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Abstract: Zel’dovich and Polnarev suggested that parti-

cles hit by a burst of gravitational waves generated by flyby

would merely be displaced. Their prediction is confirmed by

fine-tuning the derivative-of-a-Gaussian wave profile pro-

posed by Gibbons and Hawking, or analytically by its ap-

proximation by a Pöschl-Teller potential. The study is ex-

tended to higher-order derivative profiles as proposed for

gravitational collapse.
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Memory effect

A. Velocity VM J. Ehlers and W. Kundt
“Exact solutions of the gravitational field equations,”

in Gravitation: An Introduction to Current Research, edited

by L. Witten (Wiley, New York, London, 1962).

Particles hit by GW fly apart with non-zero con-
stant velocity.

B. Displacement DM Zel’dovich, Polnarev
“Radiation of gravitational waves by a cluster of super-

dense stars,” Astron. Zh. 51, 30 (1974)

. . . [for] two noninteracting bodies (such as satel-
lites). [ . . . ] the distance should change, and this
effect might possibly serve as a nonresonance de-
tector. [ . . . ] their relative velocity will become

vanishingly small as flyby concludes.
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G. W. Gibbons S. W. Hawking “Theory of the

detection of short bursts of gravitational radiation,” Phys.

Rev. D 4 (1971) 2191.

Sandwich wave: burst of gravitational wave. Space-
time non-flat only in short interval uB ≤ u ≤ uA
of retarded time [Wavezone]. Flat both in Be-
forezone u < uB that the wave has not reached
yet, and in Afterzone uA < u where has already
passed,

A(U) 6= 0 only in “wave zone” UB < U < UA.

Gibbons - Hawking flyby ∼ 1st derivative of Gaus-
sian,

A(U) =
1

2

d(e−U
2
)

dU
. (1)
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Geodesics in Brinkmann* coordinates

1. Plane GW in 1 space + 2 lightlike dimensions

(toy model).

gµνX
µXν = dX2 + 2dUdV −A(U)X2dU2 (2)

Sandwich wave: A(U) 6= 0 only in “wave zone”

UB < U < UA.

For non-tachyonic geodesic: Jacobi invariant

m
2 = gµνẊ

µẊν = const ≤ 0 . (3)

Massive: m2 < 0, Lightlike m2 = 0.

* M. W. Brinkmann, “Einstein spaces which are mapped

conformally on each other,” Math. Ann. 94 (1925) 119–

145.
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Lightlike geodesics m2 = 0 :

d2X

dU2
+

1

2
AX = 0 , (4a)

d2V

dU2
−

1

4

dA
dU

(X)2 − 1
2A

d(X2)

dU
= 0 . (4b)

V (U) horizontal lift of X(U)

Coordinate X decoupled from V . Projection into

transverse space is V -independent.

Conversely, lightlike geo determined by eqn. (4a)

with U viewed as Newtonian time.

L. P. Eisenhart, “Dynamical trajectories and geodesics”,

Annals. Math. 30 591-606 (1928).

C. Duval, G. Burdet, H. P. Kunzle and M. Perrin, “Bargmann

Structures and Newton-cartan Theory,” Phys. Rev. D 31

(1985), 1841-1853

C. Duval, G. W. Gibbons and P. Horvathy, “Celestial me-

chanics, conformal structures and gravitational waves,”

Phys. Rev. D 43 (1991), 3907-3922 [arXiv:hep-th/0512188

[hep-th]].
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Gaussian profile

AGauss(U) =
k
√
π
e−U

2
(5)

Outside (approximate) Wavezone Ub < U < Ua

both velocity and force vanish ⇒ free motion

(Newton).

Only numerical solutions.

•D = 1 transverse dim. For randomly chosen

parameters: : VM .
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Miracle ! Numerical Fine-tuning critical value

k = kcrit DM !
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Half-wave. X : trajectory , dX/dU : velocity , d2X/dU2 :

force.

DM also for higher amplitudes when Wavezone

accommodates an integer number of half-waves

∼ old quantum mechanics !

X → ψ, U → x : DM (4a) ∼ zero-energy bound

states of time-indept Schrödinger eqn

−
d2ψ

dx2
−Aψ = 0 . (6)

Non-normalizable ground state with E = 0 en-

ergy. (SUSY ?)

7



Gaussian reminiscent of Pöschl-Teller (PT),

APT (U) =
k

2 cosh2U
, (7)

-4 -2 2 4
U

0.1

0.2

0.3

0.4

0.5



PT:PT = 1

2 cosh2U

Gauss:G = 1

π
e
-U2

Gaussian bell (dashed) is well approximated by Pöschl-

Teller potential (7) (solid line).

Putting k = km = 4m(m+ 1) time-indept Schr eqn

d2X

dU2
+
m (m+ 1)

cosh2U
X = 0 . (8)

Non-normalizable ground state with E = 0 en-

ergy.
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Particle at rest before burst arrives:

X(U = −∞) = X0, Ẋ(U = −∞) = 0 . (9)

DM requires X(U) → const for U → ∞ ⇒
solution propto Legendre polynomial,

Xm(U) = Pm(tanhU), m = 1, 2, . . . , (10)
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V (out) = V0 = V (in) . (11)

Outside Wave zone, motion purely transverse.
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Massive geodesics

Results extend to particles with nonzero relativis-

tic mass, m 6= 0.

Then∗ V picks up linear-in-U term,

Vm(U) = Vnull(U)− (
m

2m
)2U , (12)

where m = pV is conserved quantity generated

by Killing vector ∂V (non-relativistic mass in E-D

framework). In units where m = −1 and m = 1,

vertical coordinate (12) gets extra term −1
2U .
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∗M. Elbistan et al. Annals Phys. 418 (2020), 168180
[arXiv:2003.07649 [gr-qc]], eqn. # (VI.2).
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Switching from (lightlike) V to relativistic posi-

tion coordinate, Z = V + 1
2U yields

Zm(U) = V0 = const (13)

DM for X coordinates no displacement for Zm !!
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•D = 2 transverse dim: potential A(X2
1	X

2
2).

Attractive in X2 but repulsive in X1 sector.

DM only for X2 component: “half DM”
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DM for flyby ??

Zel’dovich-Polnarev : pure displacement for flyby

(give no proof). Gibbons-Hawking : D=2. flyby

profile propto first derivative of Gaussian,

A(U) =
d

dU

(
k
λ
√
π
e−λ

2U2
)

(14)

VM . Can become DM ? Miracle ! for (numer-

ically found) specific choices k = km DM for

both components !
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Idem for Pöschl-Teller -flyby profile

Kij(U)XiXj =
k

2 cosh2U

(
(X1)2 − (X2)2

)
. (15)

Fine-tuning ⇒ DM for both components when

km = 4m(m + 1), m = 1,2 . . . ∼ integer number
of half-waves.
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Confirmed analitically ∼ confluent Heun fcts.
AoP 473 (2025), 169890 [arXiv:2407.10787 [gr-qc]]
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Higher order derivatives in 2 tr dim

• d = 2 Braginsky - Thorne
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• d = 3 gravitational collapse (Gibbons-Hawking)
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CONCLUSION

Particles at rest hit by a burst of GWs fly apart,

moving freely along straight lines: VM .

For exceptional (“quantized”) values of wave pa-

rameters, which correspond to integer # of half-

wave trajectories in wave zone, DM is possible,

confirming prediction of Zel’dovich-Polnarev.

Shklovsky and Zel’dovich (1977).
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