Practical sessions HPC

Hrachya Astsatryan , Hélene Hénon

June 19, 2024

Plan

© Access HPC systems

© Job Submission and Control using SLURM

© OpenMP

Q VPl

Access HPC systems

© Download the file Private.pem in your files
@ chmod 600 Private.pem in order to change the permissions
© ssh -i Private.pem ubuntu@185.127.66.38 to access the cluster

@ Create a directory for your work in the students directory

Job Submission and Control using SLURM

Task 1

@ sinfo -o "Y%P"

Job Submission and Control using SLURM

Task 1

@ sinfo -o "YP"
e This command fetches information about the partitions (also known as

queues) available on the cluster.
e -0 "%P" specifies the output format to only display the names of the

partitions.

Job Submission and Control using SLURM

Task 1

@ sinfo -o "YP"
e This command fetches information about the partitions (also known as

queues) available on the cluster.
e -0 "%P" specifies the output format to only display the names of the

partitions.

@ sinfo -o "Y%N"

Job Submission and Control using SLURM

Task 1

@ sinfo -o "YP"
e This command fetches information about the partitions (also known as

queues) available on the cluster.
e -0 "%P" specifies the output format to only display the names of the

partitions.
@ sinfo -o "Y%N"
e This command retrieves information about the number of nodes

available in each partition.
o -0 "%N" specifies the output format to display only the number of

nodes.

Job Submission and Control using SLURM

Task 1

@ sinfo -o "%P Y%T"

Job Submission and Control using SLURM

Task 1

@ sinfo -o "%P %T"
e This command provides information about the state of each partition.
o -0 "%P %T" sets the output format to display both the partition name
and its state.

Job Submission and Control using SLURM

Task 1

@ sinfo -o "%P %T"
e This command provides information about the state of each partition.
o -0 "%P %T" sets the output format to display both the partition name
and its state.

@ sinfo -o "Yc"

Job Submission and Control using SLURM

Task 1

@ sinfo -o "%P Y%T"

e This command provides information about the state of each partition.
o -0 "%P %T" sets the output format to display both the partition name
and its state.

@ sinfo -o "%c"
e This command retrieves information about the number of CPUs in
each partition.

e -0 "%Cc" specifies the output format to display the total number of
CPUs in each partition.

Job Submission and Control using SLURM

Task 1

@ sinfo -o "¥m"

Job Submission and Control using SLURM

Task 1

@ sinfo -o "Ym"
e This command fetches information about the available memory
resources in each partition.
e -0 "%m" sets the output format to display only memory-related
information.
e -MEMORY indicates that we're specifically querying memory resources.

Job Submission and Control using SLURM

Task 1

@ sinfo -o "Ym"
e This command fetches information about the available memory
resources in each partition.
e -0 "%m" sets the output format to display only memory-related
information.
e -MEMORY indicates that we're specifically querying memory resources.

@ sinfo —--Node

Job Submission and Control using SLURM

Task 1

@ sinfo -o "Ym"
e This command fetches information about the available memory
resources in each partition.
e -0 "%m" sets the output format to display only memory-related
information.
e -MEMORY indicates that we're specifically querying memory resources.

@ sinfo --Node
o This command fetches detailed information about the nodes in the
cluster.
e —Node is an option specifying that we're interested in node-related
information.
o -long requests a long format output, providing detailed information
about the nodes.

Job Submission and Control using SLURM

Task 1

@ sinfo -N -h -0 NODELIST

Job Submission and Control using SLURM

Task 1

@ sinfo -N -h -0 NODELIST

This command retrieves a list of nodes in the cluster.

-N specifies that we're only interested in node-related information.
-h omits the header from the output.

-O NODELIST specifies the output format to display only the list of
nodes.

Job Submission and Control using SLURM

Task 1

scontrol show nodes :
@ used to display detailed information about the nodes in the Slurm
cluster

@ provides information such as the node name, state, CPUs, sockets,
cores per socket, threads per core, memory, node features, and other

relevant attributes.

Job Submission and Control using SLURM

Task 1

scontrol show job followed by the job ID

@ used to display detailed information about a specific job in the Slurm
workload manager

@ provides information about the job's state, resources requested, job
ID, job name, submission time, queue name, user ID, etc...

