Classification of Irreducible Harish-Chandra Modules

for Map-Extended Witt Algebras

Ritesh Kumar Pandey

Department of Mathematics and Statistics Indian Institute of Technology Kanpur, Kanpur, India

Abstract

This poster classifies irreducible modules for map-extended Witt algebras with finitedimensional weight spaces. These modules are either uniformly bounded or highest-weight modules. We further prove that all such modules are single-point evaluation modules ($n \ge 2$).

Preliminaries

Let \mathfrak{g} be a Lie algebra with Cartan subalgebra \mathfrak{h} .

• A g-module V is a weight module if $V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}$,

• Conjecture (Kac, 1982):

- Any irreducible Harish-Chandra module over the Virasoro algebra is a highest-weight module, a lowest-weight module or a module of the intermediate series.
- Proof of Kac's Conjecture: (Mathieu Inventiones Mathematicae, 1992).

Classification (Map Virasoro algebra)

• $Vir(B):=Vir\otimes B$ is a Lie algebra (Map Virasoro algebra) with the brackets $[x \otimes b_1, y \otimes b_2] = [x, y] \otimes b_1 b_2 \quad \forall x, y \in [x, y] \otimes b_1 b_2$ Vir and $b_1, b_2 \in B$. • $\operatorname{Vir}(B) = \operatorname{Vir}(B)^- \oplus \operatorname{Vir}(B)^0 \oplus \operatorname{Vir}(B)^+$ (standard triangular decomposition), where

Classification (Witt algebra)

- Conjecture (Rao, 2004): Any non-trivial irreducible Harish-Chandra module over the Witt algebra is either a highest-weight module or a module of tensor fields on a torus and their quotient.
- Theorem (Guo, Liu, Zhao, Ark. Mat., 2014)
- Let V be a simple Harish-Chandra $W_n \ltimes A_n$ -module. Then V is either uniformly bounded or highest weight module. Moreover, if V is uniformly bounded, then * If t^0 acts as an identity, then A_n acts associatively on V and $V \cong T(U, \gamma)$, where U is an irreducible finite dimensional \mathfrak{gl}_n -module and $\gamma \in \mathbb{C}^n$.

- where $V_{\lambda} = \{ v \in V \mid h.v = \lambda(h)v \text{ for all } h \in \mathfrak{h} \}.$
- The weights of V are the elements of $Supp(V) = \{\lambda \in \mathcal{X} \in \mathcal{X} \}$ \mathfrak{h}^* : $V_{\lambda} \neq 0$, and corresponding V_{λ} are the weight spaces.
- A Harish-Chandra module is a weight module with finite-dimensional weight spaces.
- A g-module V is called uniformly bounded if it is a Harish-Chandra module and the dimensions of all its weight spaces are uniformly bounded.
- The Lie algebra $\mathfrak{g} \otimes B$ is called a map algebra associated with \mathfrak{g} , with the following bracket operation:

 $[x \otimes a, y \otimes b] = [x, y] \otimes ab, \quad x, y \in \mathfrak{g}, a, b \in B.$

- A representation (V, ρ) of $\mathfrak{g} \otimes B$ is called a single-point generalized evaluation module if $\rho : \mathfrak{g} \otimes B \to \operatorname{End}(V)$ factors through $\mathfrak{g} \otimes (B/\mathfrak{m}^k)$ for some maximal ideal $\mathfrak{m} \subset B$ and $k \in \mathbb{N}$.
- If k = 1, V is called a single-point evaluation module.

Overview

- Representations of $\mathfrak{g} \otimes \mathbb{C}[t]$ and $\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$ were studied in great detail by Chari and Pressley, where \mathfrak{g} is a finite-dimensional simple algebra.
- The classification of finite-dimensional irreducible representations of $\mathfrak{g} \otimes A_n$ was done by Rao in 2001.
- Michael Lau provided a complete classification of finitedimensional irreducible representations of $\mathfrak{g} \otimes B$ in

 $\operatorname{Vir}(B)^{\pm} = \operatorname{Vir}^{\pm} \otimes B$ and $\operatorname{Vir}(B)^{0} = \operatorname{Vir}^{0} \otimes B$.

