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Heavy ion physicists found the perfect liquid! our field largely redefined to
this



Why do we believe this?
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〉



Glauber simulation

Fourier transform

v

ε

n

n

Fits ideal hydro , fitted upper limit on viscosity low Spurned a lot of
theoretical and numerical/phenomenological development of relativistic
hydrodynamics. Restarted the controversy over viscous relativistic
hydrodynamics of the 70s



But then LHC switched on and we got a surprise and a conceptual challenge!

CMS  1606.06198

1606.06198 (CMS) : When you consider geometry differences and multi-
particle cumulants (remove momentum conservation), hydro with O (20)
particles ”just as collective” as for 1000.



Hydrodynamics: an ”effective theory” of averages ⟨...⟩ using coarse-graining
and ”fast thermalization” w.r.t. Gradients of coarse-grained variables
If thermalization instantaneus, then isotropy,EoS enough to close evolution

⟨Tµν⟩ = (e+ P (e))uµuν + P (e)gµν , ⟨Jµ⟩ = ρuµ

In rest-frame at rest w.r.t. uµ

⟨Tµν⟩ = Diag (e(p, µ), p, p, p) , ⟨Jµ⟩ =
(
ρ(p, µ), 0⃗

)
Makes sysem solvable just from conservation laws:

∂µ ⟨Tµν⟩ = ∂µ ⟨Jµ⟩ = 0, p = p(e, µ), ρ = ρ(e, µ)

A beautiful, rigorous theory with a direct connection to statistical mechanics,
i.e. fundamental physics,maths. Exciting that HIC can be described by it!



If thermalization not instantaneus,

⟨Tµν⟩ = ⟨Tµν(e, uµ, ∂u, ..)⟩ , ⟨Jµ⟩ = (ρ, u, ∂ρ, ∂u, ...)

Basically one decomposes non-equilibrium part into gradients and relaxes

⟨Tµν⟩ = T eqµν+Πµν , uµΠ
µν = 0 , lim

t→∞

(〈
T ‘µν

〉
−
〈
Tµνeq

〉)
= 0

∑
n

τnΠ∂
n
τΠµν = −Πµν +O (∂u) +O

(
(∂u)2

)
+ ...

A series whose ”small parameter” K ∼ lmicro
lmacro

∼ η
sT∇u and the transport

coefficients calculable from asymptotic correlators of microscopic theory
Navier-Stokes ∼ K , Israel-Stewart ∼ K2 etc.
Non-relativistic version still considered beautiful and profound, but with
relativity...



What’s wrong with this?

uµ ambiguus many definitions (Landau, Eckart,BDNK...)
We think flow is ”clear”, so this is a bit strange . choices supposed to
be field redefinitions but give slightly different dynamics

Πµν ambiguus can even be eliminated as a DOF (∼ ∂u by carefully
choosing uµ (BDNK)

Entropy is ambiguus it’s definition depends on the definitions above. Yet
from statistical mechanics , as long as microstates are local, it should
not be ambiguus!



Fluctuations...
〈
(∆Tµν)

2
〉
Is not the same as ⟨Tµν⟩ − ⟨Tµν⟩eq

• One can define linearly, whith a Langevin-like fluctuation-dissipation
relation but contradicts experiment!

CMS  1606.06198

• Exact theory strongly depends on uµ convention! Also on
pseudogauge! but if field redefinition, does ”everything” fluctuate?
What if fluctuation of uµ, T,Πµν leave Tµν invariant?



More concretely

A theorist (Romatschke,Kovtun,...) will say that fluctuations of e.g.
δΠµν, δf(x, p) produce ”non-hydrodynamic modes”, sensitive to
underlying theries, and hydrodynamics is easy to break down to a
non-universal dynamics.

An experimentalist measures neither Πµν nor f but rather, e.g.

dN

dypTdpTdϕ
≡ dN

dypTdpT
[1 + 2vn(pT , y) cos (n (ϕ− ϕ0n))]

i.e. gradients of Tµν,entropy : vn ≡ ⟨cos (n (ϕ− ϕ0))⟩
Most theorists treat it as an average, but This is a cumulant of O (∞)
so sensitive to non-hydrodynamic modes. Yet experiment finds hydro
everywhere they look! Can your non-hydro mode be my fluctuating
sound-wave? Can we tell,in principle?



