# Ginsparg-Wilson, Overlap Fermion, and extensions

# Taro Kimura ♠ 木村太郎

Institut de Mathématiques de Bourgogne, Université Bourgogne Europe, CNRS







Joint work with M. Watanabe (Nagoya U.) [2309.12174]

# Introduction

- Quantum Field Theory: universal framework in theoretical physics
- Lattice Field Theory: non-perturbative formulation of QFT
  - confinement in lattice gauge theory: Wilson's formulation
  - computational precision science: QCD, Standard Model
  - microscopic model for cond-mat physics
- Fermion on a lattice: doubling vs (chiral) anomaly
  - theoretical challenges: chiral gauge theory, topological phases
  - many avatars: Wilson, staggered, SLAC, domain-wall, overlap...

# Lattice fermion and doubling

- Discretization of Dirac operator:  $D = \gamma^{\mu} \nabla_{\mu} m$ 
  - difference operator:  $\nabla_{\mu}\psi(x) = \frac{\psi(x+a\hat{\mu}) \psi(x-a\hat{\mu})}{2a} \xrightarrow{a \to 0} \partial_{\mu}\psi(x)$
  - (Euclidian) gamma matrices:  $\gamma^{\mu}$ , lattice spacing: a, unit vector:  $\hat{\mu}$
- Momentum space representation:  $(p_{\mu} \in [0, 2\pi); a = 1)$

$$D(p) = i\gamma^{\mu} \sin p_{\mu} - m \longrightarrow \begin{cases} +i\gamma^{\mu}p_{\mu} - m & (p_{\mu} \ll 1) \\ -i\gamma^{\mu}q_{\mu} - m & (p_{\mu} = \pi + q_{\mu}, q_{\mu} \ll 1) \end{cases}$$

#### Nielsen–Ninomiya theorem

Imposing translational invariance, hermiticity, and locality, there exists an equal number of left-handed and right-handed chiral fermions.

• Chiral theories?: chiral anomaly, chiral effects, chiral gauge theory...

# Realizations

- Naive fermion: (many) doublers
- Wilson fermion: no doublers, but chiral symmetry violated
- Staggered fermion: (reduced) doublers, "flavored" chiral symmetry
- SLAC fermion: non-local formulation
- Minimal-doubling fermion: #{doublers} = 2, lower spatial symmetry
- Domain-wall fermion: boundary of the extra dimention
- Overlap fermion: modified chiral symmetry

# Ginsparg–Wilson relation

$$\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$$

[Ginsparg-Wilson '82]

# **Overlap** fermion

- Overlap Dirac operator:  $D_{ov} = \frac{1}{2a}(1-V)$ [Neuberger '98]  $i\gamma^{\mu}p_{\mu}$ • unitary op.:  $\gamma_5 V \gamma_5 = V^{\dagger} = V^{-1}$  lattice spacing: a •  $\gamma_5$ -hermiticity:  $\gamma_5 D \gamma_5 = D^{\dagger}$  $\frac{1}{2a}$ • GW relation:  $\gamma_5 D_{\rm ov} + D_{\rm ov} \gamma_5 = 2a D_{\rm ov} \gamma_5 D_{\rm ov}$

- Construction of  $D_{ov}$  in d-dim
  - Start with d-dim system (Wilson-Dirac operator D<sub>W</sub> with mass)
  - 2 Add an extra dimension of size  $N_{\text{ext}}$  with open b.c.
  - **③** Integrate the extra dimension and take  $aN_{\text{ext}} \rightarrow \infty$ ,  $a \rightarrow 0$

$$V = \frac{D_{\mathsf{W}}}{\sqrt{D_{\mathsf{W}}^{\dagger} D_{\mathsf{W}}}} = \gamma_5 \frac{H_{\mathsf{W}}}{\sqrt{H_{\mathsf{W}}^2}}, \quad H_{\mathsf{W}} = \gamma_5 D_{\mathsf{W}}$$





•  $N_{\rm ext}$  dependence of the spectrum:  $V^{(N_{\rm ext})} \xrightarrow{N_{\rm ext} \to \infty} V$ 



• Wilson-Dirac Hamiltonian in d = 2 (momentum space rep.):

$$H_{\rm W} = \sigma_1 \sin p_1 + \sigma_2 \sin p_2 + (m + 2 - \cos p_1 - \cos p_2)\sigma_3$$

