INTRODUCTION TO DATA ASSIMILATION **Practical session Day 2: tangent and adjoint models**

Exercice D2.1. Tangent model and parameter estimation (logistic model)

We consider the following ODE that models the logistic growth of a population:

$$y'(t) = \alpha y(t)(1 - y(t)/K), \quad t \in [0, T],$$

 $y(t = 0) = y_0, \qquad t = 0.$

for some given constants $\alpha > 0$ and K > 0. The initial population is $y_0 > 0$. In this exercise we fix the time interval [0,T] = [0,200]. The values of y are computed on 1000 points equally spaced in this interval (option t_eval of solve_ivp).

- a) Compute the derivatives wrt the parameters α, K, y_0 . Implement a function Dy that takes as input α, K, y_0 and as output the Jacobian matrix of y wrt these 3 parameters. Check the validity of this function using finite differences.
- b) Fix some values $\theta^* = (\alpha^*, K^*, y_0^*)$ close to $(0.1, 10^4, 1)$ up to a factor of e.g. 10. Compute the solution $y(\theta^*)$ and add gaussian noise to generate the observations. (Note: here the observation operator L is the identity operator). Implement the Gauss-Newton algorithm to estimate the parameters with an initial guess that is not close from θ^* .
- c) Perform the same study with a reduced number of observations points (100, then 10, then smaller values)

Exercice D2.2. Tangent model and parameter estimation (SIR epidemiologic model) We consider the following ODE system (SIR model) that models the spread of an epidemics in a population:

$$\begin{cases} S'(t) = -\tau S(t)I(t), \\ I'(t) = \tau S(t)I(t) - \nu I(t) \\ R'(t) = \nu I(t), \qquad t \in [0,T] \end{cases}$$

together with the initial condition: $S(t=0) = N - I0, I(t=0) = I_0, R(t=0) = 0.$

In this exercise we fix the time interval [0,T] = [0,250], and the following values: N = 6e7, $I_0 = 1$. The values of y are computed on every integer point in this interval (observations available every day).

- a) Compute the derivatives wrt the parameters τ, ν . Implement a function Dy that takes as input τ, ν and as output the Jacobian matrix of y wrt these 2 parameters. Check the validity of this function using finite differences.
- b) Fix some values $\theta^* = (\tau^*, \nu^*)$ close to $(3.10^{-9}, 10^{-1})$ up to a factor of e.g. 10. Compute the solution $y(\theta^*) = (S, I, R)$ and add gaussian noise to I to generate the observations. (Note: here the observation operator L consists of measuring the quantity I(t)). Implement the Gauss-Newton algorithm to estimate the parameters with an initial guess that is not close from θ^* .

Exercice D2.3. Adjoint logistic model

We consider the logistic model:

$$\begin{cases} y'(t) = \alpha y(t)(1 - y(t)/K), & t \in [0, T], \\ y(t = 0) = y_0, & t = 0. \end{cases}$$

for some given constants $\alpha > 0$ and K > 0. The initial population is $y_0 > 0$. In this exercise we fix the time interval [0,T] = [0,200]. The values of y are computed on 1000 points equally spaced in this interval (option t_eval of solve_ivp). The parameters are $\theta = (\alpha, K)$. We consider observations of the population

We consider observations of the population

$$y_{obs}(t_i) = y(\theta^*)(t_i) + n,$$

where n is the realization of gaussian random noise with variance σ^2 , and θ^* is the (true) value of the parameters. The following cost function is to be minimized:

$$j(\theta) = \frac{1}{2} \sum_{i} (y(\theta)(t_i) - y_{obs}(t_i))^2.$$

- a) Calculate the gradient of j using the adjoint method.
- b) Compute the adjoint state. Note: since it is a backwards ODE the solution using solve_ivp has to be carefully written (indicate the integration bounds [T, 0] in this order).
- c) Make a numerical check of the validity of the gradient thus obtained.