Hydrodynamics from microscopic theories

QFT transport coefficients plagued by divergences, need truncation
(Schwinger-Keldysh separates ”fast”, ”slow”, Kadanoff-Baym needs
truncation)

Boltzmann equation Sequential scattering and molecular chaos. Weak
coupling, Lose microscopic correlations

AdS/CFT strong coupling and large Nc, lose microscopic correlations

Molecular dynamics keeps microscopic correlations, lose Lorentz
invariance (in practice not a problem)

Basic problem with either Lorentz invariance or correlations on scale of
gradients! Ambiguity in flow,Πµν comes from here!



In brief most microscopic approaches to EFT hydrodynamics assume that

lmicro︸ ︷︷ ︸
∼s−1/3,n−1/3

≪ lmfp︸︷︷︸
∼η/(sT )

≪ Lmacro

But this seems falsified by hydrodynamics in small systems!

CMS  1606.06198



Not just in heavy ions

Brandstetter et al

2308.09699

The

Brazil

nut effect

Empirically, strongly coupled systems with enough thermal energy seem to
be ”fluid” even with a small number of DoFs. EFT does not explain this!
The role of fluctuations in hydrodynamics, and of the exast relation of
statistical physics and hydrodynamics, are still ambiguous and this is related
to experimental puzzles



A final issue: Entropy current not clearly connected to energy-momentum
current, need microscopic theory to ”select good EFT” (2nd law)

System I

"macro"

k<

k>

"micro"

System II

Λ

Λ

Kolmogorov

cascade

regime

At best related to stability (sound waves don’t explode) and causality (sound
waves dw/dk ≤ c)



Hydrodynamics and statistical mechanics
Equation of state p(E) comes from basic statistical mechanics

p = T lnZ ,
dP

dT
=
dS

dV
=
p+ e− µn

T

But the same partition function also predicts fluctuations

〈
(∆E)2

〉
=
∂ lnZ
∂β2

∼ 1

(∆V )× s

which in a deterministic theory are completely neglected. could this have
something to do with the above ambiguity?



of the entropies

the battle

Boltzmann entropy (associated with frequentist probability) a property of
the ”DoF”, and is ”kinetic” subject to the H-theorem which is really a
consequence of the not-so-justified molecular chaos assumption. Gibbsian
entropy (more Bayesian) is the log of the area of phase space, and is
justified from coarse-graining and ergodicity . The two are different even in
equilibrium, with interactions! (Khinchin,stat.mech.) Note, Von Neumann
⟨lnρ̂⟩ Gibbsian . Gibbs is more general, but...



the unreasonable
effectiveness

of stat mech

Non-ideal hydrodynamics is based around approximate local equilibrium .
Boltzmannian global and local equilibrium are defined, but they depend on
Boltzmannian physics Only Global equilibrium well defined in Gibbs (what
is ”approximate maxiumum” Gibbsian entropy?)

Khinchin’s “failed” PhD: Stat Mech just seems wrong but seems to apply
everywhere! Just like hydro?



QM to rescue? Berry/Bohigas/Eigenstate thermalization

|φ><ψ|

En>>1 of quantum systems whose classical correspondent is chaotic have
density matrices that look like pseudo-random. If off-diagonal elements
oscillate fast or observables simple, indistinguishable from MCE!



....

vs.
:

But need to coarse-grain, impose causality, and build hydro-like EFT out of
this. could be very different from usual EFT expansion!



Let’s look at this ambiguity a bit deeper: Lagrangian and Eulerian
hydrodynamics Hydro as fields: (Nicolis et al,1011.6396 (JHEP))
Continuus mechanics (fluids, solids, jellies,...) is written in terms of 3-
coordinates ϕI(x

µ), I = 1...3 of the position of a fluid cell originally at
ϕI(t = 0, xi), I = 1...3 . (Lagrangian hydro . NB: no conserved charges)
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The system is a Fluid if it’s Lagrangian obeys some symmetries (Ideal
hydrodynamics ↔ Isotropy in comoving frame) Excitations (Sound waves,
vortices etc) can be thought of as ”Goldstone bosons”



Translation invariance at Lagrangian level ↔ Lagrangian can only be a
function of BIJ = ∂µϕ

I∂µϕJ Now we have a “continuus material”!

