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Chapter 1: Introduction
1.1 Why R
This is an extract from “The Comprehensive R Archive Network” home page:

R is "GNU S", a __freely__ available __language__ and __environment__ for statistical
computing and graphics which provides a wide variety of __statistical and graphical
techniques__ : linear and nonlinear modelling, statistical tests, time series analysis,
classification, clustering, etc. Please consult the R project homepage (www.r-project.org/)
for further information.

Why use R:

• R is free.
• R is very popular and has become the golden standard for data analysis and visualization in many

research areas, both in private and public domains (the figure here below shows the exponential growth
of R libraries downloads since the early 2OOOs)

• R is powerful and versatile.
• Rprovides endles graphical possibilities.
• The R community.

1.2 First steps in RStudio
RStudio is an interface for R in order to make it friendlier. When you open RStudio, R is being opened in
the background as well. Indeed, if you have not installed R, you will not be able to make RStudio work.

When you open RStudio for the first time, you will probably find three panels. The main one, on the left,
is the console. This is where all commands will be executed. In a research analogy, the console is the
bench or the field, that is where you carry out your experiments or collect your data. The > icon you see
in the console is the prompt. When you see it, it means that it is ready for the next command. On the
contrary, if you see + instead, it means that it is waiting for something else. If you want to escape from the +
and recover the prompt, you should press Esc or Ctrl+C.

1



If we continue with the research analogy, you need a lab-book. A place where you will write your protocols,
the ones that you will have with you at the bench so that you know what you will be doing. When you
code, that lab-book is called the source or the code. You may open your source window in RStudio by
clicking on the double-screen icon on the right side tof the source tab that you have on the upper side of
your screen. Also, you may simply select the File menu, then New file and finally R script. You can have
several scripts open at the same time. Your code, also called script, will keep track of your work and, once
it has been saved, you, or somebody else, may reopen it and reproduce your work later on or somewhere else.
You can save your code at any time, and we suggest you do it regularly. You may do so by clicking on the
floppy disk icon or by choosing File then Save, or with Ctrl+S. The colour of the tab containing the code
name will change colour once it has been saved.

We may all agree that you can improvise at the bench, let that be because you have realized that your
lab-book is incorrect, incomplete, or for whatever reason. However, you need to eventually write those
modifications into the lab-book; otherwise, you will need to improvise every time you go to the bench. The
same is true here, you may well execute everything at the console, but if you leave no trace in the source,
you will be compelled to amend or, worse, to make the same mistake, over and over again. This lack of rigor
would lead to a waste of time and to people not understanding your lab-book.

The commands on the code or script will be executed in the console using the Run button on the upper menu
or, even better, by hitting Ctrl + Enter(Windows) or Cmd + Enter(Mac). You may execute several lines of
your code at once by selecting them on the source window and then executing them as shown.

It is important to note that any line starting with # on your code will be considered a comment and will
not be executed on the console. We may select several lines in the code and convert them into comment
lines using Ctrl+Shift+C(Windows) or Cmd+Shift+C(Mac). Comments are a very important element on any
script, as they will allow you or any other useR going through the code understand the logic of the commands
used in it.

Please note: RStudio allows the use of loads of shortcuts intended to make your life much easier, especially
regarding repetitive actions. I suggest you have a look at the Tools menu. Shortcuts may be modified as
well by the user.

1.3 Working Directory (aka wd)
When you open RStudio, there will be a working directory (or wd) defined by default in your computer: if
you are using Windows OS the default wd is your Documents folder; if you are using a mac, your default wd
should be “/Users/yourusername”. The wd is the folder in which all saved objects will be located, unless you
tell otherwise.

You may know your wd by running getwd(). You are also free to change your it if you wish. There is no
obligation as to how useRs should choose their wd, but we strongly suggest you use at least one wd per project.
This will help you avoid file overwriting and improve traceability. Under RStudio, you may change your wd
from the menu Session -> Set Working Directory. When you do so, you will realize that, in the console,
R runs the setwd() function (for Set Working Directory). One of the options you’ll get in that menu is
setting your wd to the source code location. We strongly suggest using this option.

You may access to the list of the physical files on you wd by running dir() or list.files(). This is equivalent
to using Windows Explorer on Windows or Finder on a Mac. It is also good practice to create subfolders
as you work. You may create one for your data, another one for your outputs etc. You may create subfolders
within your working directory with the dir.create() function. You can actually use it to create any
folder anywhere in your computer, as long as you specify the right relative path to the chosen location: you
can navigate using "./whatever" to go to or to create the sub-folder called whatever within your current
directory. Likewise, you can use "../" to go one step higher in the folder architecture from you current
directory.
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1.4 R Projects
One way of sticking to good practice and having one directory per project is using the R Projects proposed
by R Studio. This will allow you find yourself at the right working directory every time you open the project,
without using the setwd() function. It will also make easier creating sub directories and so on within the
folder. Importantly, if you need to be working on two, or more, projects at the same time, it will make the
whole thing much easier: every time you click on a R project, a new R Studio session will be opened where
the working directory will correspond to the directory where the Rproj file is in.

In order to create a new project with RStudio: File > New Project > New Directory (or Existing
Directory) > New Project. Then you give a name to the project. A new RStudio window will open while,
at the same time, the new project has been created in your chosen folder. When you click on that project, an
RStudio will open and the working directory will automatically be the one where the project is located in.

1.5 R workspace or working environment
When you work with R, you will most certainly find yourselves somewhere along the path shown in the image
here below. First, you will have a dataset that you will import into R. From this moment on, the dataset
is an R object under the R environment. You will then use R functions and packages to manipulate and/or
analyze it so that, in the end, you will have created one or several R output objects that, finally, you will
export as a pdf, an image, a table file or whatever suits your object and your goal best.

All R objects in your R session (let that be datasets, variables, functions you have created, function outcomes
etc.) will conform your workspace). Do not mistake it with the aforementioned working directory (aka
wd), which is the physical place on your computer you are located in. In other words: if you shut down your
R session without saving your workspace, all your R objects in the closed session will be definitely lost. On
the other hand, your working directory will still be there, obviously.

You will be able to list on the console all the objects you have created on your workspace by running
ls(). Your whole workspace, or any object in it individually, may be saved as an .RData file in the wd (or
elsewhere, if you wish, but we suggest you do not so). You may hence save youra = workspace by running
the save.image() function like this: save.image("myfile.RData"). Likewise, you may load a previously
saved R workspace by running load("filename.RData"). This will load all R objects in you .RData file. If
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you want to save a single object from your workspace, the function to be used is save(): save(myobject,
file = "myfile.RData"). You can then load() that object as we have seen above.

From the moment you execute the save() or save.image() functions, the created .RData file will physically
appear on you computer, in the folder you have chosen to save it, most usually your wd.

1.6 The prompt
The use of the prompt, i.e. >, means that everything that you will run in the R console will require that you
use functions, and those functions will have arguments. Therefore, there will not be any pre-established,
mouse-clickable menu for your analysis. In other words, you will not find any menu allowing you to perform
an ANOVA or a PCA, for instance: you will have to run the suitable functions, with your chosen parameters,
by yourself.

Indeed, RStudio interface has made our lives easier in many aspects when using R, but it has not changed
the core logic under R. As a matter of fact, the prompt line is the source of the power and versatility of R.
Pre-established menus restrict choices and hamper versatility. The prompt line will require a time investment
and energy form your part. In return, it will increase dramatically traceability, provide room for adjustment
and will offer nearly unlimited analysis and visualization possibilities.

A function in R is called with its name followed by its arguments enclosed by brackets. If no arguments are
specified, that is in the case where no argument at all is required, the function will be called by its name
followed by empty brackets. If you do not put the brackets and you just execute the name of the function,
then the code of the function itself will be rendered, which in most cases is not useful.

When you are writing your code, a very important feature in R is the # character, which allows to write
comments on your code. Anything written after the # will be interpreted as a comment and will not be
executed as code chunk. Indeed, if you are using RStudio you will realize that as soon as you write #, the
colour of the font changes, thus indicating that what you are about to write will be considered as comment.

1.7 Help
UseRs of all levels should seek help in any available way, instead of wasting their time trying to figure something
out all by themselves. There are many ways to ask for help, both on and offline. A thorough view on the
ways you may ask for help is given at https://www.r-project.org/help.html and http://search.r-project.org/.

When you are working on your code and you need information about a particular function, its usage or
its arguments, the first reflex to get help should be to type help(yourfunction) or ?yourfunction, both
rendering identical results, that is the help on the chosen function that the developer provided when he or
she submited the package. Beware that help() or ? work also off line, since the help pages come with the
package when you install it on your computer. However, they only work as long as the package has not been
only installed on your machine, but also loaded into your workspace.
help(plot)
?plot

Overall, help pages comprise the following headings:

• Description: it defines briefly what the function does
• Usage: how the function should be used
• Arguments: The parameters that the function accepts, with some explanations on their use.
• Details: Further explanations on the logic behind the function
• Value: Details on the outcome of the function, that is what you are meant to get after using it
• Note
• Authors
• Reference(s)
• See also: Other functions related to the current search
• Examples: Ready-to-use examples, so that the user may get an idea of how it works.
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Those headings are, for the most part, mandatory when the developers submit their package to the CRAN
repository. However, some help pages are much more informative than others, depending on developers
willingness.

While you are working with R, you may know that among the packages that you have loaded there is a
function whose name contains a certain term you are interested in, but you do not remember the whole name
of the function, for instance. Or maybe you want to know about all functions with that term among all loaded
packages. The function apropos(“yourterm”) renders all functions from loaded packages containing the
specified term. It does not provide help about them, it just produces a list with the names of those functions.
The results appear on the console, and not in the help tab.
apropos("plot")

You may remember, or just have a vague memory about a function, whose package of origin you do not
remember. Or you want to find help of any function related to a given term. In this case, you will use
help.search(“yourterm”) or ??yourterm.

By running these lines here below, we get a list of functions that deal with the term plot among all packages
already installed on your machine, whether the package has been loaded or not. We will see the installation
and loading steps further below.
help.search("plot")
??plot

Internet is an extremely helpful tool as well. If you write any question on the browser followed by the letter
R, such as “ANOVA R” or “visualization quantitative data R”, it will most likely it understands you are
referring to the R language and will duly provide R-related hits. The R community is so strong that it is
very likely that somebody has already asked the same question before you and that somebody has already
answered it.

If you do not find the answer to your question, you may ask for it in the right internet forum. There are
very active internet forums devoted to useRs seeking for answer for their codes etc., such as StackOverflow,
StackExchange or the Bioconductor support webpage for packages accepted in the Biology-devoted
Bioconductor repository (more about this in the next chapter). If the package you are seeking help
about does not explicitly mention any forum to address your questions to, you may always contact the
developer of the package.

A recent addition to this helping resources is ChatGPT and similar AI tools. Tap a specific question and you
will very likely get an answer, including code chunks on the matter. It is not always perfect: sometimes you
may get outdated information, but it is worth trying. You may also ask how do something in two different
ways. For instance: “How do I create a boxplot using either base R or ggplot2?”. Paste that question onto
ChatGPT and see how it goes.

1.8 Using libraries (aka packages)
Libraries or packages are groups of functions and/or datasets developed within the R community, allowing
to accomplish specific tasks. There are three main repositories where all those packages are uploaded and
curated. It all started with the Comprehensive R Archive Network, or CRAN, which, to this date, remains the
largest R repository. The first package was submitted on the 15th March 2006 and, since then, the number of
featured packages has grown exponentially, reaching 20317 packages in February 2024 (see the figure below).

And those are “just” the packages under CRAN. Bioconductor (bioconductor.org) is a second repository,
devoted to biology-related libraries, such as limma, edgeR and DESeq2. Bioconductor curates, as of today
(February 2024), 2266 packages. The third repository, GitHub curates, somehow, though not necessarily so,
state of the art, cutting edge libraries. In fact, GitHUb is much more than just an R repository, but this is
beyond the point here.

Using libraries in R requires two steps: installing and loading. The way you install packages differs depending
on the repository you are calling upon. You will use install.packages() at the prompt to install packages
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from CRAN. See the example here below. Quotes to name the package being installed are mandatory:
install.packages("alluvial")

The installation of packages featured in Bioconductor repository will be carried out using the installation
code provided by Bioconductor itself, which will be visible on their site every time you will try download one
of their libraries. See the example below with the limma package.
if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")
BiocManager::install("limma")

There are several ways to install packages from GitHub, the third repository we have mentioned. A common
one is using the install_github() function. To use it, you will need to install and load the remotes package
first (more about loading just below).
install.package("remotes")
library(remotes)
install_github('the_nameof_the_package')

Installing libraries means that those packages exist now in your computer. You can use library() to get a
list of the packages that have been already installed in your computer. This list also exists in the Packages
tab in the RStudio window usually located bottom-right.
library()

Wherever the package comes from, bear in mind that:

• Installation is done only once, even though it is advisable to periodically update the packages by running
update.packages().

• Installing the package does not mean you can use it straight away in your session. You need to load
it first. Loading a package, e.g. mylibrary, is performed running library(mylibrary). Look at the
example here below. Quotes are optional.

library(alluvial)
library("alluvial")

If you need to use a given library, You will need to load it every time you launch R or RStudio. If you click
on the case besides the name of the library in the Packagestab in RStudio, you will see in the console that
library(mypackage) is executed. However, this will not leave any trace on your code, and this is why we
do advice you not to do it, since it is always a good thing to keep a trace of everything you have done to run
your code.

We can use search() to verify that the package is loaded and, hence, its functions ready to be used.
search()

The last loaded package will usually be at position 2 under search(). If you load a new package, you will find
the previously loaded one in position 3, and so on. You can use ls(), and change its position argument, which
by default corresponds to pos = 1, to list all the functions available in the package located at that position.
# List available functions in the first loaded package.
ls(pos = 2)
# The one loaded before that one
ls(pos = 3)
# And so on.

