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Quantile regression (QR) is a very useful statistical tool for learning the relationship between the response
variable and covariates. For many applications, one often needs to estimate multiple conditional quantile
functions of the response variable given covariates. Although one can estimate multiple quantiles sepa-
rately, it is of great interest to estimate them simultaneously. One advantage of simultaneous estimation is
that multiple quantiles can share strength among them to gain better estimation accuracy than individually
estimated quantile functions. Another important advantage of joint estimation is the feasibility of incorpo-
rating simultaneous non-crossing constraints of QR functions. In this paper, we propose a new kernel-based
multiple QR estimation technique, namely simultaneous non-crossing quantile regression (SNQR). We use
kernel representations for QR functions and apply constraints on the kernel coefficients to avoid cross-
ing. Both unregularised and regularised SNQR techniques are considered. Asymptotic properties such as
asymptotic normality of linear SNQR and oracle properties of the sparse linear SNQR are developed. Our
numerical results demonstrate the competitive performance of our SNQR over the original individual QR
estimation.

Keywords: asymptotic normality; kernel; multiple quantile regression; non-crossing; oracle property;
regularisation; variable selection

1. Introduction

Regression is central to statistics. Different from ordinary least squares regression, quantile
regression (QR) tries to estimate the conditional quantile function. It was originally introduced
by Koenker and Bassett (1978) and has been extensively studied afterwards. It has been applied
in many different areas. Interested readers are referred to Koenker (2005) for a comprehensive
review on QR.

Many real applications ask for a complete understanding of the conditional distribution of the
response given covariates. One approach is to estimate multiple conditional quantile functions.
A naive method is to individually estimate different conditional quantile functions. This individual
estimation method is simple and easy to carry out. Theoretically different conditional quantile
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416 Y. Liu and Y. Wu

functions should not cross each other according to the basic principle of conditional distribution
functions. However, the naive individual estimation may lead to estimated conditional quantile
functions that cross each other. Thus, it is desirable to jointly estimate multiple QR with non-
crossing constraints embedded. Another important motivation of joint estimation is that multiple
quantile functions may share strength among them (Zou andYuan 2008a).As a result, simultaneous
estimation may help to improve the estimation accuracy of an individual quantile function.

In the literature, there exist some techniques addressing the crossing issue of multiple quantile
function estimation. He (1997) proposed the location-scale shift model to impose monotonicity
across the quantile functions. However, as noted by Neocleousa and Portnoy (2007), even for
linear regression quantiles, corresponding models can be much more general. Thus, a more general
development of the estimation of non-crossing regression quantiles is needed. Shim, Hwang and
Seok (2009) also considered the location-scale model and proposed to estimate both location and
scale functions simultaneously by doubly penalised kernel machines to achieve non-crossing of
quantiles. Takeuchi, Le, Sears and Smola (2006) proposed to impose non-crossing constraints
on the data points. Although their approach can help to reduce the chance of crossing, their data
constraints may not ensure non-crossing in the entire covariate space. Takeuchi and Furuhashi
(2004) further extended the method of Takeuchi et al. (2006) by using the ε-insensitive check
function in the support vector machine framework. Recently, Wu and Liu (2009) proposed a
stepwise procedure to perform the estimation of multiple non-crossing QR functions. Despite
improvement over individually estimated quantile functions, the stepwise procedure does not
produce a simultaneous estimation. In a recent paper, Bondell, Reich and Wang (2010) proposed
an method for non-crossing quantile regression curve estimation using spline-based constraints.

For nonparametric non-crossing quantile estimation, several people have proposed to first esti-
mate the conditional cumulative distribution function via local weighting and then invert it to
obtain the quantile curve. Yu and Jones (1998) suggested a double kernel smoothing method with
a minor modification of this estimate in a second step, so that the corresponding quantile curves are
monotone. Hall, Wolff and Yao (1999) proposed an adjusted Nadaraya–Watson estimate, which
modifies the weights of the Nadaraya–Watson estimate such that the resulting estimate of the con-
ditional distribution function is monotone. Chernozhukov, Fernandez-Val and Galichon (2009)
proposed to estimate non-crossing quantile curves via a monotonic rearrangement of the origi-
nal non-monotone function. They also studied the asymptotic behaviour of their bootstrap-type
method. Dette andVolgushev (2008) proposed a similar approach to achieve non-crossing quantile
curves via solving the problem of inversion and monotonisation on the initial estimates. Although
these indirect approaches are effective in obtaining nonparametric quantile curves without cross-
ing, it can be difficult to quantify the effect of the predictors. For instance, if variable selection is
a desirable goal, a direct approach is needed to estimate multiple non-crossing quantiles.

In this paper, we propose a new method to perform simultaneous estimation of multiple non-
crossing conditional quantile functions. We call the method simultaneous non-crossing quantile
regression (SNQR). We employ simple constraints on the kernel coefficients which can guarantee
the estimated conditional quantile functions never cross each other. This kernel formulation cov-
ers both linear and nonlinear models. Furthermore, we demonstrate that through sharing strength
among different quantiles, SNQR can produce better estimation than individually estimated quan-
tile functions. We have also developed asymptotic normality of linear SNQR and oracle properties
of the sparse linear SNQR.

To illustrate the effect of quantile crossing and the benefit of joint estimation, we consider
a simple illustrating one-dimensional toy example. Consider the underlying model Y = X + ε,
where X ∼ Uniform[−1, 1] and ε ∼ N(0, 0.25) are independent of each other. Figure 1 displays
the true and estimated quantile functions based on a simulated data set of size 40 using individual
and joint estimations, respectively. The Gaussian kernel was used for the estimation. From the
plots, we can clearly see that individual estimation has severe quantile crossing, while our SNQR
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Figure 1. Illustration plot of quantile crossing of individual estimation and quantile non-crossing of the proposed
SNQR estimation on the one-dimensional toy example. The left panel displays the true quantile functions for
τ = 0.1, 0.2, . . . , 0.9. The middle and right panels display the estimation results of the original individual and proposed
simultaneous estimation of the nine quantiles for one data realisation.

does not. More importantly, it appears that the individual estimation performs poorly for small or
large τ values such as 0.1 and 0.9. In contrast, through the joint estimation, our proposed SNQR
gives much improvement on the estimation of all quantile functions.

The rest of this article is organised as follows. In Section 2, we briefly review the standard
QR and then introduce the proposed SNQR. In Section 3, we develop the asymptotic properties
of a linear SNQR. We demonstrate the numerical performance of our proposed SNQR using
simulations in Section 4 and the baseball data example in Section 5. Some final discussion is
given in Section 6. Proofs of theoretical results are collected in the appendix.

2. Methodology

In this section, we first briefly review the standard QR and then introduce the proposed SNQR.
In this paper, we use the kernel representation for quantile functions and embed non-crossing
constraints on the kernel coefficients. Due to the use of kernel formulation, we first introduce the
nonlinear version in Section 2.1, followed by the linear case in Section 2.2.

Suppose that we are given a sample {(xi , yi), i = 1, 2, . . . , n} with covariates xi ∈ X ⊂ R
d

and the response yi ∈ R. The conditional τ th quantile function fτ (x) is defined such that

P(Y ≤ fτ (x)|X = x) = τ (1)

for 0 < τ < 1. By tilting the absolute loss function, Koenker and Bassett (1978) introduced the
check function which is defined as ρτ (z) = z(τ − I (z < 0)) and illustrated in Figure 2. Here I (·)
denotes the indicator function. Further they demonstrated in their seminal paper (Koenker and
Bassett 1978) that the τ th conditional quantile function can be estimated by solving

min
fτ ∈F

n∑
i=1

ρτ (yi − fτ (xi )). (2)

Depending on how large the function space F is, a regularisation term may be necessary to avoid
over-fitting and improve generalisation ability as considered in Koenker, Ng and Portnoy (1994)
and Koenker (2004). Namely, we add a roughness penalty term J (fτ ) and solve

min
fτ ∈F

n∑
i=1

ρτ (yi − fτ (xi )) + λJ (fτ ), (3)

where λ is a tuning parameter balancing the data fitting measured by the check function and the
complexity of fτ (·) measured by the roughness penalty J (fτ ). The kernel QR by Li, Liu and Zhu
(2007) fits in the form of Equation (3).
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Figure 2. Plot of the check function for three different values of τ .