Homogeneity/Isotropy means the Lagrangian can only be a function of
B = detBIJ ,diagBIJ

The comoving fluid cell must not see a ”preferred” direction ⇐ SO(3)
invariance

Invariance under Volume-preserving diffeomorphisms means the Lagrangian
can only be a function of B
In all fluids a cell can be infinitesimally deformed
(with this, we have a fluid. If this last requirement is not met, Nicolis et
all call this a “Jelly”)



A few exercises for the bored public Check that L = -F(B) leads to

Tµν = (P + ρ)uµuν − Pgµν

provided that

ρ = F (B) , p = F (B)−2F ′(B)B , uµ =
1

6
√
B
ϵµαβγϵIJK ∂αϕ

I∂βϕ
J∂γϕ

K .

Equation of state chosen by specifying F (B) . “Ideal”: ⇔ F (B) = B4/3
√
B is identified with the entropy and

√
BdF (B)

dB with the microscopic
temperature. uµ fixed by uµ∂µϕ

∀I = 0



Conserved charges (Dubovsky et al, 1107.0731(PRD))
Within Lagrangian field theory a scalar chemical potential is added by
adding a U(1) symmetry to system.

ϕI → ϕIe
iα , L(ϕI, α) = L(ϕI, α+ y) , Jµ =

dL

d∂µα

generally flow of b and of J not in same direction. Can impose a well-defined
uµ by adding chemical shift symmetry

L(ϕI, α) = L(ϕI, α+ y(ϕI)) → L = L (b, y = uµ∂
µα)

A comparison with the usual thermodynamics gives us

µ = y , n = dF/dy

obviously can generalize to more complicated groups



This looks a bit like GR and this is not a coincidence!

4D local Lorentz invariance becomes local SO(3) invariance

Vierbein gµν = ηαβeαµe
β
ν is

∂x
comoving
I
∂xµ

= ∂µϕI (with Gauge phase for µ )

Entropy ∼
√
b , diffeomorphism invariant

Killing vector becomes uµ

L ∼
√
−g (Λ +R+ ...) becomes L ∼ F (B) ≡ f(

√
−g) Just cosmological

constant, expanding fluid ≡ dS space

Very nice... but the ambiguities beyond ideal hydro generally break this .
Who cares? Should beyond idel hydrodynamics have this general covariance?



The poor people’s quantum gravity: How can fluctuations and dissipation
keep hydrodynamic’s diffeomorphism invariance? Perhaps has a role to
answer how come fluctuation/dissipation experimentally breaks down and
fluids exist for 20 particles!
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First step: Lagrangian hydrodynamics very elegant, but where is the
connection to local thermalization? Statistical mechanics? Transport?
Hint from D.T.Son: it is the largest group of diffeomorphisms
where time plays no role!



Where does statistical mechanics come from? Ergodicity

Conservation

law bound

Classical evolution via Hamilton’s equations

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
, Ȯ = {O,H}

“Chaos”,conservation laws→ phase space more “fractal”, recurring



“After some time”, for any observable ergodic limit applies

∫ (large) T

0

Ȯ(p, q)dt =

∫
P (O(p, q))dqdp

where P (...) probability independent of time. This probability can only be
given by conservation laws

P (O) =
(
∑
iOi) δ

4 (
∑
iP

µ
i − Pµ) δ (

∑
iQi −Q)

N
, N =

∫
P (O)dO = 1

this is the microcanonicanal ensemble. In thermodynamic limit

P (O) → δ(O − ⟨O⟩)



Hydrodynamics is “thermodynamics in every cell

∫ (large) T

0

Ȯ(p, q)dt→ ∆ϕ

∆t

where ϕ is some local observable.

∆ϕ

∆t

∣∣∣∣
t−t′=∆

≃ 1

dΩ(Q,E)
×

×
∑

δ4
Pµ,P

µ
macro(t)

δQ,Qmacro(t)δ

 ∞∑
j

pµj − Pµ

 δ

 ∞∑
j

Qj −Q


Problem: This is not relativistically covariant!



