Introduction to data assimilation Practical session Day 1: elementary tools

Exercice D1.0.

In this course we will compute the solutions of ODEs or ODE systems using the function scipy.integrate.solve_ivp.
Read the official documentation on this function.
Exercice D1.1. Numerical solution of an ODE: logistic growth
We consider the following ODE that models the logistic growth of a population:

$$
\left\{\begin{array}{lr}
y^{\prime}(t)=\alpha y(t)(1-y(t) / K), & t \in[0, T] \\
y(t=0)=y_{0}, & t=0
\end{array}\right.
$$

for some given constants $\alpha>0$ and $K>0$. The initial population is $y_{0}>0$.
a) implement the numerical solution of this ODE, and plot the solution.
b) change the values of α, K and y_{0} (one parameter at a time!).

Note: an analytical solution of the logistic equation can be calculated. We propose not to use this analytical solution.

Exercice D1.2. Numerical solution of an ODE system: SIR epidemiologic model
We consider the following ODE system (SIR model) that models the spread of an epidemics in a population:

$$
\left\{\begin{array}{l}
S^{\prime}(t)=-\tau S(t) I(t), \\
I^{\prime}(t)=\tau S(t) I(t)-\nu I(t) \\
R^{\prime}(t)=\nu I(t),
\end{array} \quad t \in[0, T],\right.
$$

together with the initial condition: $S(t=0)=N, I(t=0)=1, R(t=0)=0$.
The given constants $\tau>0$ and $\nu>0$ represent respectively the force of the infection and the recovery/death rate. Note that in this simple model a person that was Infected becomes Removed at a rate ν, and the model does not distinguish between people that recovered from the infection and those that died!
a) Implement the numerical solution of this ODE system on the time interval $[0,250]$ for the following values: $\tau=3.10^{-9}, \nu=10^{-1}$ and the initial conditions $N=6.10^{7}$, and plot the solution.
b) Change the values of τ and ν (one parameter at a time!).

We aim at modelling a public intervention to stop the pandemics spread. This public intervention (e.g. lock down) has the effect on the spread force τ that is multiplied by a factor $f \in(0,1)$ between the dates t_{1} and t_{2}.
c) Modify the function that implements the SIR model to incorporate the effect of multiplying τ by the factor f between the dates t_{1} and t_{2}.
d) Apply on the previous simulation the spread force reduction by a factor of 10 between $t_{1}=80$ and $t_{2}=130$. Comment the results.
e) Modify the factor f.

Exercice D1.3. Optimization of a quadratic function: gradient method, Gauss-Newton method

We consider a symmetric positive definite (sdp) matrix A of size $n \times n$, and a vector $\mathbf{x}_{*} \in \mathbf{R}^{n}$. The objective function that is defined by

$$
J(\mathbf{x})=\frac{1}{2}\left\|A\left(\mathbf{x}-\mathbf{x}_{*}\right)\right\|^{2}
$$

attains its minimum value at the point \mathbf{x}_{*}. Therefore we know the 'exact' minimizer and we will be able to evaluate the performance of methods designed to find this minimizer.
a) Let $\mathbf{h} \in \mathbf{R}^{n}$. Compute the quantity

$$
D J(\mathbf{x}) . \mathbf{h} .
$$

What is the gradient of J at the point \mathbf{x} ?
b) One can prove that the Lipschitz constant of the gradient of J is the largest eigenvalue L of the matrix $A^{T} A$. Propose an implementation of the gradient descent method applied to J with starting point 0 .
c) Choose a $3 \times 3 \mathrm{sdp}$ matrix A. Implement 100 iterations of the gradient descent method. For each iterate \mathbf{x}^{k} compute

- the distance to the true minimizer $\left\|\mathrm{x}^{k}-\mathbf{x}_{*}\right\|$,
- the value of the cost function $J\left(\mathrm{x}^{k}\right)$,
and plot these quantities vs k in two different graphics. One can use a semi-log scale.
d) Choose the following 2×2 sdp matrix:

$$
A=\left(\begin{array}{ll}
4 & 2 \\
2 & 2
\end{array}\right)
$$

and perform the same study. Plot in the plane the iterates \mathbf{x}^{k} together with the level curves of the function J and the true minimizer \mathbf{x}_{*}.

We aim to minimize the same quadratic function using a Gauss-Newton method. One can note that

$$
J(\mathbf{x})=\frac{1}{2}\|F(\mathbf{x})\|^{2}, \quad \text { with } \quad F(\mathbf{x})=A\left(\mathbf{x}-\mathbf{x}_{*}\right) .
$$

e) What is the Jacobian matrix $D F$ of F ? Propose an implementation of the Gauss-Newton descent method applied to J.
f) Perform the same studies as questions c) and d) above.

Exercice D1.4. Optimization of a non linear function (Rosenbrock function): gradient method, GN method.

We consider the Rosenbrock function in dimension 2, defined by

$$
j(x, y)=(x-1)^{2}+100\left(y-x^{2}\right)^{2} .
$$

The minimizer is the point $\mathbf{x}^{*}=\left(x^{*}, y^{*}\right)=(1,1)$, it is located at the bottom of a valley in the shape of a parabola. This function (and higher dimensional generalizations) is an example of a 'difficult' function to minimize.
a) What is the gradient of j at the point $\mathbf{x}=(x, y)$?
b) The gradient of j is not Lipschitz in the whole plane \mathbf{R}^{2} but it is in bounded domains. We assume that $x, y \in[-M, M]$. Check that the Lispchitz constant of ∇j in this domain can be bounded by

$$
L \leq 202+800 M+600 M^{2} .
$$

c) Implement 100 iterations of the gradient descent method with fixed step size. Use as a starting point a random point with coordinates between 0 and 1 . For each iterate \mathbf{x}^{k} compute

- the distance to the true minimizer $\left\|\mathbf{x}^{k}-\mathbf{x}^{*}\right\|$,
- the value of the cost function $j\left(\mathrm{x}^{k}\right)$,
and plot these quantities vs k in two different graphics. One can use a semi-log scale.
d) Increase the number of iterates to reach the minimizer up to machine precision.

We now aim to implement Gauss-Newton method.
e) Check that one can write

$$
j(\mathbf{x})=\frac{1}{2}\|F(\mathbf{x})\|^{2}
$$

for a well chosen function F to be determined.
f) What is the Jacobian matrix $D F$ of F ? Propose an implementation of the Gauss-Newton descent method applied to J.
g) Perform the same studies as questions c) and d) above.

