Daniele Roselli Università & INFN Firenze Quantum fields in curved spacetime Tours 2025

Quantum free-streaming in cosmological space-time

Prof. F.Becattini & D.Roselli

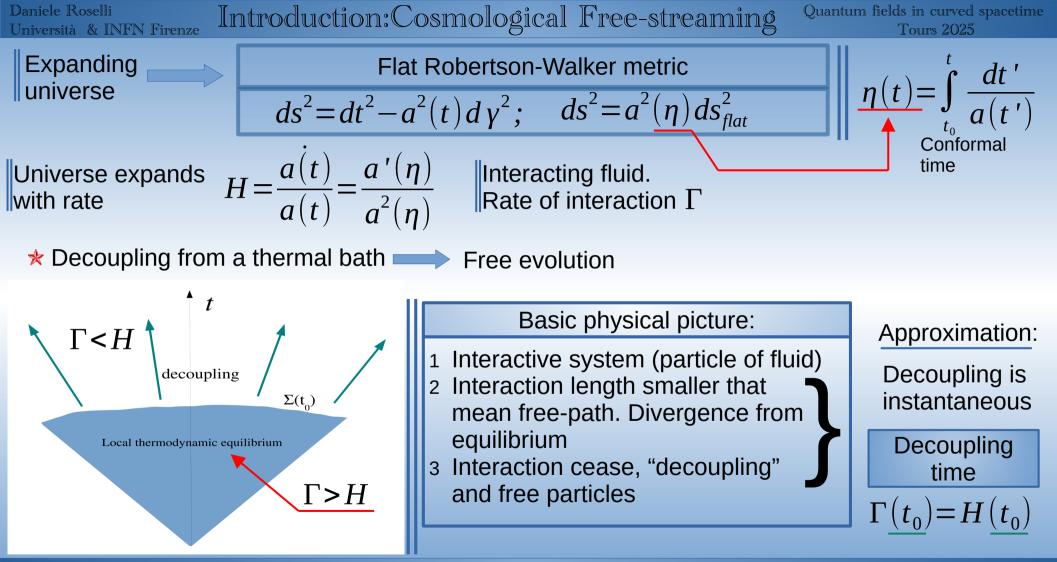
Based on:

F. Becattini and D. Roselli, Class. Quant. Grav. 40 (2023) no.17, 175007.

F. Becattini and D. Roselli, [arXiv:2403.08661 [gr-qc]

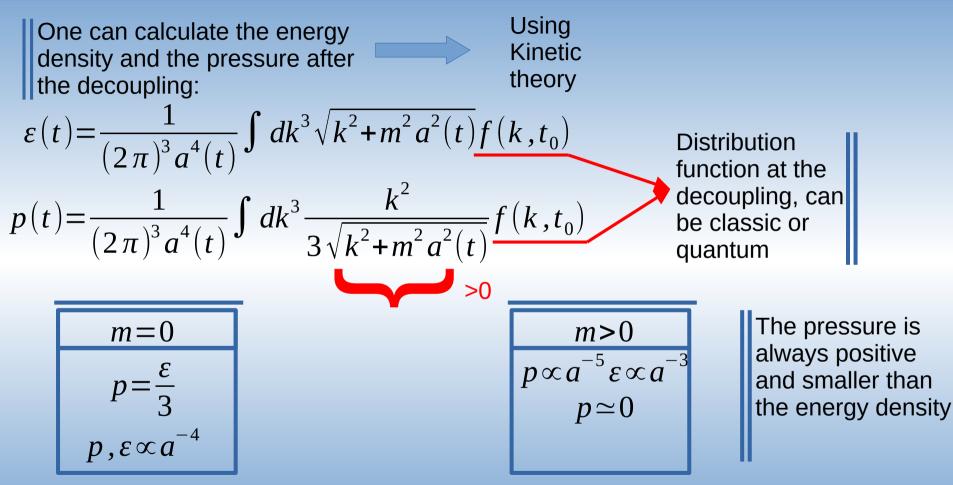
$$\hat{\rho} = \frac{1}{Z} \exp\left(-\int_{\Sigma} d\Sigma_{\mu} \hat{T}^{\mu\nu} \beta_{\nu}\right)$$