Solution: Foliation!

Wσ∼ Ω

−W

t→ Σ0 , xµ → Σµ , ∆ → “smooth′′
∂Σµ
∂Σν

Smooth: Rcurvature of metric change smaller than “cell size” (New lmfp )

∆ϕ

∆Σ0
=

∫
P (ϕ,Σµ)dΣi , Σµ → Σ′

µ ,
∆ϕ

∆Σ′
0

=
∆ϕ

∆Σ0



What kind of effective lagrangian would enforce

∆ϕ

∆Σ0
=

∫
P (ϕ,Σµ)dΣi ,

∆ϕ

∆Σ′
0

=
∆ϕ

∆Σ0

with
P (...) ∼ δ(

∑
i

Pµi − P )δ(
∑
i

Qi −Q)

Now Remember Noether’s theorem!

pµ =

∫
d3ΣνTµν , Tµν =

∂L

∂∂µϕ
∆νϕ−gµνL , ∆νϕ(xµ) = ϕ(xµ+dxν)

Q =

∫
d3Σνjν , jν =

∂L

∂∂µϕ
∆ψϕ , ∆ψϕ = |ϕ(x)|ei(ψ(x)+δψ(x))

momentum generates spatial translations, conserved charges generate
complex rotations!



Space-like foliations decompose

dΣµ = ϵµναβ
∂Σν

∂Φ1

∂Σα

∂Φ2

∂Σβ

∂Φ3
dΦ1dΦ2dΦ3

where the determinant (needed for integrating out δ− functions is only in
the volume part

∂Σ′
µ

∂Σν
= Λνµ det

dΦ′
I

dΦJ
, detΛνµ = 1

Physically, Λνµ moves between the frame dΣµrest = dΦ1dΦ2dΦ3(1, 0⃗)



so lets try
L(ϕ)︸︷︷︸

microscopic DoFs

≃ Leff(Φ1,2,3)

with
∆ϕ

∆Σ0
=

∫
P (ϕ,Σµ)dΣi , P (...) = δ(...)δ(...)

the general covariance requirement of ∆ϕ
∆Σ0

= ∆ϕ
∆Σ′

0
means the invariance of

the RHS
dΩ(dP ′

µ, dQ
′,Σ′

0)

dΩ(dPµ, dQ,Σ0)
=

=
dΣ′

0

dΣ0

∫
daµdψδ

4 (dΣνaα∂
α (δµνL)− dPµ(Σ0)) δ (dΣ

µψ∂µL− dQ(Σ0))∫
da′µdψ

′δ4
(
dΣ′

νa
′
α∂

α (δµνL)− dP ′
µ(Σ

′
0)
)
δ
(
dΣ′

µψ
′∂µL− dQ′(Σ′

0)
)



It is then easy to see,via

δ((f(xi))) =
∑
i

δ(xi − ai)

f ′(xi = ai)︸ ︷︷ ︸
f(ai)=0

, ϕ′I =
∂αΣ

′
I

∂αΣJ
ΦJ , δ4(Σµ) = det

∣∣∣∣∂Σµ∂Σν

∣∣∣∣ δ4(Σ′
µ)

that for general covariance to hold

L(ΦI, ψ) = L(Φ′
I, ψ

′) , det
∂ϕI
∂ϕJ

= 1 , ψ′ = ψ + f(ϕI)

the symmetries of perfect fluid dynamics are equivalent to requiring
the ergodic hypothesys to hold for generally covariant causal spacetime

foliations!!!! Quantum: ∆tmicro−sampling → ρije
i∆tEij and proof similar!



The crucial question: Does this extend to non-ideal hydrodynamics?