• Let \mathbb{C}_{ψ} be the one dimensional representation of $Vir(B)^0$, where $\psi \in Hom(Vir(B)^0, \mathbb{C})$. Make \mathbb{C}_{ψ} as a $Vir(B)^0 \oplus Vir(B)^+$ -module with a trivial action of $Vir(B)^+$ on it. Then consider the Verma module

$$M(\psi) := \operatorname{Ind}_{\operatorname{Vir}(B)^0 \oplus \operatorname{Vir}(B)^+}^{\operatorname{Vir}(B)} \mathbb{C}_{\psi}$$

• Let $V(\psi)$ be the unique irreducible quotient of $M(\psi)$. • Let $B = \mathbb{C}[t, t^{-1}]$.

• Theorem (Guo, Lu, Zhao, Forum Math., 2011):

-Let V be an irreducible Harish-Chandra Vir \otimes $\mathbb{C}[t,t^{-1}]$ -module. Then V is a uniformly bounded single-point evaluation module or a highest or lowest weight module. Further, if V is a highest (lowest)weight module, it is a tensor product of finitely many irreducible single-point generalised evaluation highest (lowest)-weight modules.

• Theorem (Savage, *Transformation Groups*, 2012):

- Any irreducible Harish-Chandra Vir(B)-module is a single-point evaluation module, a highest-weight module or a lowest-weight module. Further, if V is a highest (lowest)-weight module, it is a tensor product of finitely many irreducible single-point generalised evaluation highest(lowest)-weight modules.

* If t^0 acts as a zero then $A_n V = 0$ and hence V is an irreducible W_n -module.

• Proof of Rao's Conjecture (Billig, Futorny, CRELLE, 2016).

Classification (map Witt algebra)

- Let *S* be any finite-dimensional abelian Lie algebra over C.
- The Witt algebra W_n acts on $S \otimes A_n$ by derivations:

$$[t^{\mathbf{r}}d_{i}, s \otimes t^{\mathbf{m}}] = m_{i}s \otimes t^{\mathbf{m}+\mathbf{r}}$$
, for all $1 \leq i \leq n, \mathbf{m}, \mathbf{r} \in \mathbb{Z}^{n}$
and $s \in S$.

- The emerging Lie algebra $\mathfrak{L}_{S,n} := W_n \ltimes (S \otimes A_n)$ is called an extended Witt algebra.
- The Lie algebra $\mathfrak{L}_{S,n}(B) := (W_n \ltimes (S \otimes A_n)) \otimes B$ is called a map extended Witt algebra.
- $H := (\bigoplus_{i=1}^{n} \mathbb{C}d_i) \oplus \mathbb{C}$ be an abelian subalgebra of $\mathfrak{L}_{S,n}(B)$ which plays a role of a Cartan subalgebra for $\mathfrak{L}_{S,n}(B).$

• When dim S = 1, $\mathfrak{L}_{S,n} = \mathfrak{L}$.

• Let G be a subgroup of \mathbb{Z}^n and $\beta \in \mathbb{Z}^n - \{0\}$ such that $\mathbb{Z}^n = G \oplus \mathbb{Z}\boldsymbol{\beta}.$

• Subalgebras of $\mathfrak{L}_{S,n}(B)$:

 $\mathfrak{L}_{S,n}^{-}(B) = \bigoplus_{d \in \mathbb{N}} \left(\mathfrak{L}_{S,n}(B) \right)_{G-d\beta'}$ $\mathfrak{L}^+_{S,n}(B) = \bigoplus_{d \in \mathbb{N}} \left(\mathfrak{L}_{S,n}(B) \right)_{G+dB'}$

2015.

• Over time, many researchers have contributed to classifying irreducible Harish-Chandra modules for various categories of Lie algebras and superalgebras.

Virasoro algebra

• Consider $A_1 = \mathbb{C}[t_1^{\pm 1}]$. $W_1 = \operatorname{Der}(A_1)$ is the Lie algebra of polynomial vector fields on the circle, with basis $\{t_1^m d_1 : m \in \mathbb{Z}\}$ and bracket:

 $[t_1^m d_1, t_1^n d_1] = (n-m)t_1^{m+n}d_1$ for all $m, n \in \mathbb{Z}$. • The Virasoro algebra $Vir = W_1 \oplus \mathbb{C}C$ has the bracket: $[t_1^m d_1, t_1^n d_1] = (n-m)t_1^{m+n} d_1 + \delta_{m,-n} \frac{m^3 - m}{12}C,$ $[x_n, C] = 0$, for all $m, n \in \mathbb{Z}$.