Although QR works well for estimating a quantile function for any particular τ , in certain
scenarios, it is desirable to estimate multiple conditional quantile functions simultaneously. For
example, one may be interested in estimating K quantile functions for 0 < τ1 < τ2 < · · · <

τK < 1. A naive way is to estimate fτk
(·) individually by solving Equation (2) or (3) one at

a time to get estimates f̂τk
, k = 1, 2, . . . , K . Despite its simple implementation, there are some

drawbacks with the naive approach. First of all, in theory, different quantiles should not cross each
other. However, the naive estimates may suffer from quantile crossing for the finite sample case,
especially when the sample size is small. Secondly, the naive estimation cannot share the strength
of other quantile estimation due to the individual estimation scheme. Therefore, it is desirable to
have a joint estimation technique which can ensure non-crossing of different quantiles and also
improve the estimation accuracy of the quantile functions.

In this section, we propose a new general method that guarantees non-crossing of the estimated
multiple quantile functions. Our method is based on the use of kernel representation of quantile
functions. To introduce the proposed technique, we first discuss the nonparametric case using a
Mercer kernel. Then we extend our method to the parametric linear case. For both cases, we assume
that our input domain X is bounded. This bounded domain assumption is natural and necessary
for our nonparametric technique. Even for the linear case, the bounded domain assumption is very
reasonable due to the fact that two linear lines will eventually cross each other in R

d unless they
are parallel.

2.1. Nonlinear case

For a Mercer kernel function K(·, ·), the representer theorem (Kimeldorf and Wahba 1971)
allows us to represent the τ th quantile function by fτ (x) = ∑n

i=1 wτ,iK(xi , x) + bτ . Our key
observation is that for two quantile functions fτ1 and fτ2 , if the kernel function is non-negative
with K(·, ·) ≥ 0, then we have fτ1(x) ≤ fτ2(x) for any x ∈ X if wτ1,i ≤ wτ2,i; i = 1, . . . , n and
bτ1 ≤ bτ2 . One typical example of non-negative kernels is the Gaussian kernel with K(x1, x2) =
exp(−‖x1 − x2‖2/σ 2), whereσ 2 is the kernel parameter. Using this observation, we can use simple
constraints on the kernel coefficients to jointly estimate K kernel-based quantile functions without
crossing.
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Journal of Nonparametric Statistics 419

Using the additional constraints, our SNQR technique estimates the QR coefficients by solving
the following joint optimisation problem

min
K∑

k=1

n∑
i=1

ρτk

⎛
⎝yi −

n∑
j=1

wτk,jK(xj , xi ) − bτk

⎞
⎠ + λ

K∑
k=1

wT
τk

Kwτk
, (4)

subject to bτk
≤ bτk+1 for k = 1, 2, . . . , K − 1, (5)

wτk,i ≤ wτk+1,i for i = 1, 2, . . . , n; k = 1, 2, . . . , K − 1, (6)

where wτk
= (wτk,1, wτk,2, . . . , wτk,n)

T and K is a matrix of size n × n with its (i, j) element being
K(xi , xj ). Here the regularisation term for the kth quantile function is wT

τk
Kwτk

as a consequence
of the representer theorem (Kimeldorf and Wahba 1971).

Note that the set of simple constraints (5) and (6) can guarantee the non-crossing of the estimated
quantile functions as long as K(·, ·) ≥ 0. Here we want to note that the non-negativity assumption
on the kernel K(·, ·) is not essential. According to Scholkopf and Smola (2002), K(·, ·) + C is a
Mercer kernel as long as K(·, ·) is a Mercer kernel and C ≥ 0. Thus, for any Mercer kernel K(·, ·),
we define K+(·, ·) = K(·, ·) − KX , where KX = min{0, infx∈X ,x′∈X K(x, x′)}. Then the new
kernel K+(·, ·) satisfies the non-negativity assumption. Denote the solution to Equation (4) by ŵ+

τk,i

and b̂+
τk

when the new kernelK+(·, ·) is used. Our estimated conditional quantile functions are given

by f̂τk
(x) = ∑n

i=1 ŵ+
τk,i

K+(xi , x) + b̂+
τk

= ∑n
i=1 ŵ+

τk,i
K(xi , x) − (∑n

i=1 ŵ+
τk,i

)
KX + b̂+

τk
for k =

1, 2, . . . , K . Note that our estimate f̂τk
(x) can still be expressed in terms of the original kernel

K(·, ·) that we begin with.
As a remark, we note that the objective function (4) aggregates the check function losses for

different τ ’s and treats them equally. However, the value of
∑n

i=1 ρτk
(yi − ∑n

j=1 wτk,jK(xj , xi ) −
bτk

)may not be on the same scale for different τ ’s. Equal treatments of the loss function for different
τ may be suboptimal. The following proposition gives the expected value of the check function
when the error term is normally distributed.

Proposition 1 Let ε ∼ N(0, 1) and denote �−1(τ ) as the τ th quantile of ε, where �(·) is the
CDF of N(0, 1). Then, we have

E[ρτ (ε − �−1(τ ))] = φ(�−1(τ )),

where φ(·) is the density of N(0, 1).

Proposition 1 indicates that the expected value of the check function can vary greatly with
different τ ’s. In the Gaussian case, the expected check function varies in the same way as the
Gaussian density. In particular, the value for τ = 0.5 is the largest and it decreases as τ gets closer
to 0 or 1. If we treat them equally, then those with τ around 0.5 will receive much larger emphasis
than other quantiles. The quantiles with very small or large τ ’s tend to be ignored. To fix this
problem, one can use weight adjustment for different quantiles. In particular, we can extend the
objective function in Equation (4) to a weighted version as follows:

K∑
k=1

Wk

n∑
i=1

ρτk

⎛
⎝yi −

n∑
j=1

wτk,jK(xj , xi ) − bτk

⎞
⎠ + λ

K∑
k=1

wT
τk

Kwτk
, (7)

where Wk is the weight for the τkth quantile. In this paper, we consider two different weight vectors:
equal weights and Gaussian-induced weights with Wk = 1/φ(�−1(τ )). The Gaussian-induced
weight can help to correct the scale difference of the check loss function for different quantiles
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420 Y. Liu and Y. Wu

when the error is normal. Even when the error distribution is not normal, the Gaussian-induced
weight provides a helpful adjustment for different quantile estimations. Furthermore, if some prior
knowledge on the error distribution is available, then the corresponding weight can be adjusted
accordingly.

2.2. Linear case

Different from nonlinear learning, we assume a parametric conditional quantile function
fτ = xTβτ + β0τ in linear learning. However, the linear conditional quantile estimation can
be achieved in the kernel representation framework using the linear kernel L(x1, x2) = xT

1 x2

and assuming fτk
(x) = ∑n

i=1 wτk,iL(xi , x) + bτk
. These two representations are equivalent in the

sense that βτk
= ∑n

i=1 wτk,ixi and β0τk
= bτk

.
Note that the linear kernel L(x1, x2) = xT

1 x2 does not satisfy the non-negativity assumption in
general. As discussed above, we can define a new kernel L+(·, ·) = L(·, ·) − LX , where LX =
min{0, inf

x1∈X ,x2∈X
L(x1, x2)}. Then L+(·, ·) is a well-defined Mercer kernel and also satisfies the

non-negativity assumption. With the new kernel L+(·, ·), we can formulate our linear QR by
defining fτ (x) = ∑n

i=1 wτ,iL+(xi , x) + bτ with slight abuse of notations. In this way, linear QR
without crossing can be achieved by solving

min
K∑

k=1

Wk

n∑
i=1

ρτk

⎛
⎝yi −

n∑
j=1

wτk,jL+(xj , xi ) − bτk

⎞
⎠ , (8)

subject to bτk
≤ bτk+1 for k = 1, 2, . . . , K − 1, (9)

wτk,i ≤ wτk+1,i for i = 1, 2, . . . , n; k = 1, 2, . . . , K − 1. (10)

In terms of the original linear kernel K(x1, x2) = xT
1 x2, the linear quantile function can be

rewritten as fτ (x) = (
∑n

i=1 wτ,ixi )
Tx − (

∑n
i=1 wτ,i)LX + bτ .

