Introduction to Data assimilation Mini project 3

Miniproject 3: Adjoint code for logistic growth model w/ piecewise constant α.

We aim to explore the logistic growth model, where now the growth rate $\alpha=\alpha(t)$ is piecewise constant on (known) subintervals. In this context, the number of parameters can be large (it is equal to the number of subintervals for $\alpha(t)$, plus the capacity K and the initial condition y_{0}). Therefore we propose to implement an adjoint model to estimate the parameters.
We consider the following ODE that models the logistic growth of a population:

$$
\left\{\begin{array}{lr}
y^{\prime}(t)=\alpha(t) y(t)(1-y(t) / K), & t \in[0, T] \tag{1}\\
y(t=0)=y_{0}, & t=0
\end{array}\right.
$$

for a constant $K>0$. The initial population is $y_{0}>0$. The growth rate $\alpha(t)$ is piecewise constant and defined as follows. Let $0=u_{0}<u_{1}<\ldots<u_{N}=T$, then

$$
\alpha(t)=\alpha_{i} \quad t \in\left(u_{i}, u_{i+1}\right) .
$$

In this exercise we fix the time interval $[0, T]=[0,200]$. The values of y are computed on 1000 points equally spaced in this interval (option t_eval of solve_ivp).
a) Modify the function from (practical day 2) to implement a function that

- takes as parameters $\theta=\left(K, y_{0}, \mathbf{u}, \boldsymbol{\alpha}\right)$ where $\mathbf{u}=\left(u_{1}, \ldots, u_{N-1}\right)$ and $\boldsymbol{\alpha}=\left(\alpha_{0}, \ldots, \alpha_{N-1}\right)$
- returns the solution of problem (1) on the interval $[0, T]$.

Display different solutions with different values of $\alpha(t)$. (take $N=5$ or $N=10$).
b) The solution is observed at the time points $t_{i}, 0 \leq i \leq n-1$. We assume that (K, y_{0}, \mathbf{u}) are known. The following cost function is to be minimized:

$$
j(\boldsymbol{\alpha})=\frac{1}{2} \sum_{i}\left(y(\boldsymbol{\alpha})\left(t_{i}\right)-y_{o b s}\left(t_{i}\right)\right)^{2} .
$$

Calculate the gradient of $j(\theta)$ using the adjoint method.
c) Implement the calculation of the gradient obtained at the previous question. Check the validity using finite differences.
d) (optional) Fix some values $\theta^{*}=\left(K^{*}, y_{0}^{*}, \mathbf{u}^{*}, \boldsymbol{\alpha}^{*}\right)$ where $K^{*}=10^{4}, y_{0}^{*}=1$ and the α_{i} are between 0.05 and 0.2 (take a subdivision into $N=10$ subintervals). Compute the solution $y\left(\theta^{*}\right)$ and add gaussian noise to generate the observations.
Perform a gradient descent to estimate the true parameters $\boldsymbol{\alpha}^{*}$ (starting from arbitrary values).