• Band flattening: 
$$H_{\rm W}^{(N_{\rm ext})} = \gamma_5 V^{(N_{\rm ext})} \xrightarrow{N_{\rm ext} \to \infty} \frac{H_{\rm W}}{\sqrt{H_{\rm W}^2}} = \operatorname{sgn}(H_{\rm W})$$



### Chiral anomaly and Dirac index

• Chiral transformation:  $(\psi, \bar{\psi}) \mapsto (\gamma_5 \psi, \bar{\psi} \gamma_5), \ \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi \mapsto \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$ 

• Fujikawa method:  $\mathscr{D}\overline{\psi}\mathscr{D}\psi \mapsto \mathscr{D}\overline{\psi}\mathscr{D}\psi \times \text{Jacobian}$ 

- Ginsparg–Wilson relation:  $\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D \iff \gamma_5 D + D\hat{\gamma}_5 = 0$ where  $\hat{\gamma}_5 = \gamma_5(1 - 2aD) = \gamma_5 V$  implying modification: [Lüscher]  $(\psi, \bar{\psi}) \mapsto (\hat{\gamma}_5 \psi, \bar{\psi} \gamma_5) = (\gamma_5 V \psi, \bar{\psi} \gamma_5)$ ,  $\mathscr{D} \bar{\psi} \mathscr{D} \psi \mapsto \mathscr{D} \bar{\psi} \mathscr{D} \psi \times \det V^{-1}$
- Atiyah–Singer index theorem and chiral anomaly:  $\operatorname{ind} D = \partial^{\mu} j_{\mu}^{5}$

$$\operatorname{ind} D = \dim \ker D - \dim \operatorname{coker} D = \frac{1}{8\pi^2} \int_M \operatorname{tr} F \wedge F + (R\operatorname{-term}) \in \mathbb{Z}$$

Overlap operator index

ind 
$$D_{\mathsf{ov}} = \operatorname{tr} \gamma_5 D_{\mathsf{ov}} = -\frac{1}{2} \operatorname{tr} \gamma_5 V = -\frac{1}{2} \operatorname{tr} \left( \frac{H_{\mathsf{W}}}{\sqrt{H_{\mathsf{W}}^2}} \right) = -\frac{1}{2} \eta(H_{\mathsf{W}})$$

[Hasenfratz-Laliena-Niedermayer] [Lüscher] [Adams]

- Q. Is it all about the overlap fermion?
- Hint: 10-fold way classification of free fermion systems [Altland–Zirnbauer]
   → Wilson–Dirac system belongs to class A (m ≠ 0)
- Q. Overlap fermion for other symmetry classes with C, T?

• 
$$C = CK$$
,  $T = TK$   
where  $CHC^{-1} = -H^*$ ,  $THT^{-1} = +H^*$ ,  $KOK = O^*$   
with  $C^2 = \pm 1$ ,  $T^2 = \pm 1$ 

• Overlap fermion in odd-dimension: [Bietenholz-Nishimura]

$$D = \frac{1}{2a}(1-V)$$
,  $V^{\dagger} = V^{-1}$  (no  $\gamma_5$ -hermiticity condition)

• Remark: 
$$H_{3d} = \begin{pmatrix} 0 & m + i\vec{\sigma} \cdot \vec{p} \\ m - i\vec{\sigma} \cdot \vec{p} & 0 \end{pmatrix} \Longrightarrow \{\gamma_5, H_{3d}\} = 0 \text{ (class AIII)}$$

• Unitary operator:

$$V^{\dagger} = V^{-1} = \gamma_5 V \gamma_5 \implies V \in \frac{\mathrm{U}}{\mathrm{U} \times \mathrm{U}}, \quad V^{\dagger} = V^{-1} \implies V \in \mathrm{U}$$