If you use ls() with empty brackets, you are looking by default at position = 1. That position corresponds
to .GlobalEnv, that is, your workspace, and it will never change position. Using ls() will allow you see
the objects you have created in your workspace. Remember: these objects do not exist physically in your
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computer, and will be lost if you close your session without saving them (more of this later on).

A variant of ls() is ls.str(), which not only lists the objects within the given position, but tells also about
the nature of each of those listed objects.
ls()
ls.str()
ls.str(pos = 2)
ls.str(pos = 3)

The order in which libraries are loaded is important. Indeed, if two functions with the same name are available
in two different packages, only the one coming from the last loaded package will be valid when you call for
that function name. It is extremely likely you will find yourselves in this situation if you continue to code
with R. These conflicts are easy to circumvent by adding the name of the package before the name of the
function, like this: package::function.

Chapter 2: First notions at the prompt
2.1 Basic notions about operators and functions.
We will start manipulating R, first as a calculator.
2+2
2+2*5
(2+2)*5
3*3*3/2
3ˆ3/2
-10/3

R becomes interesting when we start using functions. Quite a lot of functions are included in default packages
in R, being ready to be used as you open your session. Others will belong in specific libraries that you will
need install and load, as we have already seen above. Finally, functions might also be created by you; as we
will see further down in the course.

Any function, wherever it comes from, will be called by its name, followed by () brackets comprising all
necessary arguments for the suitable execution of that function.

Arguments will allow functions to work, and will allow us tuning those functions to obtain the optimal result.
Importantly, arguments of a function can be mandatory or optional. Mandatory arguments have to be
explicitly implemented by the user because there is no default value for them within the function. As for the
optional arguments, R proposes a default value for them; however, the default value for such an argument
might be modified when running the function. In order to know what the arguments of a function are, and
whether those are mandatory or optional, you just need to reach for the help of the function.
log(2)
?log
exp(1)
log(exp(1))
log(2, base = 2)
log(50, base = 2)
log2(50)
?log2
log2(50, base = 10)
log2(50, base = 2)

We store the results in variables. To affect variables, we may use three operators producing identical results,
i.e. ->, <- et =. Same-name variable erases the previous one.
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n = 15
n <- 40
60 -> n
n -> 60 !!

The reason to use -> or <- rather than = are both “philosophical” and “practical”. As for the “philosophical”
reasons: 2+2 = 4 is an absolute, unequivocal truth; on the contrary, n <- 40 is a choice since we could have
called it whatever and n could have taken any value we want. As for the practical reasons: -> or <- will
allow you to distinguish what you choose to do from what you are obliged to do. Indeed, when you are using
functions, arguments will be asked and you will be using = because that is the way arguments are asked. It
will be really helpful as you read your code, and therefore a sign of good practice, to use -> or <- to give
names to the variables and objects you have created.

Remember that R is case sensitive.
x <- 1
X <- 10
x
X

You may create the object and produce the results at the same time, though in practice you won’t be using
this that often.
(X <- 25) # Creates the object and gives results at the same time

You may obviously use the created variables to operate. Be aware that when you use a name for a variable
that has already been given, R will erase the previous content under that name without asking about it.
y <- x*6
y

rm(x)
x
y

a <- log(2)
b <- cos(10)
a
b
a + b
a <- 3
b <- 6

Can you tell the result of the lines here below?
a + b / a + b # ?
(a + b) / (a + b)

2.2 Listing and removing
We have already mentioned ls(), which allows listing R objects. We will have a deeper look into that function.
We will also mention here rm(), which allows removing R objects from your workspace. You will be using
these two variables quite often. We will also see some regular expression operators that will be extremely
helpful when coding.

We will create a few more variables to fully grasp what those functions do. Some of these new variables
will be character variables. String characters in R are defined by "". More about this soon enough on this
document, devoted to vectors.
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b <- 5
b2 <- b*2
acdc <- "back in black"
cure <- "Friday I'm in love"
motorhead <- "overkill"
nirvana <- "nevermind"

ls()
ls(pattern = "a")
ls(pat = "a")
ls(pat = "ˆa")
ls(pat = "a$")
ls(pat = "ˆa|a$")
ls(pat = "ˆa | a$")

ls(pat = "b|a")
ls(pat = "ˆb|ˆa")
ls(pat = "ˆc|d$")

We remove objects from the workspace using rm().
rm(a)
ls()

Notice that we have removed just the a object, not every object containing an a. We can tune the function
to remove every object in the workspace containing a given pattern.
rm(list = ls(pat = "b"))
ls()

We can remove all variables in the workspace.
rm(list = ls())
ls()

The ls() is not to be mistaken with list.files(), which lists the files in your working directory or, if the
suitable path is stated, in any other folder in your computer. You can use file.remove() to remove physical
files from the computer. Careful, it will not ask for confirmation.
list.files()
list.files(path = "../")
file.remove("crap.R")

Chapter 3: Data Structures
In this chapter we will see the main data structures we treat under R and how we handle them.

R language is largely based on the objects that will be created by running functions. There are different data
structures depending on their number of dimensions and the data types they are able to receive. Thus, data
structures might be mono-, bi- or n-dimensional and they will be able to accept either a single kind of data
(homogeneous data) or different kinds of data (heterogeneous data). The table here below summarizes all
that for the most currently used objects in R:

Homogeneous data Heterogeneous data
1-dim vector list
2-dim matrix data.frame
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Homogeneous data Heterogeneous data
n-dim array . . .

It is worth pointing out that there is no zero-dimensional object under R, that is scalars. Indeed, numbers or
single-word character strings, which might have been considered as scalars, are indeed vectors of length one
in R. Indeed, all variables we have created so far are, in fact, vectors of length one.

3.1 Vectors
3.1.1 Using c(), or not, to create numeric, character and logical vectors.

All variables we have defined in the introductory chapter above are, indeed, vectors. Vectors are one-
dimensional objects and they represent the simplest way to store values in a single object. To create vectors
of length higher than from scratch, usually we use the c() function, where c stands for combine.

There are four main vector types: integer and double for numbers (both are numeric), character and
logical. All elements in a vector must be of the same kind. That is, you can not store, for instance,
characters and numbers in the same vector. When we try to combine different kind of data within the same
vector, coercion will be applied so that the vector will be converted into the most flexible type. Vector types
from least to most flexible are: logical, integer, double and character.

Let us start by seeing how c() works. You may use length() to know how many elements your vector has.
c(2,3,5,8,4,6)
a <- c(57,3)
a

You can of course use c() to combine previously existing vectors.
a <- c(2,3,7)
b <- c(5,8,4)
c <- c(6,7)
abc <- c(a,b,c)
abc

Use length() to know how many elements your vector has.
length(a)

There is a shortcut of when you want to create vectors of length > 1. You can use a colon, i.e. :, when you
want to create a vector of step 1 (or -1) between two numbers.
c(1:5)
1:5
5:1
(-10):5
5:(-5)

We have already mentioned string character vectors. Remember that string characters in R go between
quotes.
e <- c("this","vector","has","five","elements")
length(e)
f <- c("this, vector, has, one, element")
length(f)

Factors are a particular type of character vector, used where categorical levels are required. Factors are
used indeed to define categorical variables in statistical analysis and are, hence, extremely important in R.
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Let us take the following variable, where L, M and H stand respectively for Low, Medium, and High
dose_char <- c("L","H","M","H","L","M","H")
summary(dose_char)

The summary of that variable does not tell us how many times each term in the variable appears. That issue,
which is not trivial, can be addressed by simply defining our variable as a factor, using th factor() function.
dose_fct <- factor(dose_char)
dose_fct
summary(dose_fct)

When we define a factor, by default, we define its levels. You can access those with levels().
levels(dose_fct)

Notice that levels() produces a character vector where the levels of the factor do not appear, by default, in
the order they appear in the factor, but in alphanumerical order. However, this can be modified using the
levels argument within the factor() function or, alternatively, using the relevel() function if we want to
redefine just the reference level.
dose_fct <- factor(dose_char, levels = c("L","M","H"))
dose_fct
summary(dose_fct)
relevel(dose_fct, ref = "L")

The order in which factor levels are defined is important in many scenarios. For instance, when you run an
ANOVA in R. Imagine that your explaining variable is the dose. The ANOVA will read the levels in the
order they have been defined, and will take the first one as the references level. By default, therefore, the
reference level will be H, and not L. Please note that this default behaviour will not affect the significance of
your analysis as such. In other words, it won’t change the p-value or the amplitude of the effect. However, it
will have an influence on the sign of the fold-changes etc., which might be disturbing.

Another property of factors is that they might be, quantitatively speaking, ordered, which is important in
some cases. The logical parameter ordered in the factor() function allows you specify whether the factor
levels are indeed ordered. Again, the order follows alphanumerical logic unless you modify it with the levels
argument, in which case the order follows what you state under that argument.
dose_fct
min(dose_fct) # !! Look at the error message.

dose_fct <- factor(dose_char,
levels = c("L","M","H"),
ordered = TRUE)

dose_fct
min(dose_fct)

That same logic applies when you are dealing with categorical scores that resemble numeric values.
num <- c(4,2,3,1)
min(num)

fct <- factor(num)
fct
min(fct)
sum(fct)

fct <- factor(num, ordered = TRUE)
min(fct)
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sum(fct)

Logical vectors are very important in R. This vectors are boolean-type, comprising only two possible
elements: TRUE or FALSE. Logical vectors are, most often, the product of boolean operators such as ==
(equal to), != (different from), < (smaller than), > (bigger than), <= (smaller or equal than), or >= (bigger or
equal than). See the example below.
2 == 3
2 != 3
2 < 3
2 > 3
"a" == "b"
"a" < "b"

The result of each of those boolean operations above is a logical vector of length one. See here below
another example of logical vector.
pvs <- c(0.7, 0.3, 0.02, 0.2, 0.05)
pvs <= 0.05

Another boolean operator that renders logical vectors, and that you will be using very often is %in%. It
allows you to ask whether members of a variable are among members of another variable. You will be using
it a lot to show data regarding certain individuals of your choice. The length of the resulting logical vector is
the same as the variable you are asking about, the one in front of the operator.
c("a","c","t") %in% c("w","a","z","t")
c("w","a","z","t") %in% c("a","c","t")

If you add the ! operator, which means not, you would be asking for elements of the first variable that ar
not in the second variable. Like this:
!c("a","c","t") %in% c("w","a","z","t")
!c("w","a","z","t") %in% c("a","c","t")

You realize that the ! operator just reverses the TRUE / FALSE responses: if an element of the first variable
is not in the second one, then TRUE is produced.

One function related to logical operators is which(), used in various situations where you need to identify
the positions of elements satisfying a specific condition in a variable or a dataset. While the logical vector
itself is crucial for evaluating conditions, which() complements it by providing the locations where those
conditions are met, which can be essential for subsequent analysis or data manipulation.
which(c("a","c","t") %in% c("w","a","z","t"))
which(pvs <= 0.05)

v <- c(8, 5, 4, 2, 1, 7, 1)
which(v != 5)
v >= 5 & v <= 7
which(v >= 5 & v <= 7)
v < 2 | v > 4
which(v < 2 | v > 4)

Two related functions are which.min() and which.max().
which.max(v)
which.min(v) ## !!

We will clarify the use of which() down in the document, because it is true that you will see it very often,
even when it is not necessary to use it.
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3.1.2 Attributes

Any object in R may have attributes. Attributes do not change the information conveyed by the object itself,
they just give some additional, non-mandatory information about it. The most widely used attribute are the
names for the elements in that object. In a two-dimensional object, we may have rownames and colnames; in
the case of a vector, we may have just names.
v <- 1:4
names(v) <- c("Enzo","Louise","Emma","Layla")
v
names(v)

Alternatively, you may create the vector, with its names, as you go.
v <- c(Enzo = 1, Louise = 2, Emma = 3, Layla = 4)
v
names(v)

Obviously enough, if you do any math with a vector, or any data structure for that matter, the attributes of
that data structure, that is the names in our example, will remain unchanged.
v <- v*2
v

3.1.3 Time to work

1 - Create two vectors x and y of length 5, perform vector addition, and store the result in z
x <- c(1, 2, 3, 4, 5)
y <- c(6, 7, 8, 9, 10)
z <- x + y

2 - Give names to z elements
names(z) <- letters[1:5]

3 - Create a logical vector asking if the numbers in z are among those in the vector 2:5
z %in% 2:5

3.1.4 How to create random, repetitive, and sequential vectors.

There are a bunch of functions that produce random variables with numbers from a given probability
distribution. These functions are very useful when you are simulating data, verifying methods or imagining
graphics, for instance. All those functions start with an r, for random, and then, somehow, the name of the
distribution. For instance, rnorm() will produce numbers out of the normal distribution, and then there are
runif(), rexp(), rbeta(), rbinom(), etc.

