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Linear model:
d = Gm

3 data points in XY plane
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Linear model:
d = Gm

3 data points in XY plane

Y = aX + b
to be determined: m = (a, b)>

with d = (y1, y2, y3)
> and G =

x1 1
x2 1
x3 1
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Linear model:
d = Gm

3 data points in XY plane

the overdertermined system
d = Gm

has no solution. We solve instead

m = (GT G)−1GT d .
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Linear model:
d = Gm

3 data points in XY plane

If x and y are exchanged

JF Data assimilation



Linear model:
d = Gm

3 data points in XY plane

JF Data assimilation



Linear model:
d = Gm

3 data points in XY plane

JF Data assimilation



d = Gm

m = argmin
m

∑
i

(di − Gi (m))2

Now we propose a point of view that can be generalized.
for every i we assume that

di = Gi (m) + εi ,

where the noise satisfies εi ∼ N (0, σ2) i.i.d.

Assume that the model m is known. What is the probability density to observe (di )i ?

p(d |m) =
∏

i

p(di ) ∝ exp

(
−
∑

i ε
2
i

2σ2

)
= exp

(
−
∑

i (di − Gi (m))2

2σ2

)
.

The estimated model is the one that provides the most probable observations.

m = argmax p(d |m)

Maximize the likelihood ≡ minimize − the log-likelihood
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Data assimilation consists in extracting information on the model from the observation
of data.

Model

Data

Information on the instance of
the model that is observed

A priori information on the model

A priori information on the noise

Model: PDE, ODE, equation, ...
Data: measurement of some output of the model, possibly corrupted by noise.
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The information provided by data assimilation can be

ã are the parameters identifiable ?

ã parameters estimation

ã uncertainty on the parameters

ã probability distribution of the parameters

The art of data assimilation consists in making use of a-priori information that is
available.
This a-priori information can be

ã a-priori probability distribution of the model parameters (Bayesian estimation)

ã a-priori information on the regularity of the solution (inverse problem and
regularization theory)

ã information on the noise
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I feel sick and I go to the doctor to pass a test for a disease.
The test is positive.

Question: am I affected by the disease ?

A-priori information:
"the test is not perfect, it provides 1% false positive and 1% false negative"
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• Frequentist approach (data driven):

m = argmax p(d |m)

p = frequency distribution of a random process

p(d |m = 0) = 0.01, and p(d |m = 1) = 0.99.
The frequentist answer is : Yes I am sick.

• Bayesian approach: incorporate a-priori information on the model.
In our case: "1% of the population has the disease".

How to account for this information ?

m = argmax p(m|d)

p=tool to describe the level of knowledge of an unknown, unobserved variable
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Bayes’ formula:

p(m|d) =
p(d |m)p(m)

p(d)
.

let us evaluate the probability of each alternative:

p(m = 0|d) =
p(d |m = 0)p(m = 0)

p(d)
∝ 0.01× 0.99.

p(m = 1|d) =
p(d |m = 1)p(m = 1)

p(d)
∝ 0.01× 0.99.

The Bayesian answer is: there is 50% chance that I am sick.
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1) A very simple example

2) What is data assimilation ?

3) Another example

4) A global (subjective) summary
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Information Methods Pros and cons
obtained

proba. dist. of the parameters MCMC, ... X precise answer
7 heavy computations

most probable param. Variational data assim. X relatively fast answer
(max. likelihood) Sequential data assim. 7 requires identifiability

Variational means that we will minimize cost functions.
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Course 1:

Model

Data

Information on the instance of
the model that is observed

A priori information on the model

Additional information on the noise
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• Day 1, part 1. Introduction

• Day 1, part 2. Optimization basics

• Day 2, part 1. Derivation of the tangent model

• Day 2, part 2. Derivation of the adjoint model
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