| Symmetry class $~ \mathscr{C}$ |       | Classifying space $S_{\mathscr{C}}$ | T-evolution operator $U_{\mathscr{C}}$ | $\mathcal{T}^2$ | $\mathcal{C}^2$ | x |
|--------------------------------|-------|-------------------------------------|----------------------------------------|-----------------|-----------------|---|
| A                              | $C_0$ | $\rm U/U 	imes U$                   | U                                      | 0               | 0               | 0 |
| AIII                           | $C_1$ | U                                   | $\rm U/\rm U 	imes \rm U$              | 0               | 0               | 1 |
| AI                             | $R_0$ | $O/O \times O$                      | U/O                                    | $^{+1}$         | 0               | 0 |
| BDI                            | $R_1$ | О                                   | $O/O \times O$                         | +1              | +1              | 1 |
| D                              | $R_2$ | O/U                                 | О                                      | 0               | +1              | 0 |
| DIII                           | $R_3$ | U/Sp                                | O/U                                    | $^{-1}$         | +1              | 1 |
| All                            | $R_4$ | $\rm Sp/Sp \times Sp$               | U/Sp                                   | $^{-1}$         | 0               | 0 |
| CII                            | $R_5$ | $_{\mathrm{Sp}}$                    | $\rm Sp/Sp \times Sp$                  | $^{-1}$         | -1              | 1 |
| С                              | $R_6$ | $_{\rm Sp/U}$                       | $_{\mathrm{Sp}}$                       | 0               | -1              | 0 |
| CI                             | $R_7$ | U/O                                 | $\mathrm{Sp/U}$                        | +1              | -1              | 1 |

### 10-fold way classification of overlap operator

For class  $\mathscr{C}$  system, the unitary operator in the overlap operator takes a value in the classifying space  $S_{\mathscr{C}}$ :

$$D_{\mathsf{ov}} = \frac{1}{2a}(1-V)$$
 where  $V \in S_{\mathscr{C}}$ 

[K-Watanabe]

## Ginsparg–Wilson relation revisited

• Ginsparg–Wilson relation:  $\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$ 

non-linear deformation of chiral symmetry  $\{\gamma_5, D\} = 0$ 

• Reformulation: [Bietenholz–Nishimura]

$$\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D \xrightarrow{\gamma_5 D\gamma_5 = D^{\dagger}} D + D^{\dagger} = 2aDD^{\dagger}$$

• deformation of anti-hermiticity  $D + D^{\dagger} = 0$  (masslessness)

### Ginsparg–Wilson relation for $\mathcal{C}, \mathcal{T}$ symmetry

Ginsparg–Wilson relation for  $\mathcal{C}, \mathcal{T}$  symmetric system is given by

$$CD + D^{\mathsf{T}}C = 2aD^{\mathsf{T}}CD$$
,  $TD + D^*T = 2aD^*TD$ 

Defining  $\hat{C}=CV$  and  $\hat{T}=TV,$  it is equivalent to

$$CD + D^{\mathsf{T}}\hat{C} = 0, \qquad TD + D^*\hat{T} = 0$$

which implies anomalous  $\mathcal{C}, \mathcal{T}$  transformations,

$$\mathcal{C}: (\psi, \bar{\psi}) \mapsto (\hat{C}\bar{\psi}^{\mathsf{T}}, \psi^{\mathsf{T}}C^{-1}), \qquad \mathcal{T}: (\psi, \bar{\psi}) \mapsto (\hat{T}\psi, \bar{\psi}T^{-1})$$

AQFT 2025 @ Tours

Taro Kimura (IMB/UBE)

10 / 12

# $\mathcal{C}, \mathcal{T}$ anomaly and mod-two index

- $\bullet$  Ginsparg–Wilson relation for  $\mathcal{C}, \mathcal{T}$  symmetry implies anomalies of:
  - Majorana(-Weyl) fermion [Huet–Narayanan–Neuberger] [Inagaki–Suzuki]
  - *T*-invariant topological insulator [Fukui–Fujiwara] [Ringel–Stern]

#### Mod-two overlap index

Let  $\nu = \operatorname{ind} D_{ov} = \dim \ker D_{ov} \in \mathbb{Z}_2$  be the mod-two index of  $D_{ov}$  for the class with  $V \in O$ , O/U. Then, we have

$$(-1)^{\nu} = \det V$$

[K-Watanabe]

• Remark: mod-two index in the domain-wall fermion formalism

[Fukaya et al.]

# Summary

• Ginsparg–Wilson relation and overlap fermion:

$$D = \frac{1}{2a}(1-V), \qquad \gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$$

- 10-foldway of overlap fermion:  $V \in S_{\mathscr{C}}$  (classifying space)
- Ginsparg–Wilson relation for  $\mathcal{C}, \mathcal{T}$  symmetric system:

 $CD + D^{\mathsf{T}}C = 2aD^{\mathsf{T}}CD\,, \qquad TD + D^*T = 2aD^*TD$ 

• Curved space-time (with torsion)?



[wikipedia]