Generating functionals , not constitutive relations Every cell corresponds
to a partition function , not a conserved current Near-maximum entropy
related to this,and diffeo-invariant! Covariant, metric gµν ↔ ∂Σµ/∂Σ

ν

Close to local equilibrium is not on gradient expansion but the
approximate applicability of fluctuation-dissipation (not the same! )
Refoliations in Σµ → Changes in gµν ↔ reshuffling in interpretation

NB: Global equilibrium , defined as Max [⟨ln ρ̂⟩]βµ,µ,... ill defined if

∇δµ ≃ 1/R, 1/T since hydrodynamic turbulence, statistical fluctuations
talk (“unstable” equilibrium is not in equilibrium!). local equilibrium
well-defined!, solid basis of an EFT. This ambiguity is due to entropy in
Global equilibrium being Boltzmannian (“micro” Dofs) and not Gibbsian
(covariantly “coarse-grained” Dofs,fluctuation-generated soundwaves,...)



In summary,what we need is a hydrodynamics...

Manifestly in terms of probability distributions of observable quantities
Tµν, Jµ,Ωαµν ,Cells defined by full generating functionals,

A diffeffeomorphism-invariant GC ensemble at the level of fluctuations
equivalent e, uµ, βµ,Π

µν, ... choices leaving ⟨Tµν⟩ invariant! Equivalent
to choosing foliations Σµ

Entropy content a scalar w.r.t. Σµ changes. Possibly order-by order,
Different Boltzmannian entropy ∀ counted as Gibbsian entropy

Ambiguity from fluctuations makes system look like a fluid, If many
equivalent choices of e, uµ, J

µ,Πµν, ... likely in one its ”small”! Ideal
hydro behavior.



The physical intuition Ergodicity/Poncaire cycles meet relativity slightly
away from equilibrium!
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Gibbs entropy level+relativity : Lack of equilibrium is equivalent to “loss
of phase” of Poncaire cycles. one can see a slightly out of equilibrium cell
either as a “mismatched uµ” (fluctuation) or as lack of genuine equilibrium
(dissipation)



What is a gauge theory,exactly?

Z =

∫
DAµ exp [S[Fµν] ≡

∫
DAµ1DA

µ
2 exp [S[A

µ
1 ]

Aµ1,2 can be separated since physics sensitive to derivatives of lnZ

lnZ = Λ+ lnZG , ZG =

∫
DAµδ (G(Aµ)) exp [S(Aµ)]

Ghosts come from expanding δ(...) term. In KMS condition/Zubarev

Z =

∫
Dϕ , ”S” → dΣνβµT

µν

Multiple Tµν(ϕ) → Gauge-like configuration . Related to Phase space
fluctuations of ϕ



Zubarev partition function for local equilibrium: think of Eigenstate
thermalization...
Let us generalize the GC ensemble to a co-moving frame E/T → βµT

µ
ν

ρ̂(Tµν0 (x),Σµ, βµ) =
1

Z(Σµ, βµ)
exp

[
−
∫
Σ(τ)

dΣµβνT̂
µν
0

]

Z is a partition function with a field of Lagrange multiplies βµ , with
microscopic and quantum fluctuations included.

Effective action from ln[Z] . Correction to Lagrangian picture?

All normalizations diverge but hey, it’s QFT! (Later we resolve this! )



How to go forward... Crooks fluctuation theorem

Gabriel Landi

P(W)/P(−W)=e
∆ s

Crooks fluctuation theorem From talk

Relates fluctuations, entropy in small fluctuating systems (Nano,proteins )

P(W) Probability system doing work in its usual thermal evolution

P(-W) Probability of the same system “running in reverse” and decreasing
entropy due to a thermal fluctuation

∆S Entropy produced by P (W )



A non-perturbative operator equation,divergences cancel out...

Π̂µν

T

∣∣∣∣∣
σ

=

(
1

∂µβν

)
δ

δσ

[∫
σ(τ)

dΣµβνT̂
µν −

∫
−σ(τ)

dΣµβνT̂
µν

]

Ω

t

dV

A sanity check: For a an equilibrium spacelike dΣµ = (dV, 0⃗) (left-panel)

we recover Boltzmann’s Πµν ⇒ ∆S = dQ
T = ln

(
N1
N2

)
, for an analytically

continued ”tilted” panel, Kubo’s formula



But highly non-local and non-linear, ”lattice” , but there might be an
analytically sovable Gaussian approximation