As for the Normal distribution, default parameters are mean = 0 and sd = 1, but those default parameters
can be modified. By default, whatever the distribution we are targeting, the bigger the sample, the closer
you will be to the parameters of the chosen distribution.
?rnorm
r <- rnorm(10)
mean(r)
sd(r)

r <- rnorm(1000)
mean(r)
sd(r)
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r <- rnorm(10, mean = 5, sd = 3)
mean(r)
sd(r)

r <- rnorm(1000, mean = 5, sd = 3)
mean(r)
sd(r)

The function sample() will let you randomize pre-defined vectors. When using this function, it is crucial to
understand the role of the replace argument. See below:
?sample
sample(1:10)
sample(1:10, replace = TRUE)

sample(1:10, 7)
sample(1:10, 7, replace = TRUE)

replace = TRUE becomes mandatory if the size of the required sample exceeds the size of the population.
sample(1:2, 5)
sample(1:2, 5, replace = TRUE)

sample(c("WT","KO"), 20, replace = TRUE)

The unique() function allows us to see which are the elements that appear at least once in a variable.
x <- sample(1:10, replace = TRUE)
x
unique(x)

The boolean question here below allows you to see if there are indeed duplicated elements. This can be very
useful when you are verifying datasets etc.
length(x) == length(unique(x))

seq() creates vectors with a sequential pattern.
seq (from = 1, to = 20, by = 2)

We will use those arguments under seq() to learn two things about how arguments are to be used under any
given function:

• Arguments must be implemented in the order they are mentioned in the function (?myfunction to
know what the order is), only if I do not name the arguments. In other words, if I name the arguments
within the function, I can put them down in the order that suits me best.

• Arguments might be partially named, as long as no redundancy is observed between arguments.

Regarding the first point above:
seq (from = 1, to = 20, by = 5)
seq (from = 20, to = 1, by = 5)
seq (from = 20, to = 1, by = -5)

seq (from = 1, to = 20, by = 5)
seq (1,20,5)
seq (20,1,5)
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seq (by = 5, to = 20, from = 1)
seq (5, to = 20, from = 1)
# But:
seq (to = 20, 1, 5)
seq (to = 20, 5, 1)

As for the non-redundancy and partial mention to the arguments, all lines below produce the same result.
seq (to = 20, by = 5, from = 1)
seq (t = 20, by = 5, from = 1)
seq (t = 20, b = 5, f = 1)
seq (t = 20, b = 5, 1)

There is another way of using seq(), and that is using the length.out argument instead of by (both
arguments are mutually exclusive).

As we’ve seen above, by defines the amplitude of every step in the sequence. Thus, the number stated under
to will not appear in the result if the last step to be taken goes beyond that number. The length.out
argument works in, somehow, the opposite way: both numbers under from and to will appear in the result.
In this case, seq() will accommodate the amplitude of each step to the required final outcome length.

See the example here below:
seq (1, 20, by = 5)
seq (1, 20, length.out = 5)

The use of both by and length.out at the same time are incompatible. To distinguish how by and length.out
work, you may imagine how you are going to slice a cake: are you going to slice the cake, whatever its size,
according to a fixed size per portion so that the last slice will be certainly smaller, and therefore discarded?
That’d be the by way. Or are you going to take into account the size of the cake, how many slices should be
taken out of it, and then accommodate the slice size? That’d be the length.out way.

Finally, the rep() function creates vectors with a repetitive pattern. Here, the key argument are times and
each.
?rep

rep(1:5, times = 3)
rep(1:5, each = 2)
rep(1:5, times = 3, each = 2)
rep(1:5, 3)

rep (5,10)
rep (10,5)
rep (c(1,2), 3)
rep (c(1,2),each = 3)

rep (c("wt","ko"), 2)
rep (c("wt","ko"), each = 2)
rep (c("wt","ko"), 2, each = 3)

It is advised to always mention explicitly the each argument in order to avoid confusion with the length.out
argument.
rep (c("wt","ko"), 2, each = 3)
rep (c("wt","ko"), 2, 3)

Why?
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?rep
rep (c("wt","ko"), length.out = 3)

rep(c("wt","ko"), times = 2)
rep(c("wt","ko"), length.out = 4)

3.1.5 Time to work

1 - Create a random vector of 100 elements taken from the uniform distribution, where min = 20 and max =
50. Use ?runif.
runif(100, min = 20, max = 50)

2 - Create a vector called cards, in which you put four 1s, four 2s etc up to four 10s. Then:

• Shuffle cards

• Take five random cards: Do you have a poker winning hand?

• Take a card 30 times and see if you get six aces.
cards <- rep(1:10, each = 4)
sample(cards)
sample(cards, 5)
set.seed(555)
aces <- sample(cards, 30, replace = TRUE)
sum(aces == 1)

3 - Create a vector with every multiple of 5 up to 100
seq(5, 100, by = 5)

3.1.6 The class, type and attributes of your vector.

class() and typeof() will give you, respectively, the class and the type of the object you put between the
brackets. You will be using these quite often, especially when you are a begineR and do not feel confident as
for what you are dealing with. Those two functions may be used with any data structure, but here we will
focus on vectors. The class and type of a vector may be redundant, but remember: numeric vectors can be
double or integer (more about these two later on).
e <- c("this","vector","has","four", "elements")
class(e)
typeof(e)

A for numeric vectors, things might be a little confusing, since they might be double or ìnteger. Do not
worry about it: most of the times you will only need to know if there are numbers involved.
class(1:10)
typeof(1:10)
n <- 25
class(n)
typeof(n)

Furthermore, there is a bunch of functions starting with is., that allows you asking whether your vector (or
any data structure you ask for) is of a precise nature. The answer to any of those questions will be, in itself,
a logical vector of length 1 stating TRUE or FALSE. Let us play with those a little.
is.numeric(1:10)
is.double(1:10)
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is.integer(1:10)
is.character(1:10)
is.logical(1:10)

e
is.character(e)
is.numeric(e)
is.logical(is.numeric(e))

en <- is.numeric(e)
is.logical(en)

is.numeric(2)
is.logical(FALSE)
is.logical(T)
is.logical(F)
is.logical("FALSE")
is.logical("TRUE")

The lines above tell us that it is not a good idea to create variables that are named T or F. The lines here
below tell you why is that.
F <- "whatever"
a <- rnorm(10)
b <- rnorm(10)
t.test(a, b, var.equal = F )
t.test(a, b, var.equal = FALSE )
rm(F)
t.test(a, b, var.equal = F )

There is a similar set of functions starting with as., similar to those starting with ìs., which will allow you
changing the class or type of the vector, depending on what your analysis requires.
n
as.character(n)
n + 50
as.character(n) + 50

e
as.factor(e)
as.numeric(e)

As we have already said, numeric vectors can be of two types, doubles or integers, the former being the
default type. The difference between both will be, most of the times, irrelevant to your daily work. However,
bear in mind that ìntegers are precise and doubles are approximations, which may lead to confusing issues
if you are not aware of it. Have a look at the following lines:
is.double(2)
as.integer(2)
is.double(2.1)
as.integer(2.1)
as.integer(2.9)

is.double(Inf)
as.integer(Inf)
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sqrt(2)ˆ2
sqrt(2)ˆ2 == 2
as.integer(sqrt(2)ˆ2) == 2
sqrt(2)ˆ2 - 2

20/3
20/3 == 6.666667

3.1.7 Coercion.

In the next code chunk, we will introduce the notion of coercion. This is a very important concept in R and
we are sure it will annoy you at some point when you start coding. That said, it is also a cornerstone of the
language, you will learn to cope with it in due time, and you may be able even to take advantage of it.

Coercion is implemented when the useR tries to stock heterogeneous data in an R object whose structure
does not accept heterogeneous data. In this situation, R will take in the data but the receiving object will be
coerced to be converted to the type of data that is the most flexible one given all data inputs.

The more possible values a data type can host, the more flexible it is. The following data types are increasingly
flexible: logical, numeric, and character.
x <- c(2,5,"toto")
x
summary(x)
is.numeric(x)
is.character(x)

c(1,FALSE)
c(1,TRUE)
c(1,"a")
c("a",FALSE)

Coercion may be a funny issue when resolving boolean operators.
1 == TRUE
-1 < FALSE

"1" == 1
"1" < 2

The coercion of logical vectors to numeric is something you will be using to your own advantage all the
time. It is very handy when you need to count occurrences, for instance.
sum(c("a","c","t") %in% c("a", "t", "w", "z"))

v
sum(v != 6)
sum(v >= 2 & v <= 4)
sum(v < 2 | v > 4)
sum(v < 2 & v > 4)

Imagine we have a list of p-values and we want to know if they are smaller than 0.05.
pvalues <- c(0.2, 0.012, 0.03, 0.94)
pvalues < 0.05
sum(pvalues < 0.05)

Imagine now that I have some fold changes associated to those p-values. I want to consider just those fold
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changes only if the associated p-value is smaller than 0.05.
fcs <- c(2, 9, -3, 1)
fcs * (pvalues < 0.05)

There will be more examples of this further down in the document.

3.1.8 Vector subsetting

In this chapter we will introduce the second kind of brackets that are used in R, i.e. square brackets []. These
are used to subset or extract information from objects in R. We will see here how they work in vectors, that
is the simplest objects in R. We will also mention here a couple of functions you are not aware of yet, but do
not worry, we will cover them later in more detail.
x <- sample(1:26) *45
names(x) <- sample(letters)
x

We can subset vectors according to elements’ index, that is according to their position in the vector.
x[2]
x[2:4]
x[c(2,4)]
x[2,4] # !!!
x[4:2]

We can use negative selections
x[-2]
x[-c(2,3,4)]
x[-c(2:4)]
x[-(2:4)]
x[-2:4] # !!!
x

We can subset vectors according to elements’ names instead.
x["a"]
x[c("f", "a", "c" )]

A third way to sub-setting is according to a boolean question. Elements for which the boolean question
stands true, will be selected.
x > 360
x[x > 360]
x[x <= 360]
x[x == 360]
x[x != 360]

We can also use double conditions.
x[x > 300 & x < 500]
sum(x > 300 & x < 500)

The following line gives an error. Why is that?
x[x < 300 & x > 500]

In those cases, or should be the way to reason, not and.
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x[x < 300 | x > 500]

We use any() and all() to see, respectively, if any or all the elements in a variable comply with a Boolean
condition. The result of those two functions will also be logical.
any(x > 2000)
any(x < 300 | x > 500)
all(x < 300 | x > 500)

You may extract information about one variable according to what is going on in another variable. This will
make much more sense when we talk about matrices or data frames.
gender_x <- sample(c("M","F"), 26, replace = TRUE)
names(gender_x) <- names(x)

gender_x[x > 300 & x < 500]
x[gender_x == "F"]

We can subset to actually modify our variable.
y <- x
y[c(2,4,6)] <- 0
y
y["m"] <- 26894321
y

3.1.9 Reversing, sorting, rearranging a vector

rev() reverses head-to-tail a given variable.
x
rev(x)

sort() sorts a variable from the smallest to the highest value or, if it’s a string character vector, in
alphanumerical order. That is its behaviour by default. The sorting might be done in decreasing order, by
setting decreasing = TRUE.
sort(x)
sort(x, decreasing = TRUE)

We can display the information in our variable, sorted according to the names of its elements, instead of the
values themselves.
x[sort(names(x))]
x[sort(names(x), decreasing = TRUE)]

Imagine now I have another variable, y, and that I want to have a look at the values in x according to what
is going on in y.
y <- round(rnorm(26),2)
names(y) <- names(x)
y
x
sort(y)
names(sort(y))
x[names(sort(y))]

That last line gives us the values of x sorted according to the increasing values of y. Thus, we know that the
first individual in the outcome is the one with the smallest value in y. All that said, we have used a trick
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above: to use sort() in that way, you need both variables x and y to have names. However, more often than
not, this will not be the case. In a data frame, for instance, where each column is a variable with no names
attached. In that scenario, using sort() to subset variables would be a mistake, one that you will very likely
make several times, like this.
x[sort(x)]
# or
x[sort(y)]

Indeed, sort() does not work for sub-setting cause it does not provide index numbers, but the variable itself,
with its actual values.

In cases as such you need to use order(), which will render a numeric vector with the indices of the sorted
elements in the vector.
sort(y)
order(y)
order(y, decreasing = TRUE)

The difference between sort() and order() is that the former sorts the variable out and it produces the
values of the variable itself, just arranged in increasing or decreasing fashion, whereas order() renders the
position that the sorted elements of x occupy in the original variable. Therefore, because order() produces
indices, we can subset information using those sorted index numbers.
x[order(x)]

which gives the same result as:
sort(x)

However, and most crucially, you will be using order() to sort one variable, according to the arranged values
in another variable. This will be extremely helpful when you deal with 2d datasets, that is matrices and
data frames.
x[sort(y)]

x[names(sort(y))]
x[order(y)]

The last line above, and not the first one, gives us the information in x according to the increasing values in
y. Thus, we know for instance that the first individual appearing in the output, whatever its value is in x, it
presents the smallest value in y. This is similar to what you would be doing in excel, when you arrange data
according to increasing (or decreasing) values in one variable, but then you look at how the other variables
behave.

Last couple of examples
x[order(y, decreasing = TRUE)]

sort(x)
y[order(x)]

3.1.10 Basic maths with vectors and an introduction to missing values in R.

It is time we introduce a little bit of maths.
min(x)
max(x)
sum(x)
sum (x > 300) # Why?
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mean (x > 300) # what is it?
20/26
sum(x[x > 300])

summary(x)
mean(x)
sd(x)
var(x)
median(x)

A very common issue regarding any data analysis is the presence of missing values. How does R deal with
them? Here is a taster.
y <- x
y[3] <- NA
y
summary(y)
mean(y) # Why?
is.na(y)
sum(is.na(y))
sum(!is.na(y))
mean(is.na(y))
any(is.na(y))
all(is.na(y))
mean(y)
mean(y, na.rm = TRUE)
sum(y < 200, na.rm = TRUE)
sum(y < 200)

3.1.11 Vectorisation

We will finish this (long) chapter devoted to vectors by mentioning vectorisation, a very important feature
in R, which is meant to make calculations easier and faster. Do not worry about the term itself, just see what
is going on in the following lines.
x <- 1:6
x + 5
x + c(2,5)
x + c(2,5,3)
x + c(2,5,3,7)

Vectorisation is something to take into account. We will have more examples about this when we talk
about two-dimensional datasets. Indeed, not only R considers variables as vectors, but it considers them as
column vectors. But to see this more clearly, we’ll wait to tw-dimensional datasets.

