CHEBYSHEV POLYNOMIALS AND WIDOM FACTORS

Jacob CHRISTIANSEN

Lund University jacob_stordal.christiansen@math.lth.se

Let $\mathsf{E} \subset \mathbb{C}$ be an infinite compact set and denote by T_n the minimax (or Chebyshev) polynomials of E , that is, the monic degree n polynomials that minimize the sup-norm on E . A classical result of Szegö states that $||T_n||_{\mathsf{E}} \geq \operatorname{Cap}(\mathsf{E})^n$ for all n, a lower bound that doubles when $\mathsf{E} \subset \mathbb{R}$. More recently, Totik proved that for real subsets, $||T_n||_{\mathsf{E}}/\operatorname{Cap}(\mathsf{E})^n \rightarrow 2$ if and only if E is an interval.

We shall introduce the so-called Widom factors by

$$W_n(\mathsf{E}) := \frac{\|T_n\|_{\mathsf{E}}}{\operatorname{Cap}(\mathsf{E})^n}$$

and pose the question if there are more subsets of the complex plane for which $W_n(\mathsf{E}) \to 2$. It appears the answer is indeed affirmative for certain polynomial preimages. Interestingly, our proof relies on properties of the Jacobi orthogonal polynomials due to Bernstein. We shall also settle a conjecture of Widom concerning Jordan arcs and discuss related open problems.

The talk is based on joint work with B. Eichinger (TU Wien) and O. Rubin (Lund).