Introduction



Daniele Roselli

Università & INFN Firenze



Quantum fields in curved spacetime Tours 2025

Daniele Roselli Università & INFN Firenze

The Quantum field theory approach

Dented Roselli
Introduct & KINEN Firenze The quantum problem: QFT in CST Quantum fields in curved spacetime
To describe free-
streaming in a full
quantum theory
$$\Phi$$
 Define LTE using stat.mech (I.C) Φ New
 Φ Describe free evolution using Φ In RW metric lot
 Φ Describe free evolution using Φ In RW metric lot
 Φ Describe free evolution using Φ In RW metric lot
 Φ In RW metric

Daniele Roselli Università & INFN Firenze The quantum problem: LTE in CST

The field is not in the vacuum! At decoupling is in LTE

State of LTE:

State that maximize entropy with constraint of fixed energy density

Calculated at the decoupling. Independent from time

$$\hat{\rho} = \frac{1}{Z} \exp\left(-\int_{\Sigma(0)} d\Sigma_{\mu} T^{\mu\nu} \beta_{\nu}\right)$$
$$\beta_{\nu} = u_{\nu} / T_{dec} \quad d\Sigma(0) = a^{3}(0) \, dx \, dy \, dz$$

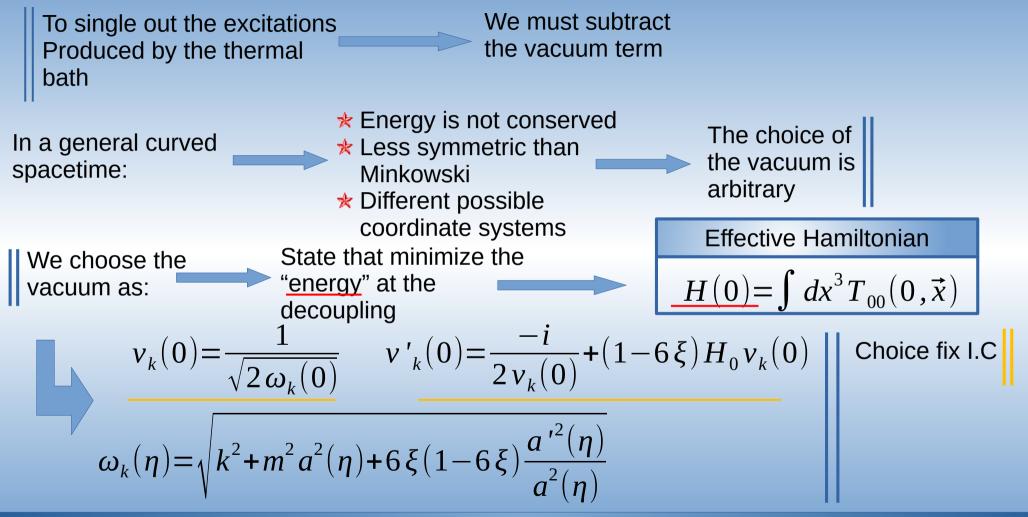
Measure excitations induced by the thermal bath

Expectation value $\langle T_{\mu\nu} \rangle = Tr(\hat{\rho} T_{\mu\nu})$

$$\nabla_{\mu} \left(\langle T^{\mu\nu} \rangle - \langle 0_{t_0} | T^{\mu\nu} | 0_{t_0} \rangle \right) = 0$$

$$\lim_{T_{dec} \to 0} \left\langle T^{\mu\nu} \rangle - \langle 0_{t_0} | T^{\mu\nu} | 0_{t_0} \rangle = 0$$
Vacuum term
$$E_o$$

Daniele Roselli Quantum fields in curved spacetime Università & INFN Firenze The quantum problem: the choice of the vacuum Tours 2025



Daniele Roselli Università & INFN Firenze The quantum problem: Quantum free-stream

Quantum fields in curved spacetime Tours 2025

Classical

results are

Plugging the field expansion and calculating the

Expectation value we find:
Where:

$$\begin{aligned}
\mu(\eta) &= \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
p(\eta) &= \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
p(\eta) &= \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) \Gamma_k(\eta) \underline{n_B(0,k)} \\
\frac{d^2}{d^2} = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta$$

Energy density & pressure

 $\varepsilon(\eta) = \frac{1}{(2\pi)^3} \int dk^3 \omega_k(\eta) K_k(\eta) n_B(0,k)$

Daniele Roselli The quantum problem: Solution Università & INFN Firenze

Quantum fields in curved spacetime Tours 2025

The full quantum problem require to solve the following coupled system

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8 \pi G Tr(\hat{\rho} T_{\mu\nu})$$
$$(g^{\mu\nu} \nabla_{\mu} \nabla_{\nu} + m^2 - \xi R) \Phi = 0$$

ν

- \star Expansion of the universe modify energy density and pressure
- ★ Quantum effects modify the scale factor

Can be studied only numerically!!