General covariance via the Gravitational Ward identity

Gaussian approximation from Zubarev hydrodynamics

Covariantized Gibbs-Duhem to define entropy in terms of dΣµ

Kramers-Konig to enforce fluctuation-dissipation



The gravitational ward identity ∇W = 0

W = Gµν,αβ (Σµ,Σ
′
ν)−

1
√
g
δ (Σ′ − Σ)×

×
(
gβµ

〈
T̂αν (x′)

〉
Σ
+ gβν

〈
T̂αµ (x′)

〉
Σ
− gβα

〈
T̂µν (x′)

〉
Σ

)
Fancy name and complicated but consequence of elementary properties of
the metric and energy conservation

∂µT
µν + ΓναβT

αβ = 0 ,
〈
Tnµν
〉
=

δn√
−gδgµν(n)

lnZ

Note: gradient expansion and linearized fluctuations inherently break this!



The mere fact that thermodynamic quantities can be described via a lnZ
gives rise to the Gibbs-Duhem relation

s = T lnZ = P + e− µn

Enforce invariance under Σµ refoliations, a scalar lnZ

−∆ lnZ = −βνJν∆µ+P i∆βi−∆Σ0β0

∫ P 0

0

c2s(e)de , Pα=0,i=1.3 ≡ TαβdΣ
β

Crooks theorem becomes

P
{
Pµ|τ → Pµ|τ+∆τ

}
P
{
Pµ|τ+∆τ → Pµ|τ

} ∼ exp[lnZ|τ+∆τ−lnZ|τ ] , ∆τ = βµ
∆3Σµ

∆3ϕi=1,2,3



Cumulant expansion: Partition function is Gaussian! lnZ ≃ lnZ|0−

− ∂2 lnZ
∂βµ∂βν

∣∣∣∣
0

ln
∏

Σ(x),Σ(x′)

exp

[
−1

2
⟨∆Tµν(Σ(x′))⟩Cµναβ(Σ(x),Σ(x′)) ⟨∆Tαβ(Σ(x))⟩

]

A covariantization of
〈
E2
〉
− ⟨E⟩2 ≡ CV T ⇒⇒ Cαβµν ∼ ∂ lnZ

∂βµ∂βν

∣∣∣
0
F (Σ)αβ

and Ward identity imposed on width Cαβγν manifestly diffeo invariant
Crooks theorem means

lnZ|τ+∆τ − lnZ|τ ∼ exp
[
−∆µβνC

µναζ∆αβζ
]

, ∆µO ≡ ∆O(xµ)

∆xµ

An possibly diffeomorphism invariant alternative to gradient expansion which
isn’t!



fluctuation-dissipation relation From Kramers-Konig relations

Im
[
G̃µν,αβ(ω, k)

]
= −1

π
P
∫ ∞

−∞

Re
[
G̃µν,αβ(ω, k)

]
ω′ − ω

dω′

Re
[
G̃µν,αβ(ω, k)

]
=

1

π
P
∫ ∞

−∞

Im
[
G̃µν,αβ(ω, k)

]
ω′ − ω

dω′

Direct consequence of causality, relate the real and imaginary part of the
response function in momentum space But non-local in frequency, generally
invalidates gradient expansion! (inherently breaks fluctuation-dissipation)



Apply on the linear response function of energy-momentum tensor

Tµν(Σ) =

∫
Gµν,αβ(Σ′

0 − Σ0)δTαβ(Σ
′
0)dΣ

′
0

G̃µναβ =
1

2i

(
G̃αβµν(Σ0, k)

G̃αβµν(−iϵΣ0, k)
− 1

)
And Gαβγµ is what comes from the Ward identity! These equations together
should do it!

Only in terms of Tµν, Jµ,Σµ ”observables” and a ”gauge” reditemSecond
law imposed via fluctuation dissipation (redundances, fluctuations of
observables)



Fluctuations in non-ideal hydrodynamics not well understood

Intimately related to entropy current, double counting of DoFs
Could alter fluctuation-dissipation expectation, ”fluctuations help
dissipate”, in analogy to Gauge theory

Approximate local equilibrium not understood in Gibbsian picture
My proposal: applicability of fluctuation-dissipation

Need a covariant description purely in terms of observable quantities
Ergodicity works in ideal hydro, Crooks theorem/K-K beyond it?