One interesting point is that our kernel representation of linear quantile functions is equivalent
to the other parametric representation fτ (x) = xTβτ + β0τ via the connection βτ = (

∑n
i=1 wτ,ixi )

and β0τ = −(
∑n

i=1 wτ,i)LX + bτ . This connection allows us to apply techniques for linear QR.
For example, we can incorporate various penalties in linear QR that are capable of variable
selection.

Another approach to estimate linear non-crossing quantile functions is to use the parametric
representation fτ (x) = xTβτ + β0τ directly. Suppose X = [0, ∞)d . Then linear non-crossing QR
functions can be obtained by solving

min
K∑

k=1

Wk

n∑
i=1

ρτk
(yi − xT

i βτk
+ β0τk

), (11)

subject to β0τk
≤ β0τk+1 for k = 1, 2, . . . , K − 1, (12)

βτk,j ≤ βτk+1,j for j = 1, 2, . . . , d; k = 1, 2, . . . , K − 1. (13)

The constraints here ensure quantile functions with larger τ ’s to be always above of those with
smaller τ ’s to prevent crossing.

As a remark, we note that the kernel representation (8) requires (K − 1)(n + 1) inequality
constraints while the linear parametric representation (11) requires (K − 1)(d + 1) inequality
constraints. For low-dimensional problems with d < n, the formulation (11) can be easier to
solve as it involves fewer constraints. In contrast, the formulation (8) is more preferable for
high-dimensional low sample-size problems with d > n.
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2.3. Variable selection for linear quantile functions

Variable selection plays an important role in the model-building process. In practice, it is very
common to have a large number of candidate predictor variables available. These variables can be
included in the initial stage of modelling for the consideration of removing potential modelling
bias (Fan and Li 2001). However, it is undesirable to keep irrelevant predictors in the final model
since this makes it difficult to interpret the resulting model and may decrease its predictive ability.

In the regularisation framework, many different types of penalties have been introduced to
achieve variable selection. The L1 penalty was used in the least absolute shrinkage and selection
operator (LASSO) proposed by Tibshirani (1996) for variable selection. Zou (2006) proposed
the adaptive LASSO to improve the original LASSO. Fan and Li (2001) proposed the smoothly
clipped absolute deviation (SCAD) function and also studied its oracle properties in the penalised
likelihood setting. For the QR, Koenker (2004) applied the LASSO penalty to the mixed-effect
QR model for longitudinal data to encourage shrinkage in estimating the random effects. One
important special case of QR with τ = 0.5, the least absolute deviation regression, was studied
by Wang, Li and Jiang (2007). Li and Zhu (2008) developed an algorithm to derive the entire
solution path of linear L1 QR. Wu and Liu (2008) studied both the adaptive L1 and SCAD QR
and developed the corresponding oracle properties. They also developed the difference convex
algorithm (Liu, Shen and Doss 2005) for the SCAD penalised methods.

For variable selection in multiple quantile estimation, Zou andYuan (2008b) proposed a hybrid
of L1 and L∞ penalties to perform variable selection. The sup-norm is applied on the coefficients
of the same variable for multiple quantile functions to encourage simultaneous sparsity. A similar
sup-norm penalty was used by Zhang, Liu, Wu and Zhu (2008) for variable selection in multicat-
egory support vector machines. To achieve simultaneous variable selection for multiple quantile
functions, we also consider a sup-norm type of penalty to achieve simultaneous variable selec-
tion. One fundamental difference of our approach from the approach by Zou and Yuan (2008b)
is that their approach cannot guarantee non-crossing of different quantile functions. Using the
connection of βτ = ∑n

i=1 wτ,ixi , we propose to solve the penalised version of Equations (8)–(10)
as follows:

min
K∑

k=1

Wk

n∑
i=1

ρτk

⎛
⎝yi −

n∑
j=1

wτk,jL+(xj , xi ) − bτj

⎞
⎠ +

d∑
j=1

pλ

(
K

max
k=1

∣∣∣∣∣
n∑

i=1

wτk,ixij

∣∣∣∣∣
)

,

(14)

subject to bτk
≤ bτk+1 for k = 1, 2, . . . , K − 1, (15)

wτk,i ≤ wτk+1,i for i = 1, 2, . . . , n; k = 1, 2, . . . , K − 1, (16)

where pλ(·) is a general penalty function with the regularisation parameter λ. Similar to the
nonlinear case in Section 2.1, constraints (15) and (16) can guarantee that our estimated linear
conditional quantile functions do not cross each other in the bounded input space X .

Similar to the kernel version, we can also extend the parametric linear formulation in Equations
(11)–(13) with penalties as follows:

min
K∑

k=1

Wk

n∑
i=1

ρτk
(yi − xT

i βτk
+ β0τk

) +
d∑

j=1

pλ

(
K

max
k=1

|βτk,j |
)

, (17)

subject to β0τk
≤ β0τk+1 for k = 1, 2, . . . , K − 1, (18)

βτk,j ≤ βτk+1,j for j = 1, 2, . . . , d; k = 1, 2, . . . , K − 1. (19)
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422 Y. Liu and Y. Wu

In this paper, we used the SCAD penalty (Fan and Li 2001); however, many other penalty
functions can be adopted here. The SCAD penalty is mathematically defined in terms of its
first-order derivative and is symmetric around the origin. For θ > 0, its first-order derivative is
given by

p′
λ(θ) = λ

{
I (θ ≤ λ) + (aλ − θ)+

(a − 1)λ
I (θ > λ)

}
, (20)

where a > 2 and λ > 0 are tuning parameters. Note that the SCAD penalty function is symmetric,
non-convex on [0, ∞) and singular at the origin.

2.4. Computation

Computation of the proposed SNQR can be done in a similar way as the original unregularised and
regularised QR. For example, problems (4) and (8) can be implemented using quadratic program-
ming and linear programming (LP), respectively. For problem (14), in order to handle the SCAD
penalty, we make use of the local linear approximation algorithm proposed by Zou and Li (2008).
In particular, at each step with the current solution w̃τk,i , we replace pλ(maxK

k=1 | ∑n
i=1 wτk,ixij |) by

p′
λ

(
K

max
k=1

∣∣∣∣∣
n∑

i=1

w̃τk,ixij

∣∣∣∣∣
) (

K
max
k=1

∣∣∣∣∣
n∑

i=1

wτk,ixij

∣∣∣∣∣
)

. (21)

To simplify Equation (21), we introduce a slack variable ηj to simplify the max function. In
particular, we modify Equation (21) as

p′
λ

(
K

max
k=1

∣∣∣∣∣
n∑

i=1

w̃τk,ixij

∣∣∣∣∣
)

ηj , (22)

subject to

ηj ≥
n∑

i=1

wτk,ixij , ηj ≥ −
n∑

i=1

wτk,ixij ; for k = 1, . . . , K.

Then using approximation (22), problem (14) can be solved using the iterative LP. Similarly, the
parametric penalised version (17)–(19) can also be computed using the iterative LP.

3. Theoretical properties

In this section, we consider the theoretical properties of our non-crossing linear conditional quan-
tile estimates presented above. To that end, we first consider the standard unpenalised and penalised
linear QR without non-crossing constraints. Then we investigate the behaviour of the constraints
as n grows to infinity to explore the theoretical properties of the new proposed technique.

3.1. Asymptotic normality of unconstrained and constrained linear QR

We first consider the unpenalised version by establishing asymptotic properties of the solution to
Equation (8). Without the non-crossing constraints, it is equivalent to the naive individual estimate
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by solving

min
βτk

, β0τk

n∑
i=1

ρτk
(yi − β0τk

− xT
i βτk

) (23)

one at a time for each k = 1, 2, . . . , K . Denote the optimal solution of Equation (23) by β̃0τk

and β̃τk
.

Define Cn to be an event that individually estimated conditional quantile functions, obtained by
solving Equation (23) with a random sample of size n, cross each other, namely, there exist k and

x ∈ X such that β̃0τk
+ β̃

T
τk

x > β̃0τk+1 + β̃
T
τk+1

x. We prove that P(Cn) → 0 as n → ∞ by showing
P(Cn) decays exponentially in n.