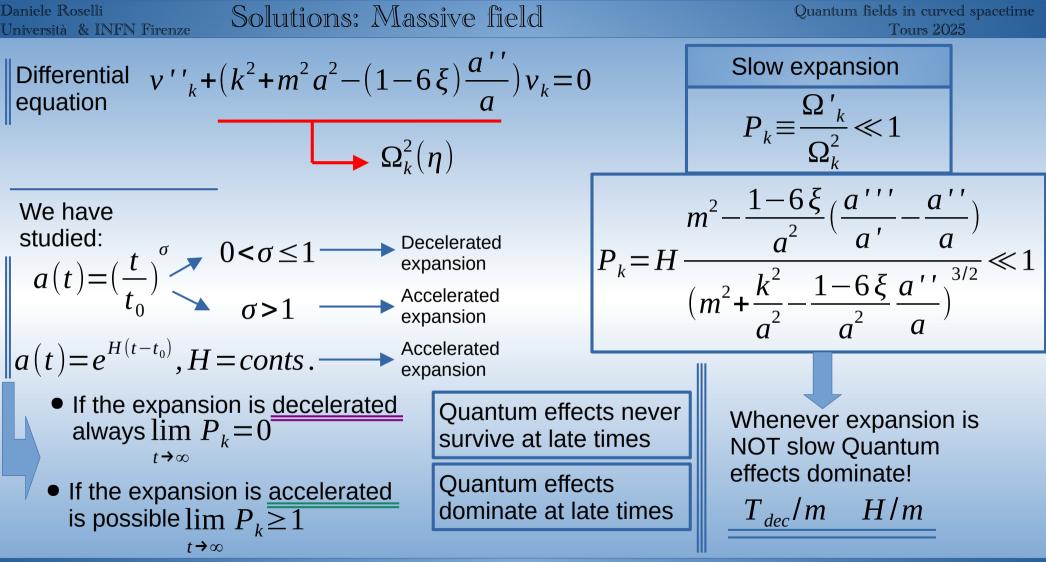
To weight the impact of quantum corrections:

- We choose an expansion model: fix a
- We solve the mode equation
- We study the behaviour of energy density and pressure

$$v''_{k} + (k^{2} + m^{2}a^{2} - (1 - 6\xi)\frac{a''}{a})v_{k} = 0$$
$$v_{k}(0) = \frac{1}{\sqrt{2}c_{k}(0)}v'_{k}(0) = \frac{-i}{2c_{k}(0)}v'_{k}(0) = \frac{-i}{2c_{$$

Only field dynamia

Solving the differential equation



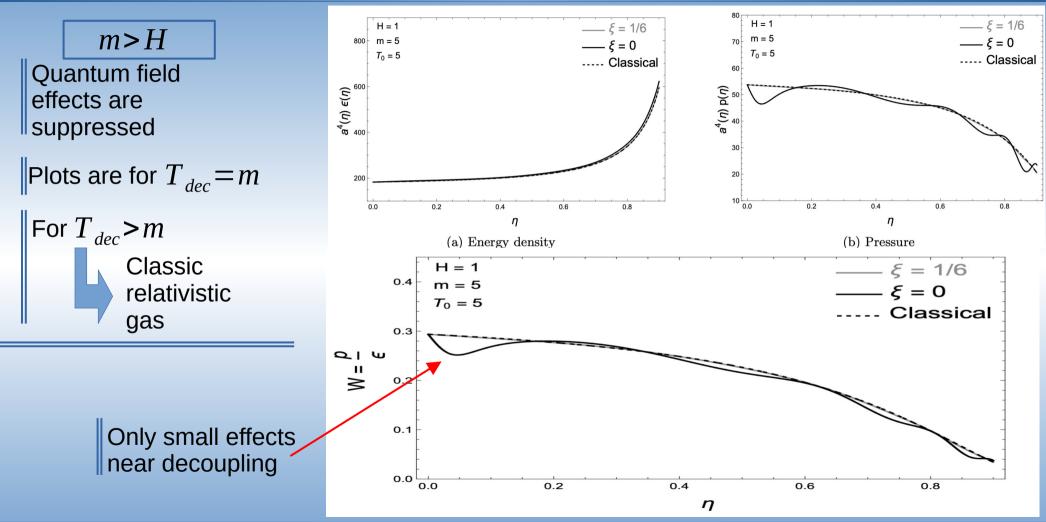
Denotes Roselli
Dimensità & RINEN Prenze Solutions: De Sitter universe Quantum fields in eurod spacetime
Tous 2025
De Sitter Universe:
Exponentially accelerated expansion
$$a(t) = e^{H(t-t_0)}, H = conts$$
.