3.1.12 Time to work

1 - Create a vector x containing 20 random numbers taken from the normal distribution.

• Extract the last element of x using length()

• What positions do occupy the smallest and the highest values in x?

• Arrange the elements of x in decreasing order
x <- rnorm(20)
which.min(x)
which.max(x)
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x[length(x)]
sort(x,decreasing = T)

2 - Create a vector x with your name, your birthplace, and the date on the month you were born.

• What type of vector is it?

• Give the following names to the elements in that vector: “Me”, “Place”, “Date”

• Extract the Place from that x vector in two different ways.
x <- c("David", "near Bilbao", 26)
class(x)
names(x) <- c("Me", "Place", "Date")
x
x["Place"]
x[2]

3.2 Matrix
Matrix objects allow storing elements in a two-dimensional table, that is with rows and columns. Remember
that matrices, as it happened with vectors, will only host homogeneous data. That is, they can be numeric,
character, logical etc. but not mixed.

We use the function matrix() to create matrices out of scratch. There are three arguments that are key in
that function:

-nrow and ncol: They are uses to specify, respectively, the number of rows and the umber of columns in the
matrix. At least one of them must be implemented.

-byrow: Matrices are filled up, by default, column-wise. If you set the argument byrow = TRUE, the matrix
will be filled up row-wise
matrix(1:15, nrow = 5)
matrix(1:15, nrow = 3)

matrix(1:15, ncol = 3)
matrix(1:15, ncol = 5)

matrix(1:15, ncol = 5, nrow = 10)

matrix(1:15, nrow = 5)
matrix(1:15, nrow = 5, byrow = TRUE)

The functions rownames() and colnames() produce dimension-wise names for the matrix.
set.seed(123) # This is just to be sure we all get the same result
myM <- matrix(sample(1:15), ncol = 3)
colnames(myM) <- c("Var.1", "Var.2", "Var.3")
rownames(myM) <- letters[1:5]
dimnames(myM)
myM

3.2.1 Matrix subsetting

Regarding subsetting, two indexes are used, separated by a comma. The first one refers to the rows, the
second one to the columns. As follows: mymatrix[rows, columns].
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myM[4,3]
myM["d","Var.3"]
myM[,2]
myM[,"Var.2"]
myM[2,]
myM["b",]

myM[2:4,2:3]
myM[-c(1,5),-1]
myM[c(2,4),c(2,3)]

myM[c("d","a"),c("Var.3","Var.2")]
myM[c(4,1),c(3,2)]

We can subset according to the outcome of a boolean question.
myM[,"Var.3"]
myM[,"Var.3"] > 10
myM[myM[,"Var.3"] > 10,]
myM[myM[,"Var.3"] > 10, 1:2]
myM[c(F,T,T,F,F),1:2]

As we have seen with vectors you can make negative choices to discard rows or columns.
myM[-c(1,5),-1]

We have mentioned above vectorisation, by which R tends to convert everything to vectors, if you allow it.
This is also the case when you extract one single column or one single row form a matrix. You can avoid this
by setting drop = FALSE within the [].
myM[,1]
class(myM[,1])
myM[,1, drop = FALSE]
class(myM[,1, drop = FALSE])
myM[1,]
myM[1,, drop = FALSE]

Note that by doing so, you keep the information given by the rownames, which might be handy.
myM[myM[,3] >= 8, 1, drop = FALSE]

3.2.2 The apply() function.

We will introduce here a very important function, namely apply(). This is the most straight forward function
of a whole family of functions, including lapply(), sapply() and tapply(), among others. If you continue
to code in R, you will most probably end up using those functions.

apply() will allow you operate either on columns or in rows. If you set the dimension argument in apply(),
i.e. MARGIN, to 1, that will be rows; if 2, columns. You will see here a few examples. Some calculations are so
commun that shortcut functions have been created to keep things simpler.
apply(myM, 1, mean)
rowMeans(myM)
apply(myM, 2, mean)
colMeans(myM)

apply(myM, 1, sum)

24



rowSums(myM)
class(rowSums(myM))

apply(myM, 1, sd)
apply(myM, 2, sd)

The functions applied above are in all cases generic functions, already made-up for you. You can apply more
complex functions though, as seen her below. In such cases, you will include something like function(x)
within apply(), where x will mean each row or each column depending on whether you use 1 or 2 as the
middle argument in apply().
apply(myM, 1, function(x) sd(x)/mean(x))
apply(myM, 2, function(x) sd(x)/mean(x))

apply(myM, 1, function(x) mean(x))
apply(myM, 1, sd)
apply(myM, 1, sd/mean)

The use of x is purely conventional. Indeed, you can use whatever you feel like in function(), as long as
you respect it when you develop what you are trying to do under apply. for instance, you might find helpful
using the words row or column when you start using apply, so that everything is more explicit to you.
apply(myM, 1, function(row) sd(row)/mean(row))
apply(myM, 2, function(column) sd(column)/mean(column))

In fact, what you put down within function() is irrelevant, as long as it is coherent with the term you use
when calling the functions you need.
apply(myM, 2, function(hzrthbzrurth) sd(hzrthbzrurth)/mean(hzrthbzrurth))

What happens with apply() if there are missing values in the dataset? In this case, as we have already seen,
R does not take for granted the fact that you know there are missing values.
M.na <- myM
M.na[4,1] <- NA
M.na[2,3] <- NA
M.na

rowMeans(M.na)
colMeans(M.na)

If we decide to remove missing values, this will imply removing the whole row where the missing value is
located. Why the row? Remember: in regular datasets, individuals appear in rows, and variables in columns.
Therefore, removing a row is tantamount to removing an individual, and not a variable.
na.omit(M.na)
na.exclude(M.na)

colMeans(na.omit(M.na)) # !!
colMeans(myM)

3.2.3 Binding matrices

You may have two datasets that you want to bind together. You can do it using cbind() (column-wise
binding) or rbind() (row-wise binding). The dataset to be bound must have compatible dimensions: cbind()
requires equal number of rows, and rbind() requires equal number of columns.
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B <- matrix(sample(1:15), ncol = 3)
rownames(B) <- letters[1:5]
colnames(B) <- c("Var.4", "Var.5", "Var.6")
B
C <- matrix(sample(1:15), ncol = 3)
rownames(C) <- letters[6:10]
colnames(C) <- c("Var.1", "Var.2", "Var.3")
C

cbind(myM, B)
rbind(myM, C)

Be careful though: nor cbind() nor rbind() will check how your columns or rows are arranged. When you
use cbind(), you need to be sure that rows in both datasets belong to the same individuals and that they
are ordered in the same way. The same goes for the columns when you use rbind().
rbind(myM, B)
cbind(myM ,C)

Indeed:
Bs <- B[sample(rownames(B)),]
cbind(myM, Bs)

3.2.4 Last notions about matrices: transposition, math and usefulness.

We transpose a two-dimensional dataset when we convert the rows of the original dataset as columns, and
vice versa. This is a very important feature in biology, specially in omics experiments. Indeed, in regular
statistics the number of individuals is higher than the number of the measured variables (p). However, in
omics experiments we are confronted to singular datasets where p »> n. This is why, for instance, when we
receive a transcriptomics dataset, samples appear as columns and genes (i.e. variables) appear as rows; it
is much easier to handle this way. The issue here is that some mathematical procedures require the input
dataset to be regular; therefore, we must transpose our omics dataset.

In R, we transpose a dataset by simply using t()
t(myM) # Well, here we go from regular to singular, but you get it.

As for maths, usual operators in matrices work term by term. Again, be careful, because vectorisation
applies here as well.
myM + 2
myM * c(2,3)
myM * c(2:4)

myM + B
myM + B[-1,]
myM + t(B)

As for the multiplication, please make the difference between the term by term multiplication, and the product
of matrices.
myM * B
myM %*% B

myM * t(B)
myM %*% t(B)
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As for usefullness, you will not be creating matrices from scratch very often. Indeed, as far as 2D datasets
go, most of the times you will be using data frames. All that said, most of the things things we have said
here about matrices are also valid far data frames, most particularly the way of sub-setting and extracting
information, etc.. More importantly, you will be most likely dealing with matrices you have not created,
because the outcome of some common function in R are matrices. Therefore, it is important you are also
aware about their homogeneous nature etc.

3.2.5 Time to work

1 - Build a matrix M1 with five columns randomizing all numbers between 1 and 50

• Calculate the median and the mean of every row in M1

• Calculate the coefficient of variation (sd / mean) of every column in M1

• Multiply the first column in M1 by the second and third columns in M1

• Divide M1 by its seventh value in its fourth column

• Make the sixth value in the third column to be NA.

• Then calculate column wise means of M1 without the incomplete sample
M1 <- matrix(sample(1:50), ncol = 5)
apply(M1, 1, median)
apply(M1, 1, mean)
apply(M1, 2, function(x) sd(x)/mean(x))
M1[,1]*M1[,c(2,4)]
M1 / M1[7,4]
M1[6,3] <- NA
colMeans(M1, na.rm = TRUE)

3.3 array
array type takes matrix structure to n-dimensions, where n > 2. In the figure here, you will find an example
of a simple array, where n = 3.

E <- array(c(1:8, rep(1,8),seq(0,1,len = 8)), dim = c(2,4,3))
?("array") # What entry data type requires the array() function?
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class(E)
E[, , 1]
class(E[, , 1])
dim(E)
length(E)
nrow(E)
ncol(E)
E+10
H <- array(1:12, c(2,3,2)) # What does this do?
H
apply(H, 1, mean)
apply(H, 2, mean)
apply(H, 3, mean)

3.4 list
3.4.1 Creating a list

The list is a very important object type because of its flexibility. Indeed, many function outcomes are lists.
Also, you will be creating lists yourself very often when you use loops etc. Objects of type list allow storing
heterogeneous (numeric, character etc.) data in a single object. Besides, lists are non-structured objects, so
that each element in a list may be vector, matrix etc.; you may even a store a list list within a list!
You can visualize a list as a dresser where every drawer is different from the next one (see the figure below).
What you put in each drawer will be up to you, both in size and in nature.

The most straight forward way to create a list in R is using list().
mylist <-
list(
matrix = matrix(1:15, ncol = 3),
numeric = rnorm(8),
text = "I am giving some character to the list",
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score = factor(1:8),
stupid.list = list(remark = "this is stupid",

reply = c("i", "know"),
stupidity.score = 94),

number = 59)

mylist
names(mylist)

You can use length() to know how many elements a list has, regardless the nature of each of those elements.
length(mylist)

Can you tell what is going on in the following lines?
list(1,2,3,4,5)
list(c(1,2,3,4,5))
list(1:5)
list(c(1,2,3,4,5),6)

3.4.2 List subsetting

We can subset lists with [], [[]] or $. If you subset with simple single square brackets, in the same way as
we use them with vectors, the result will be a smaller list. Using single square brackets, will allow seeing
what is in the drawer(s), selecting or removing some drawers of your choice, but not manipulating the content
of those drawers. If you use double square brackets you may subset only one of the components of the list,
but you will be able to manipulate it. The use of $, which works similarly to [[]], is highly recommended
when the elements of the list are named. In summary, if the third element of mylist is called whatever, you
can subset it with mylist[[3]], mylist[["whatever"]], or mylist$whatever, but not mylist$3.

The following code chunk tries to shed some light on all that.
mylist
mylist[1]
colMeans(mylist[1])
mylist[[1]]
colMeans(mylist[[1]])
myshortlist <- mylist[c(1,4)]
mylist[c(1,4)]
mylist[[1:2]] ## !!??

Again, when using [[]] or $, you can access ht edata on that element and manipulate it.
mylist[[1]] + mylist[[6]]
mylist[["matrix"]] + mylist[["number"]]
mylist$matrix + mylist$number
mylist[1] + mylist[6]

mylist["matrix"]
mylist[["matrix"]]
mylist[[1]]
mylist$matrix
colMeans(mylist[["matrix"]])
colMeans(mylist$matrix)
colMeans(mylist["matrix"])

The non-ambiguity rule applies when calling up an element of a list using $: you can use part of the full
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name of the element, as long as that part is not in common with the name of any other element in the list.
However, this does not work if you are sub-setting elements using []. In this case, the exact pattern needs to
be matched.
mylist$nume
mylist$num
mylist$t
mylist$s
mylist$sc
mylist$st
mylist$m + mylist$sc

The non ambiguityrule only applies when using the $, not [[]].
mylist[["nume"]]
mylist["nume"]

Of course, sub-setting may in itself be recursive.
mylist[[1]]
mylist[[1]][1,]
mylist[[2]][1,]

mylist[[1]][1,2]

mylist$matrix[1,]
mylist[["matrix"]][1,]

mylist$st[1]
mylist$st$r
mylist$st$rep
mylist[[5]][[2]]
mylist[[5]][[2]][[1]]
length(mylist[[5]][[2]])
length(mylist$st$rep)

You can easily add a new element to a list. You can do that in two ways, using [[]] or $.
mylist
length(mylist)
names(mylist)
mylist$ten.to.one <- 10:1
mylist
names(mylist)
length(mylist)
mylist[["alphabet"]] <- letters
mylist
names(mylist)
length(mylist)

3.4.3 Time to work

1 - Provide TP_list here below:
TP_list <- list(a = 1:10,

b = "Good morning",
c = "Hi",
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r = 11:20)

• Write an R statement that will add 1 to each element of the first vector in TP_list.

• Write an R expression that will give all elements, except the second, of the first element in TP_list.

• Write an R statement to add a new item z = "New" to list_TP.

• Write an R statement that will assign the 11th to 20th letters of the alphabet as names to the elements
of r in TP_list.