• Vir= $\bigoplus_{m \in \mathbb{Z}} (Vir)_m$.

• $(Vir)_0 = Vir^0 = \mathbb{C}t^0d_1 \oplus \mathbb{C}C$ (Cartan).

• (Vir)_m = $\mathbb{C}t_1^m d_1$ for $m \neq 0$.

• Vir = $Vir^- \oplus Vir^0 \oplus Vir^+$ (standard triangular decomposition), where $\operatorname{Vir}^{\pm} = \bigoplus_{\pm m \in \mathbb{N}} (\operatorname{Vir})_m$.

• A Vir-module V is called a highest-weight module if it is a weight module and there exists a non-zero weight vector v such that $Vir^+ v = 0$ and U(Vir) v = V.

Classification (Virasoro algebra)

• Define the class of intermediate modules $V_{\alpha,\beta}$ for Vir with two parameters $\alpha, \beta \in \mathbb{C}$. As a vector space

Witt algebra • $A_n := \mathbb{C}[t_1^{\pm 1}, \dots, t_n^{\pm 1}].$ • Define $t^{\mathbf{m}} := t_1^{m_1} \cdots t_n^{m_n} \in A_n$ for $\mathbf{m} = (m_1, \dots, m_n) \in I$ \mathbb{Z}^n and $d_i = t_i \frac{d}{dt_i}$ for $1 \le i \le n$.

• $W_n := \operatorname{Der}(A_n)$ (Witt algebra), the set $\{t^{\mathbf{m}}d_i : \mathbf{m} \in I\}$ \mathbb{Z}^n , $1 \leq i \leq n$ forms a \mathbb{C} -basis for W_n and the bracket in W_n is given by

 $[t^{\mathbf{m}}d_i, t^{\mathbf{k}}d_j] = k_i t^{\mathbf{m}+\mathbf{k}}d_j - m_j t^{\mathbf{m}+\mathbf{k}}d_i.$

• Unlike the case n = 1, W_n for $n \ge 2$ is centrally closed.

Representations of Witt algebra

 Larsson-Shen modules (or modules of tensor fields on a torus): For $n \ge 2$, let

 $T(U,\gamma) := t^{\gamma}A_n \otimes U,$

where U is a finite-dimensional irreducible $\mathfrak{gl}_n(\mathbb{C})$ representation and $\gamma \in \mathbb{C}^n$, which has the following W_n -module structure:

 $t^{\mathbf{m}}d_{i}.(t^{\gamma+\mathbf{s}}\otimes u) =$ $(\gamma_i + s_i)t^{\gamma + \mathbf{s} + \mathbf{m}} \otimes u + \sum_{j=1}^n m_j t^{\gamma + \mathbf{s} + \mathbf{m}} \otimes E_{ji}u,$

where $\mathbf{m}, \mathbf{s} \in \mathbb{Z}^n$, $u \in U$, $1 \le i \le n$, and E_{ji} is the $n \times n$ matrix with 1 in the (j, i)th position and 0 elsewhere. • Let G be a subgroup of \mathbb{Z}^n and $\beta \in \mathbb{Z}^n - \{0\}$ such that $\mathbb{Z}^n = G \oplus \mathbb{Z}\beta.$

 $(\mathfrak{L}_{S,n}(B))_G = \bigoplus_{\mathbf{r}\in G} (\mathfrak{L}_{S,n}(B))_{\mathbf{r}}.$

• Triangular decomposition:

 $\mathfrak{L}^{-}_{S,n}(B) \oplus (\mathfrak{L}_{S,n}(B))_{G} \oplus \mathfrak{L}^{+}_{S,n}(B),$

• An $\mathfrak{L}_{S,n}(B)$ -module V is a highest-weight module if it is a weight module with a non-zero weight vector $v \in V$ such that $\mathfrak{L}^+_{S,n}(B) \cdot v = 0$ and $U(\mathfrak{L}_{S,n}(B)) \cdot v = V$.