Job Submission and Control using SLURM

Task 2

srun --pty --nodes=1 --cpus-per-task=4 --time=1:00:00 bash
-i

= Slurm will schedule the job, find an available node that matches the
resource request

@ Resource Allocation: It requests one node with 4 CPU cores.
o Time Limit: It sets a maximum runtime of 1 hour for the session.

@ Interactive Shell: It opens an interactive bash shell on the allocated
node.

Job Submission and Control using SLURM

Task 2

srun -nl sleep 1

= Slurm will allocate resources for one task, which is to simply pause
for 1 second

Job Submission and Control using SLURM

Task 3

@ squeue : view information about jobs located in the Slurm scheduling
queue

@ sacct : displays accounting data for all jobs and job steps in the
Slurm job accounting log or Slurm database

@ scontrol : view or modify Slurm configuration and state.

OpenMP

@ an application programming interface (API) that supports
multi-platform shared-memory multiprocessing programming

Figure 1: Shared memory programming,

DA

OpenMP

Task 1 : bubble sort

=]l

IIEIE EIEE IIIEE
IIEIE IIIEE IE@E
llll@ E@@ E@E

alEa] | FEEEE| 5E)E EE

Figure 2: Bubble sort algorithm

. - = = = 9acn

OpenMP

Task 1 : bubble sort odd-even

even index
. 5 . 9 odd index
o =
. 2 5 6 = even index
1 2 5 6 9 odd index

Figure 3: Bubble sort odd-even algorithm

OpenMP

Useful commands

#inclu o
int main(){

ble start time = omp get wtime();

int num_threads = omp_get max_threads();
int id = omp_get_thread_num();

ble end time = omp _get wtime();

printf("Time taken: %f s nds, Number of threads : %d \n", end time - start time, num threads);

Figure 4: Some useful commands

OpenMP

How to compile

@ Choose how many threads you want with the command in the shell :
export OMP_NUM_THREADS=n

@ Compile your file with gcc -fopenmp -o exec name file name.c

© Execute it with ./exec_name

OpenMP

How to compile

OR with a bash script (better because you won't have to use slurm
command to allocate the resources you need)

filename="prim

$filename $filename.c && ./$filename

Figure 5: Bash script for OpenMP

MPI

Message Passing Interface (MPI) is a standardized and portable
message-passing standard

=- Contrary to OpenMP, the memory is not shared between the threads

= the threads communicate with each others by sending messages

w Memory \
/
\ A

Figure 6: Distributed memory programming

MPI

Load

0 N-1
4 threads : 20% 4=5 -~)
0 N-1
N N N AL J
Y Y Y Y
thread 0 thread 1 thread 2 thread 3
3 threads : 20 % 3 = 6,666666666... — :(
20=3*6+2
0 N-1
- N AL J
Y Y Y
thread 0 - 7 thread 1 - 7 thread 2 - 6

Figure 7: Load principle

void load(int me, int size, int Np, int *iBeg, int *iEnd)

r = size % Np;
(me < r) {
*iBeg = me * (size / Np + 1);

*iEnd = *iBeg + (size / Np + 1) - 1;

*iBeg r + me * (size / Np);
*iEnd *iBeg + (size / Np) - 1;

Figure 8: Load code

MPI

How to compile

@ Compile your file with mpicc -o filename filename.c

@ Execute it with mpirun -np <number of process> ./filename

MPI

How to compile

OR with a bash script (better because you won't have to use slurm
command to allocate the resources you need)

filenam

mpicc -o $filename $filename.c mpirun -

4 . /$filename

Figure 9: Bash script for MPI

MPI

Useful commands

int main(int argc,
int me, Np;

MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM WORLD, &me);
MPI_Comm_size(MPI_COMM_WORLD, &Np);

ble start_time = MPI_Wtime();
int iBeg, iEnd;
load(me, N, Np, &iBeg, &iEnd);

ble end time = MPI Wtime();

if (me == 8) {
printf("Time taken : %f seconds\n", end time - start time);

MPI Finalize();

return 8;

	Access HPC systems
	Job Submission and Control using SLURM
	OpenMP
	MPI