• Write an R statement that will give the length of vector r of TP_list.
TP_list[[1]] + 1

TP_list[[1]][-2]
TP_list$a[-2]

TP_list$z <- "New"

names(TP_list$r) <- letters[11:20]

length(TP_list$r)

3.5 data.frame
Data frames are the most widely used 2D data structure. The big difference between a matrix and data
frames in R is that the latter may host, column-wise, heterogeneous data (numeric, character etc.). A helpful
way to think about data frames may be to visualize them as a group of vectors of equal size organized in
columns, where every vector is a variable and can differ in class from the data type in the other columns.

In fact, data frames can bee seen as 2D-structured lists. Indeed, data frames keep the well-structured
shape of a matrix object, with rows and columns but, at the same time, data frames accept heterogeneous
data as lists do. In other words, data frame is a singular list where every element in it is a vector of
any kind and where all of them have the same length, which makes possible to arrange those elements in
columns. This is the most widely used data structure when dealing with datasets.

3.5.1 Creating a data frame

In the following lines we will see how to create data frames using the data.frame() function. We will also
see how not to create what we may wrongly think are data frames.

We will start by creating two variables that we are going to assemble (or not) into a data frame.
# 20 random values between 150 and 180, taken from the uniform law, rounded to zero decimals.
height <- round(runif(20,150,180),0)
# 20 random values between 50 and 90, taken from the uniform law, rounded to zero decimals.
weight <- round(runif(20,50,90),0)
sex <- sample(c("M","F"), 20, replace = T)
eyes <- sample(c("blue","black","green","brown"), 20, rep = T)

class(height)
class(weight)
class(sex)
class(eyes)

We might be tempted to use cbind() to create a data frame out of those variables, but you would be
creating a matrix instead.
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not.df <- cbind(height,weight,sex,eyes)
not.df
class(not.df)
summary(not.df)

Instead, you should be using data.frame() to build a data frame, either from existing variables, as here:
mydf <- data.frame(height, weight, sex, eyes)
summary(mydf)

Or from scratch, as here:
mydf <- data.frame(height = round(runif(20,150,180), 0),

weight = round(runif(20,50,90), 0),
sex = sample(c("M","F"), 20, replace = T),
eyes = sample(c("blue","black","green","brown"), 20, rep = T))

mydf
summary(mydf)

Bear in mind, however, that even though you will be creating data frames on your daily work, most of your
datasets of interest will be imported into R already as data frames.

The use of rownames is deprecated in data frames, and there is a good reason to be so. That said, you can
feel more comfortable with rownames, especially when carrying out analysis such as transcriptomics etc. As
we have seen with the matrix, you can use the function rownames() to create them.
rownames(mydf) <- sample(letters[1:20])

3.5.2 Data frame sub-setting

Because they present the advantages of both matrices and lists, we can subset subset data frames using
[,], [], [[]], and $, and you can even combine them. This might seem messy, but you will very soon see
the logic of it and will be able to implement and customize those sub-setting tools in your daily work.

You can use [,] with data frames in the same way you use it with matrices. The class of outcome will be
in agreement with what you would get out of matrices, that is if you subset columns, along with or without
rows.
myM[1:3,1]
mydf[1:3,1]

myM[1:3,2:3]
mydf[1:3,2:3]

myM[,1]
mydf[,1]

class(myM[1:3,1])
class(mydf[1:3,1])

class(myM[1:3,2:3])
class(mydf[1:3,2:3])

class(myM[,1])
class(mydf[,1])
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However, the outcome with matrices and data frames will be inevitably different when you use [,] to
subset a single row, regardless whether you subset columns or not.. And that is for a good reason: data
frames are meant to contain heterogeneous data
myM[1,]
mydf[1,]

class(myM[1,])
class(mydf[1,])

myM[1,1:2]
mydf[1,1:2]

class(myM[1,1:2])
class(mydf[1,1:2])

Also:
mydf[,"sex"]
class(mydf[,"sex"])

mydf[,c(1,3)]
mydf[2:5,c("sex","weight")]

mydf[,1, drop = FALSE]
class(mydf[,1, drop = FALSE])

As we have said, because data.frames are also a particular type of list, we can subset them also using
[], [[]] and $. In all those cases, we must keep in mind that we will be sub-setting columns (i.e variables),
since data frames are a special type of list where columns are the elements of that list.

When you subset with [], without any mention to rows, the nature of the date is kept as it was: a data.frame.
This is not the case when you use [[]] or $
mydf[1]
class(mydf[1])
mydf["height"]

mydf[,1]
class(mydf[,1])
mydf[,"height"]
# Bear in mind:
myM[1] #!!

As opposed to these two here below. Indeed, information is vectorised when [[]] or $ are used.
mydf[[1]]
mydf$height

When we use $ to sub set a data frame, the non-ambiguity rule applies
mydf$h

It is with data frames, that sub-setting on boolean conditions makes whole sense. That is something you
will be using all the time. Look at the examples here below.
sum(mydf$eyes == "green") # How many people do have green eyes.
mydf[mydf$eyes == "green", "weight"] # Weights of people with green eyes
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mydf[mydf$eyes == "green",]$weight
mydf[mydf$eyes == "green", "weight", drop = FALSE]
mydf[mydf$eyes == "green", c("weight","height")]
mydf[mydf$eyes == "green" | mydf$eyes == "brown", c("eyes","weight")]
mydf[mydf$eyes == "green" & mydf$sex == "M", "weight"]
mydf[mydf$eyes != "green" & mydf$height > 170, c("sex", "weight")]

When you start coding, it is not always easy to grasp some of those lines above in one go. Let us do the last
one, for instance, step by step.
mydf[mydf$eyes != "green" & mydf$height > 170, c("sex", "weight")]

res <- mydf[mydf$eyes != "green",]
res
res <- res[res$height > 170,]
res
res <- res[, c("sex", "weight")]
res

Three last points about data frames.

First: As opposed to what happens with lists, you can manipulate variables when you use [] to subset data
frames, we do not need to use [[]].
mydf[1] + 50
mydf[1:2] + 50

mydf["height"] + 50
mydf[c("height", "weight")] + 50
# As opposed to:
mylist["numeric"] + 50

Second: We can add new elements to a data frame as we go, as we do with lists.
mydf$score <- factor(sample(1:4, 20, replace = TRUE))
mydf["treatment"] <- rep(c("Ctr","Tr"), each = 10)
mydf$BMI <- mydf$weight / (mydf$height/100)ˆ2

Last: When using the data.frame() function to create a data frame, we can tune the stringsAsFactors
argument so that all string character variables in the data frame will be factors.
summary(mydf)
mydf <- data.frame(height, weight, sex, eyes, stringsAsFactors = TRUE)
summary(mydf)

3.5.3 Time to work

1 - Load the ./Files/ATH.RData object in your workspace.

• What class of object is it?

• What class of variables are in that object?

• Do you think any of those variables should be of a different nature?

2 - How many genes in chromosome 5 are coded in the each of the strands?
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4 Some useful functions
We have already used a bunch of R functions. There are thousands upon thousands of R functions, most
of which you will never know about. Even covering what are to be considered as basic functions might be
endless work. In this chapter we will mention just a few of them, without any pretension of being thorough
or exhaustive. These functions, however, we’ll probably help you in your daily work and you will be using
some of them very often.

4.1 head(), tail(), ncol(), nrow(), dim()
The head() and tail() functions will print, respectively, the first or the last six elements of a vector or a
list. In the case of a matrix or a data frame, they will show you the first or the last six rows. The number
of elements/rows to be displayed can be changed from six to whatever you wish, using the n argument.
head(1:20)
tail(1:20)

head(mylist)
head(mylist, 2)

head(mydf,2)
tail(mydf, 1)
tail(mydf)

On the other hand, nrow(), ncol() and dim() are to be used only with 2D datasets and will tell you,
respectively, how many rows, columns, or both there are in a matrix or a data frame. These functions will
allow you, for instance, verify that everything is in order or to use use those functions to sub set datasets
without necessarily knowing how many rows or columns there are in the dataset.
ncol(mydf)
nrow(mydf)
dim(mydf)

mydf[nrow(mydf),]
mydf[,ncol(mydf)]

4.2 table()
You will be using table() to create contingency or frequency tables between variables in a data frame.
table(mydf$eyes)
table(mydf$height)

Things get more interesting when you cross two variables.
table(mydf$eyes, mydf$sex)

It might be more legible if you print the outcome as a data frame
data.frame(table(mydf$eyes, mydf$sex))

The logic behind table() is that string vectors have been converted into factors, thus allowing counting.
summary(data.frame(table(mydf$eyes, mydf$sex)))

You can use boolean operators to build contingency tables
mydf$height > 160
mydf$T160 <- mydf$height > 160
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data.frame(table(mydf$eyes, mydf$height > 160))
data.frame(table(mydf$eyes, mydf$T160))
data.frame(table(mydf$weight < 75, mydf$height > 160))

4.3 merge()
merge() is a function that you will be using very often. It combines two datasets into a single one, in a
similar way as cbind(). However, and this is crucial, as opposed to what happens with cbind(), merge()
deals with differences in rows, and needs at least one common variable between both datasets. This is similar
to what recherchev does in excel, for instance, but without the hassle nor the risk of error.

We are free to change this default behaviour with the by argument and thus be able to manually specify
which columns we want to be considered as common when merging two data frames. This might be useful
when you have two columns with different content but showing the same name in both data frames, for
instance. It can also be useful when you suspect there is an error in one of the data frames.

Let us play with some small datasets.
df1 <- data.frame (name = c("John", "Mary", "Laura", "Robert","Zoe"),

status = c ("married", "single", "married", "single", "married"),
weight = c(75,68,48,72,65))

df2 <- data.frame (name = c("Mary", "John", "Robert", "Laura"),
status = c ("single", "married", "single", "married"),
height = c(165,182,178,160))

or
df1 <- read.table("./Files/df1.txt", header = TRUE, sep = "\t")
df2 <- read.table("./Files/df2.txt", header = TRUE, sep = "\t")

Do not worry about the read.table() command at this point, we will be dealing with dataset import later
on.
df1

The default merge() behaviour:

• It considers, by default, all columns with identical names in both datasets and renders each of those
variables once.

• Regarding common variables, only common observations with perfect matches in each of those common
variables will be rendered . Incoherent observations will be dismissed by default

• Rows will be alphabetically arranged.
merge(df1, df2)
merge(df2, df1)

Those default features can be modified using by and all arguments, respectively. The former will allow
picking the common variable(s) you want to use to do the merging. The latter will allow producing all
existing observations in shared variables, thus producing missing values in exclusive variables coming from
the dataset where a given observation does not exist.
merge(df1, df2, all = TRUE)
merge(df2, df1, all = TRUE)

merge(df1, df2, by = "name")
merge(df2, df1, by = "name")
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Both arguments are useful to solve possible discrepancies between the datasets.
df3 <- df2
df3$status = c ("employed", "unemployed", "employed", "unemployed")
df3
merge(df1,df3) # !!
merge(df1,df3, by = "name")
merge(df1,df3, by = "name",all = TRUE)

Those arguments might also be useful to detect errors.
df4 <- df2
df4$name <- df1$name[1:4]
df4
merge(df1, df4) # Error in the datasets?
merge(df1, df4, by = "name") # Indeed, status do not match in df1 and df4
merge(df1, df4, all = TRUE)

4.4 grep() and grepl()
grep() and grepl() select elements in a vector containing a given pattern. This will allow, for instance,
picking the rownames or the colnames in a dataset containing a given chain of characters. The difference
between grep() and grepl() is that the former produces the index of the elements in the vector containing
the chain of characters, and the latter returns a logical vector stating whether the elements contain (TRUE) or
not (FALSE) that chain of characters.
mydf
grep("ght", colnames(mydf))
grepl("ght", colnames(mydf))

grep("ght$", colnames(mydf))
grepl("ght$", colnames(mydf))

grep(".e", colnames(mydf))
grepl(".e", colnames(mydf))

grep("ˆ.e", colnames(mydf))
grepl("ˆ.e", colnames(mydf))

grep("ˆ.*e", colnames(mydf))
grepl("ˆ.*e", colnames(mydf))

In most base-R situations, grep() or grepl() will produce the same outcome.
mydf[, grep("ght", colnames(mydf))]
mydf[, grepl("ght", colnames(mydf))]

In the examples given here below, we will stick to grep(), knowing that the results with grepl() would be
identical.
mydf[, grep("ˆ.e", colnames(mydf))]
mydf[grep("M", mydf$sex), grep("ˆ.e", colnames(mydf))]
mydf[,grep("x|y",colnames(mydf))]
mydf[,-grep("x|y",colnames(mydf))]

However, there are exceptions where both functions do not produce identical results. Because the outcome of
grep() is numeric, for instance, we can combine its result with any index from any other column we want to
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consider. You should not be doing so with grepl()
mydf[,c(grep("ˆw", colnames(mydf)),4)]
mydf[,c(grep("ˆw", colnames(mydf)),ncol(mydf))]
mydf[,c(grepl("ˆw", colnames(mydf)),4)]
mydf[,c(grepl("ˆw", colnames(mydf)),ncol(mydf))]

mydf[,c(grepl("ght", colnames(mydf)),4)]

mydf[,c(grep("h", colnames(mydf)),ncol(mydf))]
mydf[,c(grepl("h", colnames(mydf)),ncol(mydf))]

4.5 sub() and gsub()
We use those two functions to substitute string patterns by something else. The sub() function substitutes
the first match, whereas gsub() substitutes all matches.
c <- c("p", "pp", "ppp")
c
sub("p", "t", c)
gsub("p", "t", c)

They work with numbers to, but the outcome will not be numeric anymore.
n <- c(2, 22, 222)
n
sub(2, 4, n)
gsub(2, 4, n)
as.numeric(sub(2, 4, n))

As always, you can use those in a 2D dataset. And you can embed substitutions.
mydf2 <- mydf
mydf2
mydf2$sex <- sub("M", "male", sub("F", "female", mydf2$sex))
mydf2

And you can leave empty quotes if you just one to remove patterns
c <- c("ps", "pps", "pppss")
c
sub("s", "", c)
gsub("s", "", c)

4.6 aggregate()
The aggregate() function executes conditioned calculations by slicing the dataset in distinct groups, and
then applying a function to each of those groups. Please note that this approach has been greatly improved
and simplified in the dplyr package from tidyverse.
aggregate (mydf$weight,

by = list (gender = mydf$sex),
FUN = mean)

The by argument requires a list because it allows multiple partitioning variables.
aggregate (mydf$weight,

by = list (gender = mydf$sex, eye_colour = mydf$eyes),
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FUN = mean)

aggregate (mydf$weight,
by = list (gender = mydf$sex, eye_colour = mydf$eyes),
FUN = function(x) sd(x)/mean(x))

4.7 Time to work
We will be using the ATH object here.
load("./Files/ATH.RData")

1 - Create a new variable gene_length out of existing Lower.end and Upper.end variables.