As in Koenker (2005, p. 120), we consider a general form of the linear quantile model. Let Y1,
Y2, . . . be independent random variables with distribution functions F1, F2, . . . and suppose that
the τ th conditional quantile function is linear in the covariate vector x by assuming

QYi
(τ |x) = β0(τ ) + xTβ(τ ).

The conditional distribution functions of the Yi’s will be written as P(Yi < y|xi ) = FYi
(y|xi ) =

Fi(y), and then

QYi
(τ |xi ) = F−1

Yi
(τ |xi ) ≡ ξi(τ ).

To proceed, we assume that the following two conditions are satisfied.
Condition A: The distribution functions {Fi} are absolutely continuous, with continuous

densities fi(·) uniformly bounded away from 0 and ∞ at points {ξi(τ1), ξi(τ2), . . . , ξi(τK)},
i = 1, 2, . . . .

Condition B: There exist positive-definite matrices 
0 and 
1(τk) for k = 1, 2, . . . , K such
that

(1)

lim
n→∞ n−1

n∑
i=1

x̃i x̃
T
i = 
0.

(2)

lim
n→∞ n−1

n∑
i=1

fi(ξi(τk))x̃i x̃
T
i = 
1(τk).

(3)

max
i=1,2,...,n

‖ xi ‖√
n

→ 0,

where x̃i = (1, xT
i )T.

Recall that the naive individual estimate is denoted by β̃0τk
and β̃τk

. Denote the corresponding

true parameters by β0(τk) and β(τk). Our non-crossing estimates are denoted by β̂0τk
and β̂τk

.

Lemma 1 Under conditions A and B, as n → ∞, the naive individual estimates have the
following asymptotic normality

√
n

[(
β̃0τk

β̃τk

)
−

(
β0(τk)

β(τk)

)]
−→ N(0, τk(1 − τk)
1(τk)

−1
0
1(τk)
−1). (24)
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424 Y. Liu and Y. Wu

Proposition 2 When the domain X is bounded, under the conditions of Lemma 1, there exists
a constant c > 0 such that P(Cn) ≤ e−nc asymptotically.

Proposition 2 shows that the quantile crossing phenomenon is only a finite sample behaviour.
As the sample size n increases, the probability of quantile crossing decreases exponentially in
n. Thus, we can expect that the non-crossing quantile technique shares the same asymptotic
behaviour as the corresponding QR methods without non-crossing constraints if the constraints
are necessary for non-crossing under certain cases.

As discussed earlier, constraints (9) and (10) or (12) and (13) are sufficient to ensure the
non-crossing of the resulting estimated multiple quantile functions. The following proposition
states the necessity of the constraints for non-crossing.

Proposition 3 Suppose fτk
(x) = β0τk

+ βT
τk

x with (β0τk
, βτk

); k = 1, . . . , K, bounded and x ∈
X = [0, ∞)d . Then (i) constraints (12) and (13) are necessary and sufficient to ensure the non-
crossing of fτk

in X ; (ii) if d > n, constraints (9) and (10) are also necessary and sufficient to
ensure the non-crossing of fτk

’s in X .

Our next theorem states the same asymptotic normality of the non-crossing estimators as the
unconstrained estimators. Since the probability of the crossing event goes to 0 asymptotically
as shown in Proposition 2, the non-crossing estimators asymptotically behave the same as the
unconstrained estimators if the constraints are sufficient and necessary for non-crossing.

Theorem 1 Assume that the non-crossing constraints are necessary and sufficient. Under the
conditions of Proposition 2, then with the probability tending to 1, the simultaneous non-crossing
estimates obtained by solving Equation (8) have the asymptotic normality

√
n

[(
β̂0τk

β̂τk

)
−

(
β0τk

βτk

)]
−→ N(0, τk(1 − τk)
1(τk)

−1
0
1(τk)
−1). (25)

3.2. Oracle properties of sparse constrained linear SNQR

In this section, we develop the oracle properties of our sparse penalised linear SNQR in the notion
of Fan and Li (2001). With a non-concave penalty pλ(·), similar to the development in Section 3.1,
we first consider the version without non-crossing constraints by solving

min
K∑

k=1

Wk

n∑
i=1

ρτk
(yi − xT

i βτk
− β0τk

) + n

p∑
j=1

pλ

(
K

max
k=1

|βjτk
|
)

. (26)

Without loss of generality, in this section, we set Wk = 1; k = 1, . . . , K . The results can be directly

generalised to other weights Wk’s. The corresponding optimiser is denoted by β̃
S

τk
and β̃S

0τk
.

Recall that the true parameters are denoted byβ(τk) = (β1(τk), β2(τk), . . . , βp(τk))
T, β0(τk) for

k = 1, 2, . . . , K . Denote uik = yi − xT
i β(τk) − β0(τk) for i = 1, 2, . . . , n and k = 1, 2, . . . , K .

The behaviour of
√

n{β̃S

τk
− β(τk)} and

√
n{β̃S

0τk
− β0(τk)} follows from the consideration of the

following objective function

Q(α1, α2, . . . ,αK, a1, a2, . . . , aK) = Znk(αk, ak) + n

p∑
j=1

pλ

(
K

max
k=1

∣∣∣∣βj (τk) + αjk√
n

∣∣∣∣
)

, (27)

where αk = (α1k, α2k, . . . , αpk)
T and Znk(αk, ak) = ∑n

i=1[ρτk
(uik − xT

i αk/
√

n − ak/
√

n) −
ρτk

(uik)]. This minimiser of Equation (27) is given by
√

n(β̃τk
− β(τk)) and

√
n(β̃0τk

− β0(τk)).
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By reordering if necessary, we assume without loss of generality that the first s predictors are
important, which means that max

1≤k≤K
|βj (τk)| > 0 for any j ≤ s. It also implies that βj (τk) = 0

for j > s and k = 1, 2, . . . , K . Denote A = {j : max
k=1,2,...,K

|βj (τk)| 
= 0} = {1, 2, . . . , s} to be the

true active set. Note that the set A includes all variables that have at least one non-zero coefficient
among all quantile functions considered. We do not require all quantile functions to have the same
non-zero coefficients. Denote cn = max

j∈A
p′

λ( max
k=1,2,...,K

|βj (τk)|). Set Ac = {s + 1, s + 2, . . . , p},
B = {1, 2, . . . , s + 1}, and Bc = {s + 2, s + 3, . . . , p + 1}. Use βAk to denote the subvector of
βk with indices in A and 
1,B,Bc to denote the submatrix of 
1 with a row index in B and a
column index in Bc.

Lemma 2 If λ = λn → 0, cn = O(n−1/2) and maxj∈A |p′′
λ(maxk=1,2,...,K |βj (τk)|)| → 0, under

conditions A and B, then there exits a local minimiser α̂k and âk, k = 1, 2, . . . , K, for
Equation (27) such that ‖α̂k‖ = Op(n−1/2) and âk = Op(n−1/2).

Lemma 3 If lim infλ→0+ lim infθ→0+ p′
λ(θ)/λ > 0, under the conditions of Lemma 2, then with

the probability tending to 1, for any ak and αAk satisfying
√∑K

k=1(‖αAk‖2 + a2
k ) = Op(n−1/2)

and for any constant C > 0,

Q

((
αA1

0

)
,

(
αA2

0

)
, . . . ,

(
αAK

0

)
, a1, a2, . . . , aK

)

= min√∑K
k=1‖αAck‖≤Cn−1/2

Q

((
αA1

αAc1

)
,

(
αA2

αAc2

)
, . . . ,

(
αAK

αAcK

)
, a1, a2, . . . , aK

)
.

