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Abstract: Zel’dovich and Polnarev suggested that parti-

cles hit by a burst of gravitational waves generated by flyby

would merely be displaced. Their prediction is confirmed by
fine-tuning the derivative-of-a-Gaussian wave profile pro-
posed by Gibbons and Hawking, or analytically by its ap-
proximation by a POschl-Teller potential. The study is ex-
tended to higher-order derivative profiles as proposed for

gravitational collapse.
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Memory effect

A. Velocity J. Ehlers and W. Kundt

“Exact solutions of the gravitational field equations,”
in Gravitation: An Introduction to Current Research, edited
by L. Witten (Wiley, New York, London, 1962).

Particles hit by GW fly apart with non-zero con-
stant velocity.

B. Displacement [l D i~ =7

“Radiation of gravitational waves by a cluster of super-
dense stars,” Astron. Zh. 51, 30 (1974)

... [for] two noninteracting bodies (such as satel-
lites). [ ... ] the distance should change, and this

effect might possibly serve as a nonresonance de-
tector. [ ... ] their NEElEaVERYEelelaA will become

Vel Sallale S uENR as flyby concludes.



detection of short bursts of gravitational radiation,” Phys.
Rev. D 4 (1971) 2191.

Sandwich wave: burst of gravitational wave. Space-
time non-flat only in short interval up < u < uy
of retarded time [Wavezone]. Flat both in Be-
forezone u < up that the wave has not reached
yet, and in Afterzone uy, < uw where has already
passed,

flat Beforezone

4—
downwind

flat Afterzone

A(U) # 0 only in “wave zone" Ug < U < Uy.

Gibbons - Hawking flyby ~ 1st derivative of Gaus-
sian,
1d(e=U?%

A(U)=§ e (1)




Geodesics in Brinkmann* coordinates

1. Plane GW in 1 space + 2 lightlike dimensions
(toy model).

g XPXY = dX? + 2dUdV — A(U)X2dU? (2)
Sandwich wave: A(U) # 0 only in “wave zone”

Up <U < Uy,.

For non-tachyonic geodesic: Jacobi invariant

m? = g X*XY = const < 0. (3)
Massive: m2 < 0, Lightlike m2 = 0.
* M. W. Brinkmann, “Einstein spaces which are mapped

conformally on each other,” Math. Ann. 94 (1925) 119—
145.



Lightlike geodesics m?2 =

d?X
02 + AX =0, (4a)
dV  1dA,_ - d(X?2)

(X)) 142" 2 — 0. 4b
dU2  4dU (X)7 =24 dU (4b)

V(U) horizontal lift of X (U)

Coordinate X decoupled from V. Projection into
transverse space is V-independent.

Conversely, lightlike geo determined by egn. (4a)
with U viewed as Newtonian time.
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AGCLU,SS(U) — o

Gaussian profile

k U2

VT
Outside (approximate) Wavezone U, < U < Ugq

both velocity and force vanish = free motion
(Newton).

Only numerical solutions.

e — 1 transverse dim. For randomly chosen
parameters: : VM.
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Wille=lellsSBl N umerical Fine-tuning ~» critical value
k’ — kcm’t DM I

AU) ==t eV, k=9.51455
e

-4 -2 2 4 v___ A(U)

Half~-wave. X : trajectory, dX /dU : velocity,

DM also for higher amplitudes when Wavezone
accommodates an integer number of half-waves
~ old quantum mechanics !

X -y, U—x2 : DM (4a) ~ zero-energy bound
states of time-indept Schrodinger eqgn
d2
—F Ay =0. §)
A (6)
Non-normalizable ground state with £ = 0 en-

ergy. (SUSY ?)



Gaussian reminiscent of Poschl-Teller (PT),

k
2cosh? U’

AU =

(7)

1
— PT: AT =
2cosh? U

2
- - Gauss: AC=—L¢eV
Vi

Gaussian bell (dashed) is well approximated by Pdschi-
Teller potential (7) (solid line).

Putting k = km, = 4m(m + 1) time-indept Schr egn

X  m((m-4+1)
2 2 X
dU cosh<U

—0. (8)

Non-normalizable ground state with £ = 0 en-
ergy.



Particle at rest before burst arrives:

X(U=-)=Xqg, X(U=-0)=0. (9)

DM requires X(U) — const for U — c© =
solution propto Legendre polynomial,

Xm(U) = Pp(tanhU), m=1,2,..., (10)

“Vertical" component V(U)

V(out) = Vo = V(in). (11)

Outside Wave zone, motion purely transverse.



Massive geodesics

Results extend to particles with nonzero relativis-
tic mass, m = 0.

Then* V picks up linear-in-U term,

Va(U) = Vo (U) = (5

m

where m = py, IS conserved quantity generated

by Killing vector 9y, (non-relativistic mass in E-D

framework). In units where m = —1 and m = 1,
vertical coordinate (12) gets extra term —3U.

Y2 U . (12)

— m=1

*M. Elbistan et al. Annals Phys. 418 (2020), 168180
[arXiv:2003.07649 [gr-qc]], ean. # (VI.2).
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Switching from (lightlike) V' to relativistic posi-
tion coordinate, Z =V 4 iU vyields

Zn(U) = V = const (13)

DM for X coordinates JaleleliSolElel=lpal=lgh® for 2, !!
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XZ

e D = 2 transverse dim: potential A(X?0X3).

Attractive in X2 but repulsive in X1 sector.

DM only for X2 component: “half DM"

m=1 m=2 m=3
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DM for flyby 77

profile propto first derivative of Gaussian,

AU) = % (k\%e‘AQU2> (14)

VM . Can become DM ? |INVIIEISEHE for (numer-
ically found) specific choices k = km for
components !

e }.A—=97.18:3 -2 [ £~ k=104.824253
| du | Jr
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e

Ax(u) = i(M e M%), A=0.5, k =32.6174
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Idem for Poschl-Teller-flyby profile

2 colsgh2 U<(X1)2 B (X2)2>- (15)

Fine-tuning = DM for both components when

K ;j(U)X'X7 =

km = 4m(m+ 1), m = 1,2... ~ integer number
of half-waves.

_ 4k _
A) = (o), k=29.056
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Confirmed analitically ~ confluent Heun fcts.
AoP 473 (2025), 169890 [arXiv:2407.10787 [gr-qc]]
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N =

Higher order derivatives in 2 tr dim

Anu)= L(EL 6 =1, k=3.57745

du J:
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order
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e d = 3 gravitational collapse (Gibbons-Hawking)

Ky A = 1.84082
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DM for both components for 240y odd
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CONCLUSION

Particles at rest hit by a burst of GWs fly apart,
moving freely along straight lines: VM.

For exceptional (“quantized” ) values of wave pa-
rameters, which correspond to integer # of half-
wave trajectories in wave zone, DM is possible,
confirming prediction of Zel'dovich-Polnarev.

Shklovsky and pAsINele\ilelal (19077).
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