Dans cette thèse, on étudie quelques problèmes de minimisation issus de la théorie des équations aux dérivées partielles.
On considère les estimations de Strichartz associées à l'équation de Schrödinger avec des puissances fractionnaires du Laplacien dans l'espace euclidien. On montre l’existence des fonctions optimales pour ces inégalités pour toutes les valeurs possibles des paramètres. La preuve utilise un théorème général de décomposition de profils.
Dans la deuxième partie de la thèse, on considère des équations de Schrödinger non linéaires avec des conditions non nulles à l'infini et périodiques dans une variable dans l'espace euclidien bidimensionnel. On travaille avec des non-linéarités générales. Tous nos résultats sont valables dans le cas modèle de l'équation de Gross-Pitaevskii. Les équations étudiées sont hamiltoniennes, les quantités conservées sont l'énergie et le moment. On donne d'abord une définition mathématique rigoureuse du moment. On montre ensuite que pour toute valeur possible