2 - Make a contingency table with the Strand and the Chr variables.

3 - Using aggregate(), calculate the average gene length of those groups in the contingency table.

4 - Load ./Files/ATH_transc.RData and get the genomic information for those genes. Could you explain
the results?

Chapter 5: Data Import / Export
5.1 Dataset import
dataset import into R has been greatly eased and improved in RStudio thanks to dataset import-devoted
tabs and menus. Nonetheless, many long-term useRs tend to use always their favorite function to import
their datasets, eventually tuning its parameters to adapt the import to a given dataset. There are loads of
functions and packages to import data into R, and it would be sort of a waste of time here to go through all
of them. We will try to keep things simple.

A classic function to import datasets is read.table(), which will render a data frame in R. It should be
noted that this function does allow importing .txt or .csv files, but not .xls or .xlsx files. Arguments
of read.table() such as row.names and header allow taking into account (or not) rownames and headers.
Arguments such as sep and dec allow specifying the nature of column separators and decimal notation.

We invite you to pen the mport.training.txt file with excel of any similar tabular software and see how it
looks. Then use the following lines to import that dataset, and see what the different arguments produce.
import_A <- read.table("./Files/import.training.txt",

row.names = 1, header = TRUE, sep = "\t")
import_B <- read.table("./Files/import.training.txt",

header = TRUE, sep = "\t")
import_C <- read.table("./Files/import.training_bis.txt",

header = TRUE, sep = "\t", dec = ",")
import_C <- read.table("./Files/import.training_bis.txt",

header = TRUE, sep = "\t")

head(import_A)
head(import_B)
head(import_C)

class(import_A)
class(import_B)
class(import_C)

summary(import_A)
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summary(import_B)
summary(import_C)

str(import_A)
str(import_B)
str(import_C)

Functions such as read.csv() and read.csv2(), which are widely used, are just particular cases of that
original read.table() function, that you are free to try. The function fread() from the data.table package
offers automatic detection of header, separators and decimal notation with a very time-efficient performance
as well. Time-efficiency might be an issue indeed when you are dealing with very large datasets

As we have already said, R Studio proposes a very handy and efficient menu to import data in R under File
> Import Dataset, which automatically detects decimal notation, separator etc. Please play around with the
import.training file and see what happens when you execute the import at the prompt.

Whatever the method you choose to import your dataset, using any of the functions above or the built-in
RStudio menu, the corresponding line will be executed at the console. It is good practice to copy that line in
your code, for the sake of traceability.

5.2 Dataset export
We will cover now data frame or matrix export from R (we will deal later with figure exports). Remarkably
enough, RStudio does not offer to export data frames or matrices the same menu it offers to import tabular
files. Thus, functions such as write.table(), write.csv() and write.csv2 will be used, thought there are,
again, many others. They are quite similar to the analogous read. . . () functions we have already seen, but
a couple of arguments differ:

• row.names is a logical argument when exporting and numeric when importing
• col.names replaces header at export.

As you do when importing, there are a fez things that you should consider when you export your dataset,
namely: what do you want to do with the rows / columns structure and what do you want to do with the
separator and decimal notations. You usually will want to keep the same row / column structure you had
under R, and will adapt the sep / dec to your own taste.

Let us take the import_A that you have just created with read.table() and put it into write.table() in
order to export it. Beware that, unless you state it otherwise, every exported file will appear in the current
working directory.
?write.table
write.table(import_A, "export_A.xls",

row.names = TRUE, col.names = NA, sep = "\t") # Why col.names = NA?
write.table(import_A, "export_AA.xls",

row.names = TRUE, col.names = NA, dec = ",", sep = "\t")
write.table(import_B, "export_B.xls",

row.names = FALSE, col.names = TRUE, sep = "\t")

Please, play around with the arguments of that function. Try write.csv() and write.csv2() as well. And
have a look at the sink() function.
A <- seq(1,10,l=50)
write.table(A,"A.txt")
sink("Abis.txt")
A
summary(A)
B <- c(1:5)
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B
sink()

A commonly function to export data is the fwrite() from the data.table package. This function works
faster and does not need separator parameter when you write a csv file.
install.packages("data.table")
data.table::fwrite(import_A, file = "exp.fwrite.txt", sep = "\t")
data.table::fwrite(import_A, file = "exp.fwrite.r.txt", sep = "\t", row.names = TRUE)
data.table::fwrite(import_A, file = "exp.fwrite.csv")

Chapter 6: Programming
6.1 Loops
Loops in R seem unavoidable, especially when you start coding. Therefore, it is crucial to understand how
they work. Loops in R are largely implemented with for() or while() functions, though I personally try to
avoid the latter cause it may render never-ending loops if you do not pay enough attention to your coding.

Find here below an extremely simple example of a for loop.
for (i in 1:10)
print(paste("This is the result of the iteration number", i))

If you are using while(), you need to first initialize the variable outside the loop, and after every iteration.
i <- 1
while(i <= 10){
print(paste("This is the result of the iteration number", i))
i <- i + 1

}

Using loops will allow us introducing curly brackets, i.e. {}, in R. Curly brackets have two main roles in R, one
of them being setting limits to loop environments. Those brackets are not necessary when the loop contains
only one command.

Indeed, the following code produces the same result as the one above.
for (i in 1:10){
print(1:i)
}

However, look at the different outcomes of the following loops. Notice the default indentation proposed by
RStudio in both cases.
for (i in 1:10){
x <- 1:i
print(x/2)

}

for (i in 1:10)
print(1:i)

print(i/2)

When you produce a loop but do not store the results, nothing seems to happen because nothing is stored.
for (i in 1:10)
i*2

41



Usually, when you run a loop, you want to store the result of each iteration of the loop. Depending on the
context, you can want to create a vector, a data frame, or a list to store those results. To do so, uou can
create an empty object outside the loop that you will subsequently fill up as the loop unfolds.

In the chunk here below, we store the outcome of the loop in the res variable.
res <- c()
for (i in 1:10)
res[i] <- i*2

# or
res <- c()
for (i in 1:10)
res <- c(res, i*2)

The use of i in the loop is a mere convention. You can use anything to call for iterations, obtaining the same
results.
res <- c()
for (whatever in 1:10)
res[whatever] <- whatever*2

res

Please import the genes.df.txt dataset using File -> Import Dataset -> From Text (Base), or running
the following line:
genes.df <- read.table("./Files/genes.df.txt", header = TRUE, sep = "\t")
genes.df

Imagine now that we want to do a two-way ANOVA for each gene, putting the genotype and the treatment
in the model. We want then to store the results in an list, where each element in the list correspond to the
ANOVA for one gene. There is another issue here, though; one that you will encounter quite often: the first
n variables of the dataset (three, in our case) are not genes and will not be computed. How can you adapt
your code to take that issue into account?

The easy way. You start your loop where the first gene is located, then you remove the empty elements from
the resulting list.
res <- list()
for(i in 4:ncol(genes.df))

res[[i]] <- summary(aov(genes.df[,i] ~ genotype * treatment, data = genes.df))
res <- res[-c(1:3)]

More elegantly, perhaps, you can adapt the iteration operator, like this:
res <- list()
for(i in 4:ncol(genes.df))

res[[i-3]] <- summary(aov(genes.df[,i] ~ genotype * treatment, data = genes.df))
# Or, alternatively:
res <- list()
for(i in 1:ncol(genes.df))

res[[i]] <- summary(aov(genes.df[,i+3] ~ genotype * treatment, data = genes.df))

You can name the elements of the list in agreement with the gene names.
names(res) <- colnames(genes.df[4:ncol(genes.df)])

A final, and important, point to this short introduction to for() loops: the iteration values taken by i, or
whatever you call it, are not necessarily meant to be consecutive numbers.
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for (i in seq(10,1,-2))
print(1:i)

for (i in c(1,25,49,5,8))
print(i+1)

Actually, i does not necessarily have to be a number
for (i in c("A", "Y", "B", "C", "D", "E")) {
print(paste("Alphabet position", which(LETTERS == i)))

}

6.2 Conditional statements if-else

You will be using conditional statements quite often in R. Those are statements by which, depending on the
values of a given variable, you will take one action or another. This is done with if() and else() functions, or
with the ifelse() wrapper function. The way conditional statements and actions should be interpreted is as
follows: “if the condition is TRUE, do action 1; if not (i.e. the condition is FALSE), then do action 2”.

Two very simple examples:
x <- rnorm(100) # 100 random numbers from the Normal distribution, where mean = 0.
ifelse(x > 0, "positive", "negative")

Let us build a fake p-value list.
pvs <- abs(rnorm(1000, mean = 0.05))
pvs <- pvs[pvs < 1]
pvs

I want to label those as significant, or not, depending on whether they are smaller than 0.05.
sum(pvs < 0.05)
ifelse(pvs < 0.05, "signif", "not signif")

pvs.df <- data.frame(pvs)
pvs.df$signif <- ifelse(pvs.df$pvs < 0.05, "signif", "not signif")

Conditional statements are quite often used within loops. Here below, a few examples:
y <- 0
z <- 0
w <- 0
compil.x <- c()
for (i in 1:50) {
x <- sample(1:10, 1)
if (x > 5)

y <- y + 1
else
z <- z + 1

compil.x[i] <- x
}

This one here below implements ifelse()
x <-sample(1:10, replace = TRUE)
v <- 0
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for (i in 1:10)
v <- ifelse (x[i] < 5, v + 1, v)

In the next example we use an R built-in dataset, comprising sepal an petal lengths and widths in three
different iris species. We want to know if those measures are, arbitrarily so, large or small.
iris.score <- matrix(ncol = 4, nrow = 150)
colnames(iris.score) <- colnames(iris[-5])
for (i in 1:4)
iris.score[,i] <- ifelse(iris[,i] < mean(iris[,i]), "small", "large")

for (i in colnames(iris.score))
iris.score[,i] <- ifelse(iris[,i] < mean(iris[,i]), "small", "large")

6.3 Alternative to loops: the apply family
Long-iterations loops are time consuming and not very elegant in terms of coding. As you gain experience
with R, you will be learning how to get rid of them, probably by using a function from the apply family.
Indeed, functions such as apply(), lapply(), sapply() or tapply() are meant to do the job in a much more
time-efficient manner that loops. You already know apply(). You will learn about the others if you continue
using R and this is why we introduce them here.

6.3.1 apply() family

lapply() and sapply() work in a very similar way, the difference being that the former will produce a list,
and the second will simplify the result if possible.

Here is how they work, as compared to loops.
res <- c()
for (i in 1:10)
res[i] <- i*2

res

lapply(X = 1:10, FUN = function(x) x*2)
lapply(1:10,function(x) x*2)

sapply(1:10,function(x) x*2)
sapply(1:10,function(x) x*2, simplify = FALSE)

Mind that the use ox x, and not i, again, is purely consensual. In the example above, you see that by running
simplify = FALSE, sapply() produces identical results as lapply().

We finished the loops section above by combining for() and ifelse() to create a scoring dataset. In order to
do so, we created an empty matrix that we filled up with every iteration of the loop.

We can alternatively use sapply(), which will know how to simplify the outcome into a matrix what would
have been a list with lapply(). Besides, using the names of the variables in ìris with sapply() will allow
the resulting matrix to have the same variable names.
iris.score2 <-
sapply(colnames(iris)[-5],

function(x)
ifelse(iris[, x] < mean(iris[, x]), "small", "large"))

class(iris.score2)

If we had used lapply() instead, we would have obtained a list
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lapply(colnames(iris)[-5],
function(x)
ifelse(iris[, x] < mean(iris[,x]),

"small", "large"))

sapply() presumes by default that it is ok to simplify the result into a matrix because it reads an equal
amount of elements in each of the x. Then, it understands you may want those in a 2D dataset cause,
otherwise, you would have used lapply().