Theorem 2 Ifλ → 0 and
√

nλ → ∞,under the conditions of Lemma 3, then with the probability
tending to 1, the

√
n consistent local minimiser β̃τk

and β̃0τk
, k = 1, 2, . . . , K, of Lemma 2 satisfies

that

(1) β̃jτk
= 0 for j 
∈ A,

(2) the optimiser β̃jτk
for j ∈ A and β̃0τk

has the same asymptotic property of the minimiser of
the following objective function

min
K∑

k=1

n∑
i=1

ρτk

⎛
⎝yi −

∑
j∈A

xijβjτk
− β0τk

⎞
⎠ +

∑
j∈A

pλ

(
K

max
k=1

|βjτk
|
)

. (28)

As a remark, we note that the absolute value of the true parameters may have a tie for some
j ≤ s, namely, |βj (τk)| = |βj (τk′)| for some 1 ≤ k, k′ ≤ K and 1 ≤ j ≤ s. Thus, it is not easy
to derive the asymptotic properties of the minimiser of Equation (28) for a general non-concave
penalty. When the SCAD penalty by Fan and Li (2001) is used, we have the following result as
stated in Proposition 4.

Proposition 4 When the SCAD penalty is used, under the conditions of Theorem 2, as n → ∞,

with the probability tending to 1, we have that

(1) β̃jτk
= 0 for j 
∈ A.

(2) the optimiser β̃jτk
for j ∈ A and β̃0τk

satisfies

√
n

[(
β̃0τk

β̃Aτk

)
−

(
β0(τk)

βA(τk)

)]
−→ N(0, τk(1 − τk)
1,B,B(τk)

−1
0,B,B
1,B,B(τk)
−1). (29)
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426 Y. Liu and Y. Wu

The following theorem states the same oracle property of the constrained sparse SNQR with
the unconstrained sparse SNQR.

Theorem 3 Assume that the non-crossing constraints are necessary and sufficient for non-
crossing. With the probability tending to 1, asymptotic results in Theorem 2 and Proposition 4
apply to the proposed non-concave penalised non-crossing quantile estimation (14) under the
same conditions.

As a remark, we note that model selection techniques that enjoy the oracle property may
have unsatisfactory asymptotic behaviours in the ‘uniform sense’ with respect to the unknown
parameter as one referee pointed out. The pointwise asymptotic distribution of the estimator may
not be representative for the finite sample performance of the estimator (see, e.g. Leeb and Potscher
2008; Potscher and Leeb 2009; Potscher and Schneider 2010). We will not further explore this
aspect on the proposed SNQR in this paper.

4. Simulations

In our simulated examples, our training sample size is denoted by n. An independent tuning
set of size n and an independent test set of size 10n are generated in the same way to tune the
regularisation parameter and calculate test errors, respectively. The tuning parameter λ is selected
via a grid search by minimising

∑K
k=1 Wk

∑n
i=1 ρτk

(y̌i − f̂τk
(x̌i )), where (x̌i , y̌i ) denotes an pair

of observations in our tuning set, f̂ (·) denotes an estimate of the conditional quantile function and
Wk is the weight for τk . We evaluate the test error, TE(f̂ ) = ∑K

k=1 Wk

∑10n
i=1 ρτk

(ỹi − f̂τk
(x̃i )), to

compare the performance of our new method with competitive estimators, where (x̃i , ỹi ) denotes
a pair of observations in our test set.

To examine the performance of the proposed SNQR, we compare it with the individual QR. For
individual penalised QR as in Examples 4.1 and 4.2, we carry out two different tuning procedures.
One is to separately tune λ for different QR functions. The other one is to jointly tune λ as in
SNQR so that all different quantile terms use the same λ. Besides the unconstrained QR, we also
compare SNQR with the QR with constraints on the training data only as suggested by Takeuchi
et al. (2006). While comparing two different methods, we report the pairwise t-statistic between
test errors over 100 repetitions for each example, namely tM2,M1 = √

100mean(TEi (f̂M2) −
TEi (f̂M1), i = 1, 2, . . . , 100)/std(TEi (f̂M2) − TEi (f̂M1), i = 1, 2, . . . , 100). For the nonlinear
quantile estimation, we use the Gaussian kernel K(x, x′) = exp(−‖x − x′‖2

2).

Example 1 (Nonlinear example with i.i.d. noise) In this example, our predictor is univariate
and uniformly distributed over [−1, 1], namely, X ∼ Uniform[−1, 1]. Conditional on X, Y =
2 sin(πX) + 0.5ε, where ε ∼ N(0, 1) denotes the independent noise. We set τk = 0.1k for
k = 1, 2, . . . , 9. We compare different estimators with the Gaussian kernel. The training sam-
ple size is set to be n = 100. Results over 100 repetitions are given in Table 1, which reports
the pairwise t-test statistics for comparing test errors of different methods. The weight and error
options indicate the types of weight used in model-building and calculation of the testing error,
respectively. The results show that the proposed SNQR (M3) gives the best performance among
all methods considered here. When we use the joint tuning procedure for λ, the simultaneous
method with data point restriction (M2) works better than the individually estimated QR (M1).
Interestingly, when we perform separate tuning for individual multiple quantile estimation (M1′),
the results are better than the simultaneous method with data point restriction (M2). Furthermore,
the types of weights and errors do not appear to have much influence on the methods in this
example.
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Table 1. Pairwise t-test for the test error of nonlinear i.i.d Example 1.

Weight Error M2 versus M1 M3 versus M2 M3 versus M1 M1 versus M1′ M2 versus M1′ M3 versus M1′

Uniform Uniform −2.9895 −11.3217 −10.4820 4.6798 3.1192 −9.7830
Normal −3.2488 −12.5514 −11.6472 6.1261 4.5797 −9.3860

Normal Uniform −2.8038 −12.3808 −11.2452 4.5684 3.4622 −10.4665
Normal −3.1294 −13.2998 −11.9478 5.7226 4.8629 −10.4114

Notes: M1, individual estimation with joint tuning; M1′, individual estimation with separate tuning; M2, simultaneous estimation with
data point restriction; M3, SNQR.
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Figure 3. Plot of the average differences between the test errors and Bayes errors for Example 1. The left and right
panels correspond to the uniform and normal weights respectively.

In Figure 3, we plot the average individual difference of the test error
∑10n

i=1 ρτk
(ỹi − f̂τk

(x̃i ))

and the Bayes error
∑10n

i=1 ρτk
(ỹi − fτk

(x̃i )) with respect to individual τk’s for different methods,
where fτk

(·) denotes the true conditional quantile function. It clearly shows the improvement of
our method.

Example 2 (Nonlinear example with non-i.i.d. noise) In this example, the predictor is the same
as in the previous example, namely, X ∼ Uniform[−1, 1]. Conditional on X, Y = 2 sin(πX) +
0.5(1 + X2)ε, where ε ∼ N(0, 1) denotes the independent noise. The sample size is chosen to
be n = 100. Results over 100 repetitions are reported in Table 2. The results are similar to that
of Example 1, although the differences among methods are smaller in this example. In particular,
the proposed SNQR (M3) works the best, followed by individual estimation with separate tuning
(M1′), simultaneous estimation with data point restriction (M2) and individual estimation with
joint tuning (M1).

Table 2. Pairwise t-test for the test error of Example 2.

Weight Error M2 versus M1 M3 versus M2 M3 versus M1 M1 versus M1′ M2 versus M1′ M3 versus M1′

Uniform Uniform −1.6692 −5.4152 −5.4005 2.7011 1.6137 −3.6387
Normal −1.4907 −5.0432 −4.9881 3.9332 2.9301 −2.4405

Normal Uniform −2.6016 −5.4650 −6.6603 2.8115 0.2473 −5.0223
Normal −3.0040 −4.6702 −6.0799 3.7212 0.8714 −3.8507

Notes: M1, individual estimation with joint tuning; M1′, individual estimation with separate tuning; M2, simultaneous estimation with
data point restriction; M3, SNQR.
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428 Y. Liu and Y. Wu

Example 3 (Linear example with i.i.d. noise) Data are generated from

Y = X1 + X2 + 0.5ε,

with X1 ∼ Uniform[0, 1], X2 ∼ Uniform[0, 1], ε ∼ N(0, 1) being independent of each other. We
set n = 100, d = 2 and τk = k/10 for k = 1, 2, . . . , 9. For this example, we compare unpenalised
QR methods, i.e. individual estimation (M1), simultaneous estimation with data point restriction
(M2) and SNQR (M3). Results over 100 repetitions are reported in Table 3. The results show that
SNQR (M3) works the best, then followed by the data restriction method (M2). The individual
estimation (M1) gives the worst estimation accuracy.

