, char** argv) {
int rank, buf, first, last, sum,i,n,result;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank== 0) N = atoi(argv[1]); MPI_Bcast(&N, 1, MPI_INT, 0,
MPI_COMM_WORLD);
first = N/numproc * rank + 1;
last = N/numproc * (rank+1);
for (i=first; i <= last; ++i) sum +=i; MPI_Reduce(&sum, &result, 1,
MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
if (rank==0) printf("Sum= %d\n", result);
MPI_Finalize();
return 0;
}

Slide 63

How to run MPI Job?

7

Slide 64

SLURM script
!/bin/bash -l
#SBATCH --job-name=mpi-job # Job name
#SBATCH --time=2:0:0 # Maximum runtime (1 hour)
#SBATCH --nodes=1 # Number of nodes requested
#SBATCH --ntasks-per-node=4 # Number of MPI tasks per node

mpiicc -o hello-mpi hello-mpi.c

mpirun -np 4 ./hello-mpi

Slide 65

Mixed MPI/OpenMP
!/bin/bash -l
#SBATCH --job-name=mpi-job # Job name
#SBATCH --time=2:0:0 # Maximum runtime (1 hour)
#SBATCH --nodes=2 # Number of nodes requested
#SBATCH --ntasks-per-node=1 # Number of MPI tasks per node
#SBATCH --cpus-per-task=4 # Number of CPU cores per task

mpiicc -o hello-mpi hello-mpi.c

mpirun -np 2 ./hello-mpi

	Distributed Memory Programming
	1
	Benefits
	Distributed Memory Programming Paradigm
	2
	MPI
	Usage benefits
	Basic futures
	MPI Implementations: OpenMPI
	MPI Implementations: MPICH
	MPI Implementations
	Alternatives
	3
	Serial C: Hello
	MPI Structure
	MPI: Include library
	MPI: Initialize and Terminate
	MPI: C
	MPI: Compilation
	MPI execution
	4
	Groups
	Communicator
	Communicator (2)
	MPI_Comm_rank
	MPI_Comm_rank (2)
	MPI_Comm_size
	MPI_Comm_size (2)
	MPI Com. & Groups
	MPI_Comm_size (3)
	MPI Com. & Groups: MPI_Wtime ()
	MPI Com. & Groups: MPI_Wtime () (2)
	5
	Source and Destination
	Message
	Message body
	Send Message
	Receive Message
	send/recv example
	send/recv deadlock
	Send Message (2)
	send nonblocking
	receive nonblocking
	Complete
	Send modes
	Send
	6
	Overview
	Barrier
	Broadcast
	Reduce
	Reduce (2)
	Reduce (3)
	Gather
	Gather (2)
	AllGather
	Scatter
	Summary
	Datatypes
	Datatypes (2)
	Coll. Communications: example
	Coll. Communications: example (2)
	7
	SLURM script
	Mixed MPI/OpenMP