Could be relevant for hydro in small systems

A non-relativistic limit? (Brazil nut effect) all depends on time
dilation,so a bit at a loss! But...



entropic gravity? Ted Jacobson, gr-qc/9504004 derived GR from the area
entropy relation! conjectured gravity is ”thermal” rather than ”quantum”

W

-W

Γ

Perhaps techniques shown here can be used to build a fluctuation-hydro like
entropic gravity, whose fluctuations preserve covariance under locally Lorentz
diffeomorphisms! . Connection to Unruh effect and Bose-Marletto-Vedral
experiments , see 2210.08586,2201.10457,2405.08192 (different talk!)



”the universe is governed by Crooks”,”the biggest nut goes on top”,... ,
towards a theory of everything with plenty of empirical support!



PS: Onto spin hydrodynamics

Polarization by vorticity

in heavy ion collisions

NATURE

August 2017

STAR
collaboration

1701.06657

Could give new talk about this, but will mention hydro with spin not
developed and a lot of conceptual debates.



• ”at what order in Gradient” are spin-vorticity interactions? Causality
constraints ,”minimum viscosity”, ”same order as fluctuations”
(microstates).
Spin hydrodynamics is transfer of micro to macro DoFs

• Transport description inherently ”non-local” (violation of ensemble
average/molecular chaos)

• Pseudogauge! Spin part of angular momentum not uniquely defined!



• ”trivial” in a sense: Let Φαβγ be fully antisymmetric

Tµν → T ′
µν+

1

2
∂λ
(
Φλ,µν +Φµ,νλ +Φν,µλ

)
, ∂µTµν = ∂µT ′

µν = 0

• Can move around spin and angular momentum

• Can symmetrize Tµν (good for gravity, bad for equilibrium spin-orbit)

• For particles S⃗ =
∑
i S⃗i but remember, spin violation of molecolar chaos

• Not clear if dynamics should depend on it! Most approaches pseudo-
gauge covariant but Entropy usually does, hence fluctuations!

• Spin 1: Pseudogauge → Gauge symmetry “ghosts”? GT,1810.12468



Pseudo-gauge symmetries physical interpretation: T.Brauner, 1910.12224

xµ → xµ + ϵζµ(x) , ψa → ψa + ϵψ′
a , S → S

For particles field redefinition ”observable”, but what about for
fluctuating fields?
Entropy depends on pseudogauge as spin-orbit interactions mix entropyless
vortices with entropyful spin microstates

Previous picture offers a way out! Pseudo-gauge transformations could be
exactly the sort of equations that produce redundancies!
lnZ|class not invariant but full lnZ should be! Spin ↔ fluctuation, need
equivalent of DSE equations!

Basic idea: Define ensemble via lnZ and ”gauge constraints” so that
pseudo-gauge transformations ”move aorund” the ensemble



How to see it: Grossi,Floerchinger, 2102.11098 (PRD) Let us define a J
co-moving with uµ and use the ”exact” (before coarse-graining) partition
function to build

Γ(ϕ) = SupJ

(∫
J(x)ϕ(x)− i lnZ[J ]

)
uµ → u′µ non-inertial and does not change ⟨Tµν⟩, so one can define

Jµνγ =
1
√
g

δ lnZ[J ′]

δΓανγ
, DµJ

µνγ = 0

Setting the gauge at the level of the microscopic approximately thermalized
partition function equivalent adding auxiliary field DµMαβ = 0 to

Z[Jαβγ] =

∫
DϕDMαβ exp

[∫
det[M ]d4xL (ϕ, ∂µ + Γ...) +

∫
dΣγMαβJαβγ

]





Anisotropy, transport and statistical mechanics Anisotropic hydrodynamics
justified within transport via improved relaxation time

f(x, p) = feq (1 + ϕ(x, p)) → feq (1 + ϕ(x, p) + aµ(x)p
µ)

Problem: Boltzmann is an approximation where f(x, p) represents an infinity
of particles . Fundamentally, hydrodynamics comes from Kubo

η = lim
k→0

1

k
Im

∫
dx
〈
T̂xy(x)T̂xy(y)

〉
exp [ik(x− y)]

Usually semiclassical approximation yields Boltzmann equation than
relaxation time, which guarantees the Kinchin condition to be fulfilled.
Above demonstration reliable only in that limit



The basic problem with f(x,p)

= ?