Example 4 (Linear example with non-i.i.d. noise) Consider the following location-scale model

Y = 1 + X1 + X2 +
(

1 + 1 + X3

2

)
ε,

where Xj ∼ Uniform[−1, 1], j = 1, 2, 3, and ε ∼ N(0, 1) are independent of each other. Similar
to Example 3, we compare three unpenalised QR methods: individual estimation (M1), simulta-
neous estimation with data point restriction (M2) and SNQR (M3). We set n = 100, d = 3 and
τk = k/10 for k = 1, 2, . . . , 9. Results over 100 repetitions are reported in Table 4. The results
once again demonstrate that SNQR (M3) works the best, followed by the data restriction method
(M2) and then the individual estimation (M1).

Example 5 (SCAD linear example with i.i.d. noise) In this example, we simulate predictors
X ∼ N(0, 
) with 
 = (σij ), where σij = 0.5|i−j | for 1 ≤ i, j ≤ p. Data are generated from
the model

Y = XTβ + ε,

where ε ∼ N(0, 1) is the independent error. Here we consider two settings, β =
(3, 1.5, 0, 0, 2, 0, 0, 0)T as in Tibshirani (1996) and β = (1.5, 0.75, 0, 0, 1, 0, 0, 0)T which has a

Table 3. Pairwise t-test for test errors of linear i.i.d of Example 3.

Weight Error M2 versus M1 M3 versus M2 M3 versus M1

Uniform Uniform −4.3214 −6.6111 −7.2070
Normal −4.3348 −5.3270 −6.0527

Normal Uniform −3.9829 −7.4806 −8.0344
Normal −3.9335 −6.3636 −7.0218

Notes: M1, individual estimation; M2, simultaneous estimation with data point restriction; M3, SNQR.

Table 4. Pairwise t-test for test errors of linear non-i.i.d Example 4.

Weight Error M2 versus M1 M3 versus M2 M3 versus M1

Uniform Uniform −6.8340 −10.9368 −12.2511
Normal −6.6010 −10.4753 −11.8933

Normal Uniform −6.4172 −10.7988 −11.7562
Normal −6.2999 −10.7351 −11.9027

Notes: M1, individual estimation; M2, simultaneous estimation with data point restriction; M3, SNQR.
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lower signal level. Among the eight covariates, three are important variables and the remaining
five are noise variables. We use this example to examine the performance of sparse penalised QR.

For comparison, we consider five different methods: the individual QR estimation with joint
tuning on λ (M1), the individual QR estimation with separate tuning on λ (M1′), the simultaneous
SCAD-max QR estimation without non-crossing constraints (M1′′), the simultaneous SCAD-max
QR estimation with non-crossing restrictions on training data (M2) and the simultaneous
SCAD-max SNQR (M3). Tables 5 and 6 report the pairwise t-statistics for the comparison of
these five methods. For example, the first entry 1.0840 in Table 5 is the pairwise t-statistic tM1′,M1

which shows that M1 gives a smaller test error than that of M1′. Overall, we can conclude that the
simultaneous SCAD-max SNQR (M3) works the best in terms of test errors. Between the uni-
form and normal weights, the results are similar although the improvement of SNQR over other
methods appears to be larger when we use the normal weight than that of the uniform weight.

Similar to Example 1, in Figures 4 and 5, we plot the individual average differences of test
errors and the Bayes errors with respect to individual τk for five different methods. Once again,
the plot clearly demonstrates the competitiveness of the proposed SNQR for both settings of β.

Table 5. Pairwise t-tests for test errors of Example 5 with β = (3, 1.5, 0, 0, 2, 0, 0, 0)T.

Uniform error Normal error

Weight M1 M1′ M1′′ M2 M1 M1′ M1′′ M2

Uniform
M1′ 1.0840 1.9523
M1′′ −3.6614 −4.6880 −4.0600 −4.9097
M2 −6.9470 −7.8040 −5.6231 −7.7608 −8.2131 −5.7375
M3 −12.1945 −13.1992 −11.9942 −9.5200 −12.9902 −13.9023 −12.7855 −10.3205

Normal
M1′ 0.4965 1.4542
M1′′ −3.3025 −3.8849 −3.3873 −4.4074
M2 −6.5717 −6.6360 −4.4325 −7.4641 −7.3642 −4.7444
M3 −12.5578 −13.5503 −13.0412 −11.0871 −13.7023 −14.6033 −14.5311 −11.9845

Notes: M1, individual estimation with joint tuning; M1′, individual estimation with separate tuning; M1′′, simultaneous SCAD-max
estimation without constraints; M2, simultaneous SCAD-max estimation with data point restriction; M3, simultaneous SCAD-max
SNQR.

Table 6. Pairwise t-tests for test errors of Example 5 with β = (1.5, 0.75, 0, 0, 1, 0, 0, 0)T.

Uniform error Normal error

Weight M1 M1′ M1′′ M2 M1 M1′ M1′′ M2

Uniform
M1′ −0.8772 −1.3600
M1′′ −4.1814 −4.5246 −4.3181 −4.6945
M2 −5.0955 −5.8740 −1.8677 −5.0897 −6.0284 −2.1718
M3 −12.3679 −15.9101 −10.8048 −8.7489 −11.7193 −16.1446 −12.1681 −9.6643

Normal
M1′ −0.4428 −0.4475
M1′′ −4.6602 −5.4521 −4.7435 −5.8945
M2 −5.7025 −7.2761 −3.7704 −5.5784 −7.4678 −3.6670
M3 −10.9239 −13.0084 −10.0445 −8.1136 −10.8430 −13.5719 −11.3901 −9.3674

Notes: M1, individual estimation with joint tuning; M1′, individual estimation with separate tuning; M1′′, simultaneous SCAD-max
estimation without constraints; M2, simultaneous SCAD-max estimation with data point restriction; M3, simultaneous SCAD-max
SNQR.
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Figure 4. Plot of the average differences between the test errors and Bayes errors for Example 5 with
β = (3, 1.5, 0, 0, 2, 0, 0, 0)T. The left and right panels correspond to the uniform and normal weights, respectively.
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Figure 5. Plot of the average differences between the test errors and Bayes errors for Example 5 with
β = (1.5, 0.75, 0, 0, 1, 0, 0, 0)T. The left and right panels correspond to the uniform and normal weights, respectively
(lower signal- to-noise ratio).

Table 7. Variable selection results of Example 5 with β = (3, 1.5, 0, 0, 2, 0, 0, 0)T.

Weight M1 M1′ M1′′ M2 M3

Uniform
Average wrong 0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Average correct 0 3.41 (0.14) 1.00 (0.12) 4.49 (0.08) 4.40 (0.09) 3.91 (0.15)

Normal
Average wrong 0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Average correct 0 3.45 (0.14) 1.00 (0.12) 4.42 (0.09) 4.31 (0.10) 3.69 (0.15)

Notes: M1, individual estimation with joint tuning; M1′, individual estimation with separate tuning; M1′′, simultaneous SCAD-
max estimation without constraints; M2, simultaneous SCAD-max estimation with data point restriction; M3, simultaneous
SCAD-max SNQR.

Tables 7 and 8 show the results on variable selection of Example 5. We report the average correct
and wrong zero coefficients across all quantiles. Since there are three important variables and five
noise variables, the true model has five zero coefficients and three non-zero coefficients for each
QR function. As expected, the performance for the weaker signal setting is worse than that of
the stronger signal setting. For the individual estimation, joint tuning appears to work better than
separate tuning in terms of variable selection. Interestingly, for simultaneous estimation methods,
the method M1′′ without non-crossing constraints works better in variable selection than the
methods with constraints. Nevertheless, in view of the big advantage of SNQR in terms of test
errors, SNQR is more preferable for multiple QR estimation.
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Table 8. Variable selection results of Example 5 with β = (1.5, 0.75, 0, 0, 1, 0, 0, 0)T.