The chunk here below tries to explain that
iris.list <- as.list(iris[1:4])

sapply(names(iris.list),
function(x)
ifelse(iris.list[[x]] < mean(iris.list[[x]]), "small", "large"))

lapply(names(iris.list),
function(x)
ifelse(iris.list[[x]] < mean(iris.list[[x]]), "small", "large"))

# We remove the last element from the first element of the list
iris.list[[1]] <- iris.list[[1]][-150]

sapply(1:4,
function(x)
ifelse(iris.list[[x]] < mean(iris.list[[x]]), "small", "large"))

This is another example. Please notice that both lapply() and sapply() can be implemented in at least
to different ways, the difference being quite subtle. We can sub set and call upon x using indices or names.
The outcome in either case will be identical with lapply(), but not with sapply(). Indeed there is a subtle
difference with the latter, but it is noteworthy.
sample.list <- list(sample1 = sample(1:20,10),

sample2 = sample(1:20,10),
sample3 = sample(1:20,10))

lapply(1:length(sample.list), function(x) c(mean = mean(sample.list[[x]]),
sd = sd(sample.list[[x]])))

sapply(1:length(sample.list), function(x) c(mean = mean(sample.list[[x]]),
sd = sd(sample.list[[x]])))

lapply(names(sample.list), function(x) c(mean = mean(sample.list[[x]]),
sd = sd(sample.list[[x]])))

sapply(names(sample.list), function(x) c(mean = mean(sample.list[[x]]),
sd = sd(sample.list[[x]])))

We come back now to our ANOVA example from above and see what the alternative to the for() loop could
be.

This is the way we run the loop above.
res <- list()
for(i in 4:6)

res[[i-3]] <- summary(aov(genes.df[,i] ~ genotype * treatment, data = genes.df))
names(res) <- colnames(genes.df[4:ncol(genes.df)])
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And this could be the lapply() alternative
lapply(colnames(genes.df)[-c(1:3)],

function(x) summary(aov(genes.df[,x] ~ genotype * treatment,
data = genes.df)))

In this particular case, sapply() will produce also a list cause it can not figure out how to simplify the result.
However, there is a slight improvement when you use sapply() with the colnames of the dataset instead of
the indices: again, names of the variables are shown on the outcome, which is not the case with lapply().
sapply(colnames(genes.df)[-c(1:3)],

function(x) summary(aov(genes.df[,x] ~ genotype * treatment,
data = genes.df)))

6.3.2 tapply()

tapply() is used to summarise quantitative data according to the levels of qualitative variables, i.e. factors.
This is similar to what aggregate() does. It is most useful with data frames, most particularly when those
include both categorical data (i.e. factors) and quantitative data which, in any case, can not be the case
with matrices.

For instance:
iris
tapply(iris$Petal.Length, iris$Species, mean)
tapply(iris$Petal.Length, iris$Species, function(x) sd(x)/mean(x))

tapply() tends to simplification as well because simplify = TRUE by default. It can be tuned to FALSE, so
that the outcome will be a list.
tapply(iris$Petal.Length, iris$Species, function(x) sd(x)/mean(x), simplify = FALSE)

What if I want to run the same math function on all quantitative variables in your dataset? You can of
course run a loop:
m <- matrix(nrow = 3, ncol = 4)
for (i in 1:4)
m[,i] <- tapply(iris[[i]], iris$Species,

function(i) mean(i)/sd(i))
rownames(m) <- levels(iris$Species)
colnames(m) <- colnames(iris)[-5]

But you can also combine functions from the apply family. The code using sapply() and tapply() instead
of the loop is clearer. See here below:
sapply(colnames(iris)[-5],

function(x)
tapply(iris[[x]], iris$Species,

function(y)
mean(y) / sd(y)))

Notice the use of distinct notations for sapply() and tapply() iterations, namely x and y, because we are
not calculating upon the same elements.

If there is more than one factor in the dataset, you can use both with tapply(), so the function(x) you
choose to execute will be run for the combination of both factors.

To create a combination between variables, we can use interaction(), which renders all possible combinations
between the variables’ observations. The original variables might be of any nature, but the outcome of
interaction() will always be a factor:
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aux <- data.frame(cond = rep(c("Ctrl","Tr"), each = 4),
gtype = rep(c("KO","WT"), 4))

interaction(aux$cond, aux$gtype)

aux <- data.frame(n1 = rep(1:2, each = 4),
n2 = rep(3:4, 4))

interaction(aux$n1, aux$n2)

We will. use our genes.df dataset to see how that works with tapply().
sapply(colnames(genes.df)[-c(1:3)],

function(x)
tapply(genes.df[[x]],

interaction(genes.df$genotype, genes.df$treatment),
function(y)
mean(y)))

6.4 Functions
6.4.1 Coding a basic function

All the functions we have used so far come from built-ib or downloaded packages. However, you will also be
able to build functions created by yourself, and this is what we will be talking about in this chapter. You
may wonder why should you be writing your own functions. The main reason is a simple one: you won’t
have to re-code things you will be doing on a regular basis. That will imply:

1 - Fewer errors 2 - Better traceability 3 - Easier sharing of analysis pipelines as the The functions we will
be working here are quite simple and the advantages of building them might not seem obvious. Type the
following to see the source code of the aov() function to have a clearer idea of the advantages of wrapping
your analysis within a function.
aov # Without the brackets to see the source code

Every function in R, whether it comes from any library or your own coding, is executed calling its name,
followed by its arguments located between brackets. We have already seen that the arguments of a function
can be either, mandatory or optional, the latter presenting a default value in the coded function. Functions
are built or coded using the function called function(). When coding a function, we use () to define the
arguments of the function, and {} to define the actions to be taken with those arguments. Those curly
brackets ere not mandatory if the actions are coded in a single line.

Functions are R objects. Those coming from loaded packages will be visible in the environment of the library
they come from. Those created by you will be visible in your session environment, that is your workspace.
Therefore, they will be visible when you execute ls(). Likewise, you will be able to save() those functions
as a physical .RData file in your computer, and they will be also saved in the RData file when you run
save.image() to save your whole workspace.

Here below, a first example of a function coded with a single mandatory argument.
MyFunc <- function (x) x + 2

MyFunc <- function (x)
x + 2

How do you use your new function:
MyFunc
MyFunc()
MyFunc(3)
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MyFunc(5)
x <- MyFunc(4)
x

What if we code x as an optional argument?
MyFunc <- function (x = 3) x + 2
MyFunc()
MyFunc(12)

More about arguments in a function, including the order in which they are coded.
MyFunc <- function (a, b = 0) a + b
MyFunc (2,3)
MyFunc (5)
MyFunc (b = 5)
MyFunc (5,5)

MyFunc <- function (a, b) {a / b}
MyFunc (6,2)
MyFunc (2)
MyFunc (b = 3)
MyFunc (b = 3, a = 27)
MyFunc (3, 27)

Functions, of course, are not limited to numeric inputs and outputs.
greet_person <-
function(name, greeting = "Hello, ") {
paste0(greeting, name, "!")

}

greet_person("Alice")

Please notice that the greeting argument is optional
greet_person("Donald", g = "F*** off,")

6.4.2 The outcome of a function

When you execute a function, it produces a result according to what is stated on the last line, and only the
last line, in the function code. Look at this simple examples:
MyFunc <-
function (x) {
x + 2

}

MyFunc(3)

MyFunc <-
function (x) {
x + 2
xˆ2

}

MyFunc(3)
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MyFunc <-
function (x) {
x + 2
xˆ2
"this is pointless"

}

MyFunc(3)
MyFunc(1984654654678987464654)

Many functions, though, produce multiple results. The way to do so is: first you create within the function
and object containing those results and then you code the function to render that object. Therefore, it is
quite common to use a list to produce the results of a function. Here below we create a function, where the
output is a list.
MyFunc <-
function (x) {
list(

add.2 = x + 2,
square = xˆ2

)
"this is pointless"

}

Please note in the example above that the last line in the function code is the list. It is quite common to to
produce intermediate objects within the function that will be for further calculations and/or used in the final
outcome.
circle <-
function (r) {
p <- 2 * pi * r
a <- pi * r * r
list (radius = r,

perimeter = p,
area = a)

}

res <- circle (3)

res

a and p variables above belong to the circle() function environment, and they are not available in our
workspace.
a
p
ls()

Again, bear in mind that the last line in the function, and only the last line, defines the outcome of the
function. See these examples here, where I change the last line of the circle() function.
circle.bad <-
function (r) {
p <- 2 * pi * r
a <- pi * r * r
list (radius = r,

perimeter = p,
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area = a)
"whatever"

}
circle.bad(5)
circle.bad(20)

circle.bad <- function (r) {
p <- 2 * pi * r
a <- pi * r * r
"whatever"
list (radius = r,

perimeter = p,
area = a)

}
circle.bad(5)
circle.bad(20)

6.4.3 Using return(), stop(), warning(), and print().

return() is an old R function originally designed to return the outcome of a function. This means that if you
use it only in the last line, it will be redundant. For instance, the two functions here below produce exactly
the same results
MyFunc <- function (x) {
return(x + 2)

}

MyFunc(2)

MyFunc <- function (x) {
x + 2

}

MyFunc(2)

You can find in the right forums some rather heated-up geek discussions trying to settle whether return()
should be used in such cases. We will spare you the details, but we will make a few points about it.

return(), in fact, exits a function and returns a value. It is therefore used to specify the value that should
be returned when the function is called. Indeed, when return() is encountered in a function, it immediately
exits the function and returns the specified value. That is, an outcome is produced before reaching the last
line of the function code if return() is called before that last line is reached.
MyFunc <-
function (x) {
return("it stops here")
x + 2

}

MyFunc(2)
# which produces the same result as:
MyFunc <-
function (x) {
return("it stops here")
return(x + 2)

50



}

MyFunc(2)

Now, imagine I want to develop a function to detect whether a certain value is among the elements in my
vector, that I will call a
a <- sample(1:10, 6)

We can now build the function in at least two ways, one of them using return() and another one not using it.
give_me_five <-
function(x) {
if(5 %in% x)
return("I give you five!")

else (return("I don't give you five"))
}

give_me_five <-
function(x) {
if(5 %in% x)
res <- "I give you five!"

else(res <- "I don't give you five")
res
}

You pick the one that pleases you most. However, there is one thing that should be noted: return() exists
the function whenever it is called, before reaching the end of the function. We think this might be time
saving when an output can be produced early in a time-consuming function, thus sparing some time. Also,
using return() can make coding easier in complex functions.

Let us see another example, in which we code a function to calculate the surface of a rectangle/square or a
triangle. We let you decide which one reads better.
area_tri_tetra <-
function(base_or_length,

height_or_width,
nb_angles) {

if (nb_angles %in% c(3, 4) == FALSE)
return("ERROR: this function only works for surfaces with three or four angles")

if (nb_angles == 4)
return(base_or_length * height_or_width)

if (nb_angles == 3)
return(base_or_length * height_or_width / 2)

}

area_tri_tetra(2, 5, 6)
area_tri_tetra(2, 5, 4)
area_tri_tetra(2, 5, 3)

area_tri_tetra <-
function(base_or_length,

height_or_width,
nb_angles) {

if (nb_angles %in% c(3, 4) == FALSE)
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res <- "ERROR: this function only works for surfaces with three or four angles"
if (nb_angles == 4)
res <- base_or_length * height_or_width

if (nb_angles == 3)
res <- base_or_length * height_or_width / 2

res
}

area_tri_tetra(2, 5, 6)
area_tri_tetra(2, 5, 4)
area_tri_tetra(2, 5, 3)

You see in the example above that we used return() (or not, but let’s keep it simple here) to produce an
outcome that was, in fact, the product of a wrong input. That was not very elegant. instead, we should have
used stop() which also exits the function, but automaticcally produces the error message in the console.
area_tri_tetra <-
function(base_or_length,

height_or_width,
nb_angles) {

if (nb_angles %in% c(3, 4) == FALSE)
stop("This function only works for surfaces with three or four angles")

if (nb_angles == 4)
return(base_or_length * height_or_width)

if (nb_angles == 3)
return(base_or_length * height_or_width / 2)

}

area_tri_tetra(2, 5, 6)

Thus, stop() triggers errors. We can use warning() to produce warnings.
my_warning_function <-
function(x) {
# if (x < 0)
# warning("Input is negative. Results may be unexpected.")
sqrt(x)

}

my_warning_function(4)
my_warning_function(-4)

Beware of the difference: stop() exits the function, whereas warning() produces a warning, allowing the
function to pursue.
my_stop_function <-
function(x) {
if (x < 0)
stop("Input is negative. Are you dumb?")

sqrt(x)
}

my_stop_function(4)
my_stop_function(-4)

Some people mistake return() and print(). The latter will print at the console whatever it is asked at any
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given point in the code, but this will affect the rest of the function code.
MyFunc <-
function (x) {
print("whatever")
x + 2

}

MyFunc(15)

MyFunc <-
function (x) {
return("whatever")
x + 2

}

MyFunc(15)

Thus, print() is very useful to provide annotations as the function runs.
MyFunc <-
function (x) {
print(paste("I am adding 2 to", x))
x + 2

}

Let us see one last example that will allow us combine logical statements and raise awareness about the
importance of how the order of the commands might be important. Imagine we coded a function to tell
whether you should stay at home during the covid pandemic, depending on your fever and the pressence, or
not, of other symptoms.
covid_guideline <-
function (fever,

headache,
cough,
diarrhea) {

fever_38 <- fever >= 38
if (sum(fever_38, headache, cough, diarrhea) <= 2)

return ("Stay home and see how it evolves. Let us know if you notice further symptoms")
return("You must be tested for the COVID and remain confined")

}

covid_guideline(39, 0, 1, 1)
covid_guideline(39, 0, 1, 0)
covid_guideline(37.5, FALSE, TRUE, TRUE)
covid_guideline(37.5, FALSE, TRUE, "un peu")

Combine logical arguments
covid_guideline <-
function (fever,

headache,
cough,
diarrhea) {

fever_38 <- fever >= 38
if (sum(fever_38, headache, cough, diarrhea) <= 2 &

sum(fever_38, cough) == 2)
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return ("You should be tested for the COVID. Remain confined")
if (sum(fever_38, headache, cough, diarrhea) <= 2)

return ("See how it evolves. Let us know if you notice further symptoms")
return("You must be tested for the COVID Remain confined")

}

covid_guideline(39, 0, 1, 0)
covid_guideline(39, 1, 0, 0)

But bear in mind ht order in which you code the staments
covid_guideline <-
function (fever,

headache,
cough,
diarrhea) {

fever_38 <- fever >= 38
if (sum(fever_38, headache, cough, diarrhea) <= 2)

return ("See how it evolves. Let us know if you notice further symptoms")
if (sum(fever_38, headache, cough, diarrhea) <= 2 &

sum(fever_38, cough) == 2)
return ("You should be tested for the COVID. Remain confined")

"You must be tested for the COVID Remain confined"
}

covid_guideline(39, 0, 1, 0)
covid_guideline(39, 1, 0, 0)

6.4.4 Using a for loop within a function

We will finish this chapter seeing how to use a for loop within the function. First, let us introduce here the
%% operator: it returns the remainder of the division between the number preceding the operator and the one
after the operator.
27 %% 3
27 %% 2

27 %% 3 == 0
27 %% 2 == 0

Let us now code a function to tell if a given number is a prime number. Reminder: A prime number is a
natural number greater than 1 that is not a product of two smaller natural numbers.
is_prime <- function(n) {

if (n != round(n) | n <= 1){
stop ("Prime number definition applies to natural numbers higher than 1")

}
for (i in 2:sqrt(n)) {
if (n %% i == 0) {
print(paste(i,"is the smallest natural number by which",n,"is divisible"))
return(paste(n,"is not a prime number"))

}
}
return(paste(n,"is a prime number"))

}
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is_prime(97)

# Here is a small explanation on the definition of prime numbers
primes_100 <- c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97)
lapply(primes_100, function(x) 2:sqrt(x))

6.5 Time to work
1 - Create a function named power that takes two arguments, a base, and an exponent. Set the default value
of the exponent to 2. The function should return the result of raising the base to the given exponent.