Let’s solve the simplest transport equation possible: Free particles

pµ

m
∂µf(x, p) = 0 → f(x, p) = f

(
x0 +

p

m
t, p
)

obvious solution is just to propagate
What is weird is that ”hydro-like” solution possible too (eg vortices)!

f(x, p) ∼ exp [−βµpµ] , ∂µβν + ∂νβµ = 0

But obviously unphysical, no force! What’s up?



+ +

=

8+...

...

This paradox is resolved by remembering that f(x, p) is defined in an
ensemble average limit where the number of particles is not just “large” but
uncountable . curvature from continuity!

BUt this suggests Boltzmann equation disconnected from Ndof ≤ ∞ !

In Anisotropic hydro βµ not Killing vector . So no reason to assume
ensemble average/thermal fluctuations sampled fairly close to equilibrium!
Boltzmann equilibrium and Gibbs-type thermal equilibrium could be very
different. lets work with the latter



Vlasov and Boltzmann in a classical world
Villani , https://www.youtube.com/watch?v=ZRPT1Hzze44

Vlasov equation contains all classical correlations, instability-ridden,
“filaments”, cascade in scales.
NDOF → ∞ invalidates KAM theorem stability

Boltzmann equation “Semi-Classical UV-completion” ov Vlasov
equation, first term in BBGK hyerarchy, written in terms of Wigner
functions.

Infinitely unstable jerks on infinitely small scales Random scattering

But if number of particles N ≪ ∞ Correlations important! .

https://www.youtube.com/watch?v=ZRPT1Hzze44


Boltzmann equation,BBGKY and limits

n

h

.....  (divergence)

Boltzmann

BBGKY

expansion

Kadanoff

Baym

Wigner function

....

Mrowczynski/

Mullerhydro

Fluctuating

<f (x,p)>

<f (x,p)>
1−

n

Boltzmann equation emerges as a double limit from microscopic correlations,
h̄→ 0 Relaxing the latter limit would destroy statistical independence CHSH
relations , so probably not relevant (phases ”chaotic”). But fluctuating
hydro ”non-perturbative” in correlations



Finite number of particles: f(x, p) not a function but a functional
(F(f(x, p)) →︸︷︷︸

Boltzmann

δ (f ′ − f(x, p)) ), incorporating continuum of

functions and all correlations. Perhaps solvable!

pµ

Λ

∂

∂xµ
f(x, p) =

〈
Ĉ[W̃ (f̃1, f̃2)]− g

pµ

Λ
F̂µν[f̃1, f̃2]

δ

δf̃1,2
W̃
(
f̃1, f̃2

)
︸ ︷︷ ︸

How many A−B=0?

〉

Wigner functional to O
(
h0
)
. What is the effect? If only Boltzmann term

not much!



If Both Vlasov and Boltzmann terms, redundancy-ridden!

f(p)

f(x)

δ

δ

Boltzmann-Vlasov=0

f(x)δ f(p) or δ

One can deform f(x, p) by δf(x) or δf(p) so that Ĉ − Ŵ cancels. In
ensemble average deformation makes no sense, but away from it it does!



Discretize x, p→ random matrix problem!

˙fij −
[
p⃗k
Λ
.∆k

]
fij =

〈
Ω̂
〉

Ω̂ ∼ d
[
f ′i1j1

] [
Wi1j1ij

(
Cjj1

(
fijf

′
i1j1

− fij1f
′
i1j

)
− Vµii1fijf

′
i1j1

∆fij
∆pµ

)]

• Theorems of random matrix theory can be used to prove limit very
different from RTA!

• can be tested numerically with a lattice Boltzmann algorithm

• connects to Zubarev Gibbs-Duhem relation
lnZ = ln

[∏N
i=1 exp

(
∆3Σµ (βνT

µν − µiJ
µ)
)]



SPARE SLIDES