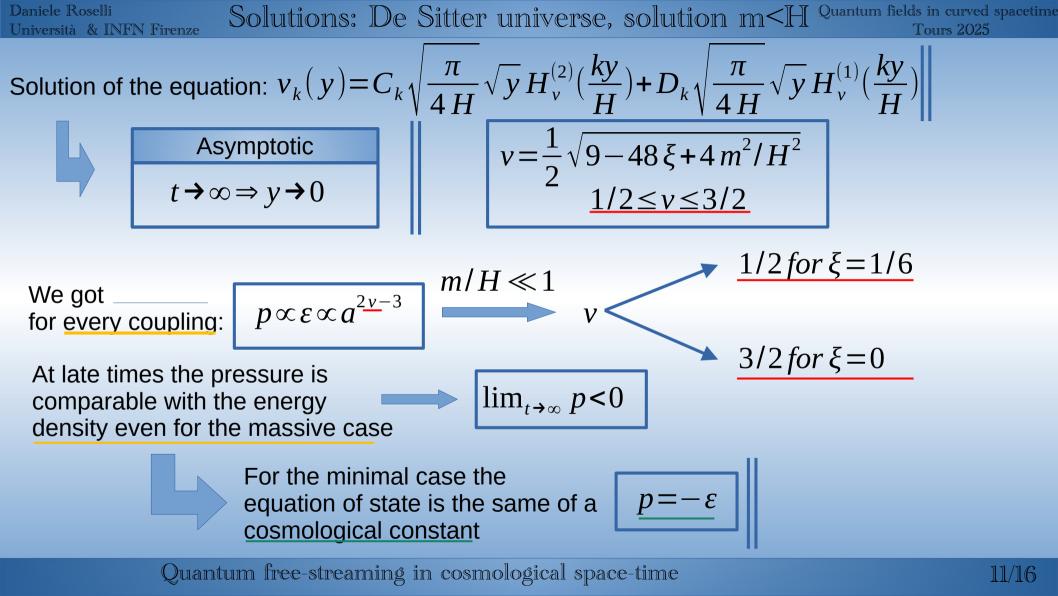
$$\begin{vmatrix} \frac{d^2 v_k(y)}{dy^2} + (\frac{k^2}{H^2} + \frac{m^2/H^2 - 2(1 - 6\xi)}{y^2})v_k(y) = 0 \\ y = 1 - H\eta, y(t_0) = 1, y(\infty) = 0 \\ We can exactly solve the
equations. For example for $\mu = \frac{1}{2}\sqrt{4m^2/H^2 + 48\xi - 9} \simeq m/H$
 $v_k(y) = C_k \sqrt{\frac{\pi}{4H}} e^{-\mu\pi/2} \sqrt{y} H_{i\mu}^{(1)}(\frac{ky}{H}) + D_k \sqrt{\frac{\pi}{4H}} e^{\mu\pi/2} \sqrt{y} H_{i\mu}^{(2)}(\frac{ky}{H})$
 C_k, D_k Fixed by initial
conditions and such $|C_k|^2 - |D_k|^2 = 1$$$