Weight M1 M1′ M1′′ M2 M3

Uniform
Average wrong 0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Average correct 0 2.76 (0.16) 0.64 (0.11) 4.39 (0.09) 4.27 (0.10) 3.35 (0.19)

Normal
Average wrong 0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Average correct 0 2.84 (0.15) 0.64 (0.11) 4.26 (0.10) 4.16 (0.11) 3.54 (0.17)

Notes: M1, individual estimation with joint tuning; M1′, individual estimation with separate tuning; M1′′, simultaneous SCAD-
max estimation without constraints; M2, simultaneous SCAD-max estimation with data point restriction; M3, simultaneous
SCAD-max SNQR.
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Figure 6. The left panel shows the average squared differences between β̂ and β for five different methods using normal
weights. The right panel shows the corresponding number of non-zero estimates of β3, β4, β6, β7 and β8 for the quantile
function with τ = 0.4 based on 100 replications.

One reviewer suggested another setting of the parameter vectorβ = (3, 1.5, 0, 0, 2, 0, 0.1, 0.1)T.
In this case, the last two parameters are replaced by small non-zero values, 1/

√
n = 0.1 with

n = 100. A similar example was considered by Leeb and Potscher (2008). Since the last two
parameters are close to 0, it can be more difficult to select them compared with other non-zero
parameters. On the other hand, a model with only X1, X2, X5 could be a reasonable model as
well in terms of prediction and interpretability.

We examine the performance of five different methods, M1, M1′, M1′′, M2 and M3, on this
example with the new parameter setting. The results with normal weights are displayed in Figure 6.
The left panel shows the average squared differences between β̂ and β,

∑8
j=0(β̂j − βj )

2, based
on 100 replications. Similar as before, our proposed SNQR works the best in terms of parameter
estimation. The right panel shows the number of non-zero estimates of β3, β4, β6, β7, and β8 for
the quantile function with τ = 0.4 among these 100 replications. Notice that all methods have
higher percents of non-zero estimates for β7, β8 than those of β3, β4 and β6. This is expected since
β7 and β8 are non-zero while the other three are zero. Due to the small values of these two param-
eters, all methods estimate β7 and β8 as zero over 50% times. We do not plot the selection results
for β1, β2 and β5 since the corresponding estimates are non-zero for all replications. Overall, the
performance of the proposed SNQR is very reasonable compared with other methods.

5. Real data

In this section, we apply our proposed SNQR to analyse theAnnual Salary of Baseball Players Data
provided by He, Ng and Portnoy (1998). This data set consists of n = 263 North American major
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league baseball players for the 1986 season. Following He et al. (1998), we use the number of home
runs in the latest year (performance measure) and the number of years played (seniority measure)
as predictor variables. The response variable is the annual salary of each player (measured in
thousands of dollars). We first standardise both predictor variables to have mean zero and variance
one. We apply the nonlinear QR using the Gaussian kernel with data width parameter σ chosen
to be the median pairwise Euclidean distance of the standardised predictor variables. Similar
recommendation on data width parameter selection was previously provided by Brown et al.
(2000). We use 10-fold cross-validation to select the regularisation parameter λ.

The conditional quantile function is estimated at τ = 0.1, 0.2, . . . , 0.9. In Figure 7, we plot
the individually estimated median function and the Gaussian weighted SNQR estimated median
function on the top left and right panels, respectively. To visualise quantile crossing, we plot
the difference f̂0.8(x) − f̂0.7(x) on the bottom row. The one from the individual estimation is
shown on the bottom left panel, and the one from SNQR is displayed on the bottom right panel.
Several interesting remarks can be made from the plots. First of all, the conditional median plots
suggest that players with large numbers of home runs and moderate numbers of years played
have the highest median salaries. This matches our expectation since that group of players have
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Figure 7. Plots for the Baseball data example. Top left panel: individually estimated median function; top right panel:
SNQR estimated median function; bottom left panel: the difference between the individually estimated quantile functions
of τ = 0.8 and τ = 0.7; bottom right panel: the difference between the SNQR estimated quantile functions of τ = 0.8
and τ = 0.7.
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relatively better skills than other players and are possibly in the peak time of their Baseball career.
Between the individually estimated median function and the SNQR median function, the shapes
are quite similar although the SNQR median function appears to be slightly more peaked. As to
quantile crossing, we can see from the bottom left panel of Figure 7 that the individually estimated
70% quantile function can be higher than that of the 80% quantile function. This undesirable
phenomenon disappears when the SNQR is applied. Furthermore, due to the joint estimation, the
difference curve of our SNQR is smoother than that from the individual estimation.

6. Discussion

In this paper, we study the problem of multiple conditional quantile function estimation. When
individual optimisation is performed, the obtained quantile functions may cross each other and
as a result violate the basic property of quantiles. A new method SNQR, which avoids quantile
crossing via simple constraints, is proposed. We demonstrate that SNQR can not only help to
obtain more interpretable quantile functions, it can also help to improve the estimation efficiency.

As in other regularisation problems, the choice of the regularisation parameter λ is very impor-
tant for the performance of QR. It is common for one to select a finite set of representative values
for λ and then use a separate validation data set or certain model selection criterion to select a value
for λ. In this article, we have used separate validation sets for simulation and cross-validation for
the real data analysis. As an alternative, one can use certain model selection criterion to choose λ.
Two commonly used criteria are the Schwarz information criterion (Schwarz 1978; Koenker et al.
1994) and the generalised approximate cross-validation criterion (Yuan 1978). These criteria are
well studied for unconstrained QR and require further developments for our constrained methods.

Our asymptotic study is restricted to the linear SNQR. It will be interesting to explore the
asymptotic behaviour of the nonlinear SNQR as well. The existing asymptotic results (e.g. Yu
and Jones 1998; Hall et al. 1999; Dette and Volgushev 2008; Chernozhukov et al. 2009) can shed
some light here. Further investigation is needed.
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Appendix

Proof of Proposition 1 The result can be shown directly using integration by parts. The details are not included here to
save space. �

Proof of Lemma 1 The result is straightforward by applying Theorem 4.1 of Koenker (2005) to each τk . �

Proof of Proposition 2 In theory, it is guaranteed that

dk � inf
x∈X

{[β0(τk+1) − β0(τk)] + xT[β(τk+1) − β(τk)]} > 0
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due to Condition A. Using the triangle inequality, we have

inf
x∈X

{β̃0τk+1 − β̃0τk
+ xT(β̃τk+1

− β̃τk
)} ≥ inf

x∈X
{xT[β̃τk+1

− β(τk+1)]} + (β̃0τk+1 − β0(τk+1)) + (β0(τk+1) − β0(τk))

+ inf
x∈X

{xT[β(τk+1) − β(τk)]} + (β0(τk) − β̃0τk
) + inf

x∈X
{xT[β(τk) − β̃τk

]}

≥ − sup
x∈X

|xT[β̃τk+1
− β(τk+1)]| − |β̃0τk+1 − β0(τk+1)| + (β0τk+1 − β0τk

)

+ inf
x∈X

{xT[β(τk+1) − β(τk)]} − |β0(τk) − β̃0τk
| − sup

x∈X
|xT[β(τk) − β̃τk

]|.

Another application of the triangle inequality leads to

sup
x∈X

|xT[β̃τk
− β(τk)]| ≤

(
sup
x∈X

‖ x ‖
)

‖ β̃τk
− β(τk) ‖ . (A1)

Denote M = supx∈X ‖ x ‖. Consequently, we have

P

(
sup
x∈X

{β̃0τk+1 − β̃0τk
+ xT(β̃τk+1

− β̃τk
)} < 0

)

≤ P

(
sup
x∈X

|xT[β̃τk+1
− β(τk+1)]| >

dk

4

)
+ P

(
sup
x∈X

|xT[β̃τk
− β(τk)]| >

dk

4

)

+ P

(
|β0(τk) − β̃0τk

| >
dk

4

)
+ P

(
|β0(τk+1) − β̃0τk+1 | >

dk

4

)

≤ P

(
‖ β̃τk+1

− β(τk+1) ‖> dk

2M

)
+ P

(
‖ β̃τk

− β(τk) ‖> dk

2M

)

+ P

(
|β0(τk) − β̃0τk

| >
dk

4

)
+ P

(
|β0(τk+1) − β̃0τk+1 | >

dk

4

)
. (A2)

Based on Lemma 1, the sum of probabilities in Equation (A2) decays exponentially. Thus, we have P(supx∈X {β̃0τk+1 −
β̃0τk

+ xT(β̃τk+1
− β̃τk

)} < 0) < e−nak asymptotically for some ak > 0. This completes the proof by noting that

P(Cn) ≤
K∑

k=1

P

(
sup
x∈X

{β̃0τk+1 − β̃0τk
+ xT(β̃τk+1

− β̃τk
)} < 0

)
.

