INTRODUCTION TO DATA ASSIMILATION Mini project 1

Mini-project 1: SIR epidemiologic model with lock-down effect

We propose here an extension of the SIR epidemiologic model (see practical day 2), and take into account the effect of a lock-down. The lock-down affects the transmission coefficient τ . We generate synthetic data, and aim to reconstruct quantitatively the effect on τ .

We consider the following ODE system (SIR model) that models the spread of an epidemics in a population:

$$\begin{cases} S'(t) = -\tau S(t)I(t), \\ I'(t) = \tau S(t)I(t) - \nu I(t) \\ R'(t) = \nu I(t), \\ t \in [0, T], \end{cases}$$
(1)

together with the initial condition: $S(t=0) = N - I_0, I(t=0) = I_0, R(t=0) = 0.$

In this exercise we fix the time interval [0,T] = [0,250], and the following values: $N = 6e7, I_0 = 1$. The values of y are computed on every integer point in this interval (observations available every day). The parameters values are $\theta^* = (\tau^*, \nu^*)$ close to $(3.10^{-9}, 10^{-1})$ up to a factor of e.g. 10.

A public intervention (e.g. lock down) affects the spread force τ and multiplies it by a factor $f \in (0, 1)$ between the known dates $t_1 = 80$ and $t_2 = 130$. In other words in the system (1) the parameter τ is replaced by $\tau(t)$ where:

$$\begin{cases} \tau(t) = \tau^*, & t \in [0, t_1] \\ \tau(t) = f\tau^*, & t \in [t_1, t_2] \\ \tau(t) = \tau^*, & t \in [t_2, T] \end{cases}$$

- a) Modify the function that implements the SIR model (from practical day 2) to incorporate the effect of multiplying τ by the factor f between the dates t_1 and t_2 . Run the simulations with different values of the reduction factor f, and observe the effect on I(t)
- b) Modify the function Dy to compute also the derivative wrt f. Check the derivative.

c) Now the solution depends on 4 parameters: (τ, ν, I_0, f) . Simulate the data with a factor $f^* = 0.1$. Implement the Gauss-Newton algorithm to estimate the parameters. (Note: due to convergence issues, some adaptation of Gauss-Newton may be required. The simplest to implement is to use a step 0.1 instead of "optimal" step 1) Add noise and test the robustness of the method.

- d) Same question with another value for the factor f^* .
- e) (optional) Explore numerically the influence of the time interval $[t_1, t_2]$ on the identifiability of the parameter f.