Daniele Roselli

Università & INFN Firenze

Quantum fields in curved spacetime Tours 2025



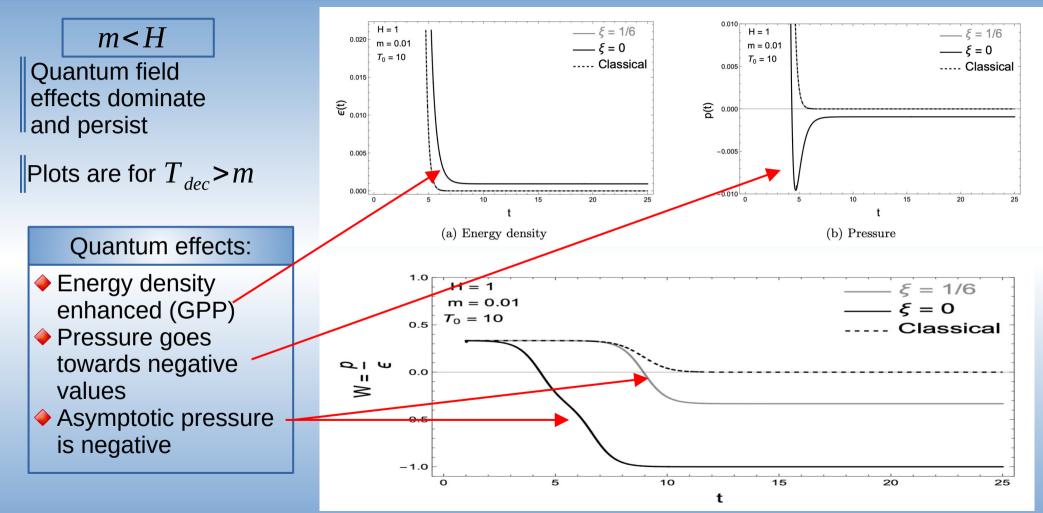


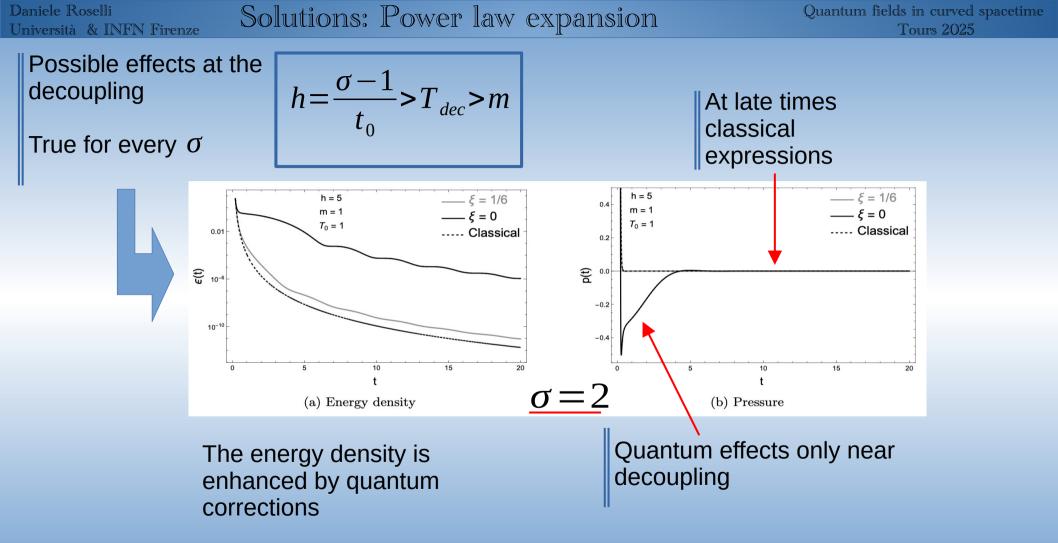
Solutions: De Sitter universe, plot m<H

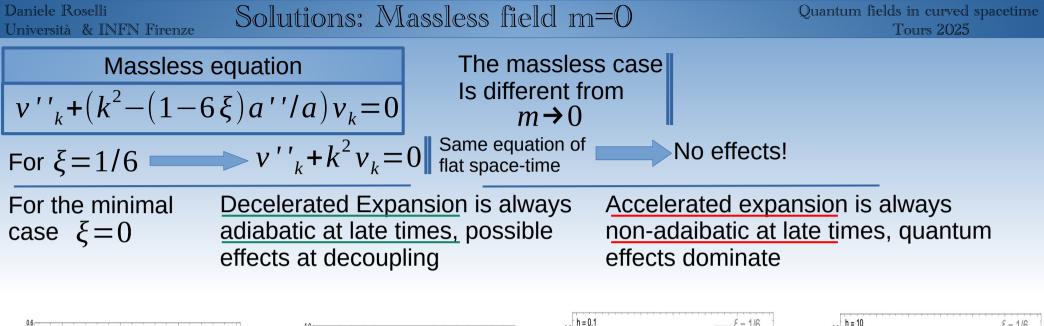
Daniele Roselli

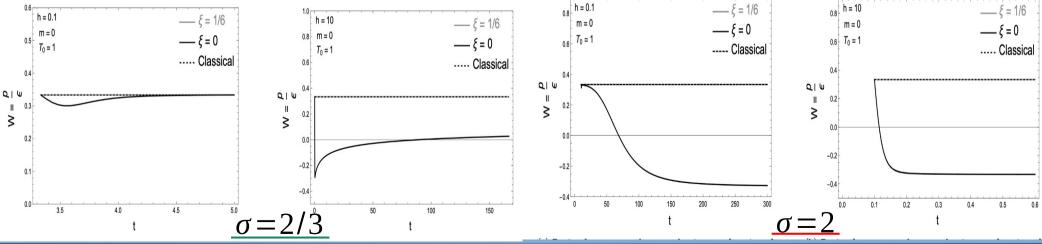
Università & INFN Firenze

Quantum fields in curved spacetime Tours 2025









14/16

Quantum fields in curved spacetime Tours 2025

Summary

Quantum field effects can strongly modify the freestreaming propreties

Condition for Q.E
$$\frac{a'}{a} \ge \frac{mc^2}{\hbar}, \frac{K_B T_{dec}}{\hbar}$$

Depends on:

- Mass of the field
 Decoupling Temperature
 Rate of expansion
 Acceleration/deceleration

- Pressure tends toward negative values
 Energy density is enhanced
 Pressure and energy density are comparable
 Field mimics cosmological constant

Open Question

Can this corrections alter the dynamic of the Universe?

We only solved half of the problem!

Quantum fields in curved spacetime Tours 2025

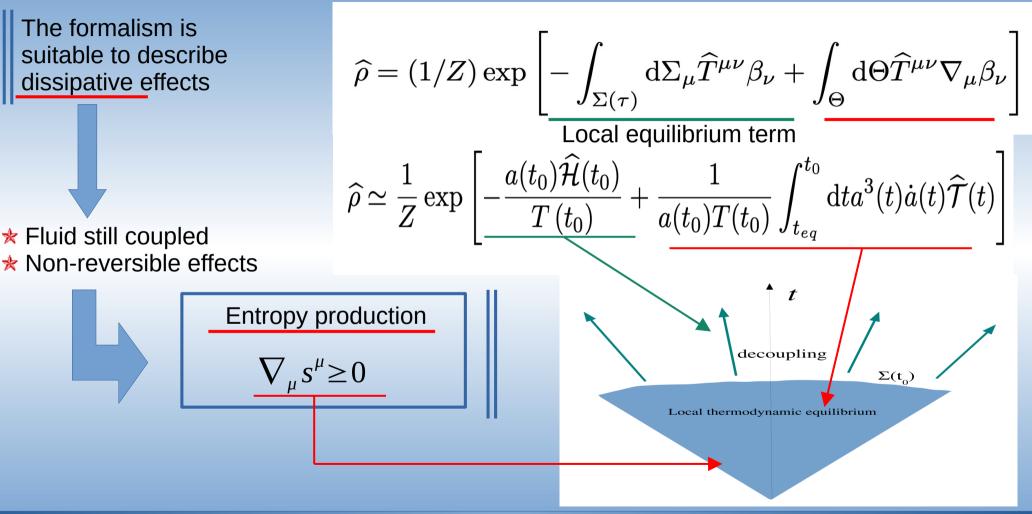
Outlook and current works

The formalism is suitable to describe dissipative effects

★ Fluid still coupled

Daniele Roselli

Università & INFN Firenze



Thank you for your attention?