�

Proof of Proposition 3 The sufficiency of the constraints is straightforward. For necessity, we prove parts (i) and (ii)
separately. For (i), the necessity of constraint (12) can be shown by letting x∗ = (0, . . . , 0) for fτk

(x). For Equation (13), let
x∗ = (0, . . . , 0, M, 0, . . . , 0), i.e. all elements are 0 except the j th element being M > 0. Then fτk

(x∗) = β0τk
+ βτk,jM

and fτk+1 (x
∗) = β0τk+1 + βτk+1,jM . Since β0τk

and β0τk+1 are bounded, the constraint βτk,j ≤ βτk+1,j is necessary to
ensure fτk

(x∗) ≤ fτk+1 (x
∗) for arbitrarily large M . The conclusion in (i) then follows.

For (ii), fτk
(x) = ∑n

i=1 wτk,i〈xi , x〉 + bτk
. Without loss of generality, assume that the design matrix is of rank n.

Since d > n, there exists x∗ ∈ X such that x∗ ⊥ xi for ∀i 
= i
′

and 〈x∗, x
i
′ 〉 = M . Then fτk

(x∗) ≤ fτk+1 (x
∗) implies that

w
τk,i

′ M + bτk
≤ w

τk+1,i
′ M + bτk+1 . When M = 0, we have bτk

≤ bτk+1 . Moreover, we have w
τk,i

′ ≤ w
τk+1,i

′ with M

being arbitrarily large. Then part (ii) follows. �

Proof of Theorem 1 The desired result is straightforward by combining Lemma 1 and Proposition 2. �

Proof of Lemma 2 It is enough to show that for any δ > 0, there exists a large constant C such that

P

(
inf∑p

j=1(‖αj ‖2+a2
j
)=C

Q(α1, α2, . . . , αK, a1, a2, . . . , aK) > Q(0, 0, . . . , 0, 0, 0, . . . , 0)

)
> 1 − δ.

This will imply that with probability at least 1 − δ there exists a local minimum inside the ball of β(τk) + αk/
√

n,
β0(τk) + ak/

√
n, k = 1, 2, . . . , K with αk and ak satisfying

∑K
k=1(‖ αk ‖2 +a2

k ) = C.
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Note that

Q(α1, α2, . . . , αK, a1, a2, . . . , aK) − Q(0, 0, . . . , 0, 0, 0, . . . , 0)

=
K∑

k=1

Znk(αk, ak) + n

p∑
j=1

pλ

(
K

max
k=1

∣∣∣∣βj (τk) + αjk√
n

∣∣∣∣
)

− n

p∑
j=1

pλ

(
K

max
k=1

|βj (τk)|
)

≥
K∑

k=1

Znk(αk, ak) + n
∑
j∈A

[
pλ

(
K

max
k=1

∣∣∣∣βj (τk) + αjk√
n

∣∣∣∣
)

− pλ

(
K

max
k=1

|βj (τk)|
)]

,

where the last inequality is due to the fact that maxK
k=1 |βj (τk)| = 0 for j 
∈ A and pλ(·) is non-decreasing on [0, ∞).

Note further that

n
∑
j∈A

[
pλ

(
K

max
k=1

∣∣∣∣βj (τk) + αjk√
n

∣∣∣∣
)

− pλ

(
K

max
k=1

|βj (τk)|
)]

≤ n
∑
j∈A

[
p′

λ

(
K

max
k=1

|βj (τk)|
) K∑

k=1

∣∣αjk

∣∣
√

n

]
+ n

1 + o(1)

2

∑
j∈A

[
p′′

λ

(
K

max
k=1

|βj (τk)|
) K∑

k=1

α2
jk

n

]

≤ √
ncn

∑
j∈A

K∑
k=1

|αjk | + 1 + o(1)

2

⎡
⎣∑

j∈A

K∑
k=1

α2
jk

⎤
⎦ max

j∈A

∣∣∣∣p′′
λ

(
K

max
k=1

|βj (τk)|
)∣∣∣∣ .

According to Koenker (2005), we have

Znk(αk, ak) −→ −(ak, α
T
k )Wk + 1

2 (ak, α
T
k )
1(τk)(ak, α

T
k )T in distribution, as n → ∞, (A3)

where Wk ∼ N(0, τk(1 − τk)
0).
Recall that we assume that cn = O(n−1/2) and maxj∈A |p′′

λ(maxK
k=1 |βj (τk)|)| → 0. Thus asymptotically,

Znk(αk, ak) + n
∑
j∈A

[
pλ

(
K

max
k=1

∣∣∣∣βj (τk) + αjk√
n

∣∣∣∣
)

− pλ

(
K

max
k=1

∣∣βj (τk)
∣∣)]

is dominated by the quadratic term 1
2

∑K
k=1(ak, α

T
k )
1(τk)(ak, α

T
k )T when C is large enough. This completes the

proof. �

Proof of Lemma 3 Note that

Q

((
αA1
αAc1

)
,

(
αA2
αAc2

)
, . . . ,

(
αAK

αAcK

)
, a1, a2, . . . , aK

)
− Q

((
αA1

0

)
,

(
αA2

0

)
, . . . ,

(
αAK

0

)
, a1, a2, . . . , aK

)

=
K∑

k=1

Znk

((
αAk

αAck

)
, ak

)
+ n

p∑
j=s+1

pλ

(
K

max
k=1

∣∣∣∣βj (τk) + αjk√
n

∣∣∣∣
)

−
K∑

k=1

Znk

((
αAk

0

)
, ak

)
+ n

p∑
j=s+1

pλ

(
K

max
k=1

∣∣βj (τk)
∣∣) .

Note that

Znk

((
αAk

αAck

)
, ak

)
− Znk

((
αAk

0

)
, ak

)
−→ −αT

AckWBck + (ak, α
T
Ak)
1,B,Bc αAck .

Recall that βj (τk) = 0 for j > s. Thus

n

p∑
j=s+1

pλ

(
K

max
k=1

∣∣∣∣βj (τk) + αjk√
n

∣∣∣∣
)

− n

p∑
j=s+1

pλ

(
K

max
k=1

∣∣βj (τk)
∣∣)

= n

p∑
j=s+1

pλ

(
K

max
k=1

∣∣∣∣αjk√
n

∣∣∣∣
)

≥ n

p∑
j=s+1

λ

(
lim inf

λ→0
lim inf
θ→0+

p′
λ(θ)

λ

) (
K

max
k=1

∣∣∣∣αjk√
n

∣∣∣∣
)

(1 + o(1))

= (1 + o(1))
√

nλ

p∑
j=s+1

(
K

max
k=1

∣∣αjk

∣∣) (
lim inf

λ→0
lim inf
θ→0+

p′
λ(θ)

λ

)
.
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This completes the proof by noting that
√

nλ → ∞ and as a result

n

p∑
j=s+1

pλ

(
K

max
k=1

∣∣∣∣βj (τk) + αjk√
n

∣∣∣∣
)

− n

p∑
j=s+1

pλ

(
K

max
k=1

∣∣βj (τk)
∣∣)

dominates

K∑
k=1

(
Znk

((
αAk

αAck

)
, ak

)
− Znk

((
αAk

0

)
, ak

))

asymptotically as n → ∞. �

Proof of Theorem 2 This is straightforward due to Lemmas 2 and 3. �

Proof of Proposition 4 Note for the SCAD penalty, pλ(θ) is flat as long as |θ | > aλ. Lemma 2 implies that β̃jτk
is

consistent. Thus we are solving Equation (28) in a neighbourhood of true βj (τk) and, consequently, when n is large
enough, pλ(maxK

k=1 |βjτk
) is flat by noting that λ → 0 as n → ∞. Then the asymptotical normality (29) is valid. �

Proof of Theorem 3 This can be proved in the same way as how Theorem 1 is proved using Proposition 2. �
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