• Let Y be a simple weight module over $(\mathfrak{L}_{S,n}(B))_G$. Setting $\mathfrak{L}^+_{S_n}(B)Y = 0$, we get a module over $(\mathfrak{L}_{S,n}(B))_G) \oplus \mathfrak{L}^+_{S,n}(B).$

• The generalized Verma module is defined as:

 $M_{\mathfrak{L}_{S,n}(B)}(G,\beta,Y) = \operatorname{Ind}_{(\mathfrak{L}_{S,n}(B))_G \oplus \mathfrak{L}_{S,n}^+(B)}^{\mathfrak{L}_{S,n}(B))} Y$

• $L_{\mathfrak{L}_{S,n}(B)}(G,\beta,Y)$ a unique simple quotient.

Main Theorem

(Sharma, Chakraborty, --, Rao, J. Algebra, 2024)

Let V be a non-trivial irreducible $\mathfrak{L}_{S,n}(B)$ -module with finite-dimensional weight spaces. Then V is either a uniformly bounded module or a highestweight module. Further,

• If V is uniformly bounded, then V can be considered as an irreducible uniformly bounded module for $\mathfrak{L}(B)$ or $W_n(B)$ $(n \ge 1)$. Moreover, considered as an $\mathfrak{L}(B)$ or $W_n(B)$ -module, V is a single-point evaluation module.

- $V_{\alpha,\beta} = \bigoplus \mathbb{C}v_n$ and Vir action on $V_{\alpha,\beta}$ is given by $n \in \mathbb{Z}$
- $t_1^n d_1 v_k = (\alpha + k + n\beta) v_{k+n}, C v_k = 0 \forall n, k \in \mathbb{Z}.$
- Lemma (Kac, Raina, Adv. Ser. Math. Phys., 1987):
- The Vir-module $V_{\alpha,\beta} \simeq V_{\alpha+m,\beta}$ for all $m \in \mathbb{Z}$.
- The Vir-module $V_{\alpha,\beta}$ is irreducible if and only if $\alpha \notin \mathbb{Z}$ or $\beta \notin \{0, 1\}$.
- $-V_{0,0}$ has a unique trivial proper submodule $\mathbb{C}v_0$ and $V_{0,0}' = V_{0,0} / \mathbb{C} v_0.$
- $-V_{0,1}$ has a unique non-zero proper submodule $V'_{0,1} =$ $\bigoplus \mathbb{C}v_i$. $i \neq 0$ $-V'_{\alpha,0}\simeq V'_{\alpha,1}$ for all $\alpha\in\mathbb{C}$.
- Subalgebras of W_n : $(W_n)_G^0 = \bigoplus_{\alpha \in G} (W_n)_{\alpha},$ $(W_n)_G^- = \bigoplus_{\alpha \in G, k \in \mathbb{N}} (W_n)_{\alpha - k\beta},$ $(W_n)_G^+ = \bigoplus_{\alpha \in G, k \in \mathbb{N}} (W_n)_{\alpha + k\beta}.$ • Triangular decomposition: $W_n = (W_n)_G^- \oplus (W_n)_G^0 \oplus (W_n)_G^+.$ • Let X be a simple weight module over $(W_n)_G^0$. Setting $(W_n)_G^+ X = 0$, we get a module over $(W_n)_G^0 \oplus (W_n)_G^+$. • The generalized Verma module is defined as: $M(G,\beta,X) = \operatorname{Ind}_{(W_n)_C^0 \oplus (W_n)_C^+}^{W_n} X,$ with a unique simple quotient $L(G, \beta, X)$.

• If V is a highest-weight module, then V can be considered as an irreducible highest-weight module for $\mathfrak{L}(B)$ or $W_n(B)$ ($n \geq 2$). Moreover, considered as an $\mathfrak{L}(B)$ or $W_n(B)$ -module, V is a single-point evaluation module.

References

[1] S. S. Sharma, P. Chakraborty, R. K. Pandey, and S. Eswara Rao. (2024): Representations of map extended Witt algebras. J. Algebra. 639: 327-353.

New Trends in Geometry, Combinatorics, and Mathematical Physics

CNRS, Saint Pierre d'Oléron, France