2 - Use the power function you have just created to cube the vectors in the following list. Do so in three
ways: with a for loop, with lapply(), and with sapply()
numeric_list <- list(c(1, 2, 3),

c(4, 5, 6),
c(7, 8, 9))

3 - Use a for loop to create a function named sum_natural_numbers that takes a positive integer n as an
argument and returns the sum of the first n natural numbers. Provide an error message for cases in which
the input is not a positive integer.

4 - Create a function named filter_data that takes as arguments a data frame, a column name, and a
value. The function should return a new data frame containing only the rows where the specified column is
equal to the given value. Use that function with the genes.df dataset.

5 - Using the ifelse() function and the ATH dataset, create a variable saying whether each gene in that dataset
is long (longer than 2Kb), or short. How many shortand long genes are there?

Chapter 7: (A very little of) Statistics
According to the r-project website : R is ‘GNU S’, a freely available language and environment for
statistical computing and graphics which provides a wide variety of statistical and graphical techniques : . . . .
Stats and graphics, this is most of what R is about, though we should not forget pure dta wranggling. We
will have in this chapter an extremely light glimpse into R power on statistics. It has to be light, given the
numberless possibilities R offers in the field. Furthermore, new tools are implemented everyday into R, and
even the most experienced statisticians learn about many of them as they go.

7.1 Inferential statistics
If an statistical test is not proposed in R, I’d dare saying the text does not exist.
apropos("test")

And those are just default tests, without loading any specific library.

We will just focus for the time being on the function we use to perform a Student test, or t-test. We will
first create a simulated dataset, and will run the t.test() function.
test.data <- data.frame(x = rnorm(100), y = rnorm(100, mean=1))
my.tt <- t.test(test.data$x,test.data$y)
my.tt
class(my.tt)

Description of htest object: This class of objects is returned by functions that perform hypothesis tests (e.g.,
t.test(), wilcoxon.test() etc.), that contain information about the null and alternative hypotheses, the
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estimated distribution parameters, the test statistic, the p-value, and (optionally) confidence intervals for
distribution parameters. In fact, it is sort of formatting what, in essence, is a list.
length(my.tt)
names(my.tt)
my.tt$p.value

Why are the degrees of freedom not a whole number? The t.test() function assumes by default that the
variances of both samples are different (var.equal = FALSE). This makes sense because unequal variances
make for a more conservative option that the opposite. Truth is, when variances are different, we cannot
properly talk about t or Student test, but of Welch test, which is the one that is being performed in this
case with the t.test() function.

And how do we know if the variances are equal? Well, with a test. For instance, with the Fisher test for the
equality of variances. A small reminder: our null hypothesis is that variances are equal. A low p-value should
allow us to reject our null hypothesis and therefore tell that the variances are indeed different.
var.test(test.data$x, test.data$y)
var.test(test.data$x, test.data$y)$p.value

The result of the test does not allow us to reject the null hypothesis and we may conclude that the variances
are indeed equal. Hence, we can modify the variance parameter when running the t.test().
t.test(test.data$x, test.data$y, var.equal = TRUE)

You see that this time, it is not a Welch, but a t-test that has been performed. Notice that the degrees of
freedom are indeed 198 , i.e. (100 - 1) + (100-1).

Nullity test of the correlation coefficient: We can also easily test if both variables are correlated.
cor.test(test.data$x, test.data$y)

!! We can also test the normality of the data, for instance with the Kolomogorov-Smirnov test:

ks.test(test.data$x, test.data$y)

Does it make sense to test the normality of the whole dataset, all variables confounded?
?ks.test
ks.test(test.data$x,"pnorm")
ks.test(test.data$y,"pnorm")
mean(test.data$y)
ks.test(test.data$y,"pnorm",1)

I agree that the use of this last argument is not very clear for the non-initiated.

7.2 Descriptive statistics and some graphics
Here we return in part to the graphs for quantitative data discussed in previous chapters.
x <- runif(100)
y <- runif(100)
mean(x)
var(x)
sd(x)
min(x)
max(x)
?quantile
quantile(x);median(x)
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quantile(x,0.5)
quantile(x,0.9)

The boxplot() and hist() functions can not produce a graph (option plot=FALSE).

The stem() function produces a stem-and-leaf diagram (stem and leaf) which gives a more “rustic” view of
the distribution of data than a histogram, though the information it gives might be highly explanatory.

The hist() function provides options to change the appearance of the histogram.
boxplot(x)

hist(x)

boxplot(x, plot = FALSE)
cor(x,y)
cor(x,y,method = "spearman")
stem(x)
stem(y)
x[25] = 2
res = boxplot(x)

res
hist(x)

x[25] = runif(1)
hist(x, density = 10)

hist(x, plot = FALSE)
hist(x, nclass = 5)

7.3 Linear regression and ANOVA
Student test compares the means of two samples, or just of one sample compared to an expected mean. When
more samples are involved and/or when different factors must be considered (genotype and treatment, for
instance), then it is likely we will perform a regression and an ANOVA.
head(cars)
cars.lm <- lm(dist ~ speed, data=cars)
summary(cars.lm)

Let us draw all that.
plot(cars)
abline(cars.lm)

plot(cars, ylim = c(-20, 120), xlim = c(0,25))
abline(cars.lm)

That summary gives a lot of information and the following paragraph will tell about it. We will focus on
some of the indicators on the Coefficients part.

The first column on the Coefficients matrix tells us about the Estimates of the linear regression, that is,
the intercept and the slope of the model: y = -17.58 + 3.93*x, which is the same as dist = -17.58 +
3.93*speed. The units of speed and dist being, respectively, miles per hour and feet, the slope of the line,
i.e. 3.93, tells us that for every m/h speed is increased, the distance to stop de the car increases in 3.93 feet.
The Std. Error columns tells about the robustness of the afore mentioned Estimates. The calculation of
that Std Error is a rather complex one to be explained here (or anywhere, to tell the truth). The t value
quantifies how many standard errors our coefficient estimate is far away from 0, and it is calculated by
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multiplying the Esimate by the Std. Error. The higher it is, the further the Estimate is away from 0. And
lastly, Pr is the Probability of getting such a (o more extreme) t value. Low Pr equals to low p-value, equals
low probability of your Estimate being zero. The last three lines in the Summary are highly explanatory.
The Multiple R-squared number tells us that 65% percentage of the total variability in the distance might
be explained by the speed. That is, speed does not explain everything, but it explains a big deal nonetheless.
In fact, that last line, the one reflecting on the F-statistic and its p-value tells us how well speed predicts
distance. The low p-value indicates that speed explains distance much better that the null model, that is
the one where speed des not play any influence on distance, that is the mean value of distance. That F
statistic and its p-value is what you obtain when you run an ANOVA.
anova(lm(dist ~ speed, data = cars))
aov(dist ~ speed, data = cars)
summary(aov(dist ~ speed, data = cars))

Chapter 8: Graphics
In this chapter we will focus on some basic graphic features in R. Graphics are one of the strong points
in R, allowing endless possibilities. Moreover, in the last few years there have been great efforts from the
community to build strong and rich resources that provide reproducible, elegant and meaningful graphical
outputs. One of the packages devoted to graphics is ggplot2, which has become sort of the golden standard
in R graphics. This package is part of what its main developer, Hadley Wickham, calls tidyverse, a series of
packages or libraries dealing with data treatment sharing the same grammar and logic. We will be covering
tidyverse in another course that you may consider as a second part to this one.

Here we will be covering basic graphic features because, being beginners as you are supposed to be, we
encourage you to learn producing richer R graphics outputs straight from ggplot2. This chapter will allow
you to produce quick, relevant graphics on-the-go. In any case, you will grasp the importance of the plot
keyword in R by running help.search(“plot”).

8.1 Discrete data
Functions such as pie() and barplot(), as is happens with most graphic functions in R, have a very large
number of argument to modify the appearance of the resulting graph.
vec <- c(12,10,7,13,26,16,4,12)
pie(vec)

pie(vec,clockwise = T)

names(vec) <- LETTERS[1:8]
pie(vec)

barplot(vec)

vec2 <- vec*2
plot(vec,vec2)

plot(iris$Sepal.Length,iris$Petal.Length)

plot(vec,vec2, col = "red")

plot(vec,vec2, col = 2)

plot(vec,vec2, col = 3)

colors()
plot(vec,vec2, col = "wheat3")
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plot(vec,vec2, col = 1:7)

plot(vec,vec2, pch = 17)

plot(vec,vec2, pch = 15)

help(par)

The par(mfrow=c(x,y)) command splits the graphics window into x rows and y columns and includes the
upcoming graphics row by row.
par(mfrow=c(2,2))
help(par)
pie(vec)
barplot(vec)
plot(vec,vec2)
dev.off()

You may came back to a single-graph layout by executing dev.off() or par(mfrow=c(1,1))
par(mfrow = c(1,1))
barplot(vec, col = 1:8)

barplot(vec)

barplot(vec, col = 3)

barplot(vec, col = rep(c(2,4),4))

barplot(vec, col = rep(c(2,4), each = 4))

barplot(vec, col = "white", border = rep(c(2,4),4))

dotchart(vec)

par(bg="lightgrey")
dotchart(vec,pch = 16,col = 1:8)

dotchart(vec,pch = 21,col = 1:8)

dotchart(vec,pch = 15,col = 1:8)

par(bg="white")

8.2 Quantitative data

x <- rnorm(50) # Data simulation from a normal law, ?rnorm for more information

boxplot(x)

hist(x)

barplot(x)

stripchart(x)

barplot(x)
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iris
class(iris)
summary(iris)
boxplot(iris)

boxplot(iris, las = 2)

boxplot(iris$Sepal.Length)

boxplot(Sepal.Length ~ Species, data = iris)

boxplot(Sepal.Length ~ Species, data = iris, las = 2)

boxplot(Sepal.Length ~ Species, data = iris)

boxplot(Sepal.Length ~ Species, data = iris, col = 2:4)

boxplot(Sepal.Length ~ Species, data = iris, border = 2:4, col = "white")

8.3 Plotting two variables on x and y
In order two plot two variables on x and y, respectively, plot(var1, var2) suffices. We will see here how to
do so, and also how to add extra features to your plot, regardless the fonction you used to produce, let that
be plot(), boxplot(), hist() etc.
x<-seq(-10, 10, l = 50)
plot(x,sin(x))

plot(x, sin(x), type = "l")
abline(v = 0, col = "blue", lwd = 5, lty = 3)
abline(h = sin(0.7), col = 3)
text(-5, -0.5, "whatever", font = 3)
lines(c(-10,10), c(-1,1), col = 2)

help(abline)
help(lines)

The graphical options are listed in the Graphical Parameters section of help(par). The arguments main,
xlab, ylab, sub..., are used to place the legends of the axes and the graph.
par(mfrow = c(1,2))
plot(x, sin(x), type="l", col = 1, main = "sinus")
plot(x, cos(x), type="b", col= 3, xlab = "Abscisses")

8.4 Export of graphics
In RStudio, you can use the Export tab of the graphic window to export your graphic. However, for the
shake of traceability we would suggest you use the functions associated with saving graphics files: bmp(),
jpeg(), png(), pdf(), postscript(). The procedure to follow is as follows:

1. Create a graphics file to which the graphics output is redirected

2. Draw the graph: the graph does not appear on the screen.

3. Close the file. Don’t forget this step! The graph output will then return to the screen for the next plot.

Those functions will allow you determine figure size and resolution. Also, bear in mind that , whereas png or
jpeg files, for example, will only accept one page per file, pdf format will accept as many pages as you feed
in before closing the file by executing, as always, dev.off().
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png("myboxplot.png")
boxplot(Sepal.Length ~ Species, data = iris, col = 2:4)
dev.off()

pdf("mygraphs.pdf")
plot(1:100)
text(20,80,"abcdef")
pie(vec)
dev.off()

pdf("iris-boxes.pdf")
for (i in 1:4)
boxplot(iris[[i]] ~ iris$Species, col = 2:4)

dev.off()
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