Quantum Kronecker fractions

A.P. Veselov (Loughborough, UK) (joint with S. Evans and B. Winn)

New trends in Geometry, Combinatorics, and Mathematical Physics (Oléron France 20-25 October).

4 E b

A.P. Veselov (Loughborough, UK) (joint with S. Evans and B. Winn) Quantum Kronecker fractions

Morier-Genoud, Ovsienko 2020: Given a regular continued fraction $x = [a_1, a_2, ..., a_{2m}]$, define its *q*-deformation by

E > < E >

э

Morier-Genoud, Ovsienko 2020: Given a regular continued fraction $x = [a_1, a_2, ..., a_{2m}]$, define its *q*-deformation by

For natural number $[n]_q = 1 + q + \cdots + q^{n-1}$ coincides with Euler's q-integer.

A E > A E >

Morier-Genoud, Ovsienko 2020: Given a regular continued fraction $x = [a_1, a_2, ..., a_{2m}]$, define its *q*-deformation by

$$[x]_{q} = [a_{1}, a_{2}, \dots, a_{2m}]_{q} := [a_{1}]_{q} + \frac{q^{a_{1}}}{[a_{2}]_{q-1} + \frac{q^{-a_{2}}}{[a_{3}]_{q} + \frac{q^{a_{3}}}{[a_{4}]_{q-1} + \frac{q^{-a_{4}}}{[a_{4}]_{q-1} + \frac{q^{-a_{4}}}{[a_{2m}]_{q-1}}}}.$$

For natural number $[n]_q = 1 + q + \cdots + q^{n-1}$ coincides with Euler's *q*-integer. **Example.** $\frac{2}{5} = [0, 2, 2] = [0, 2, 1, 1]$, so

$$\left[\frac{2}{5}\right]_q = \frac{1}{\left[2\right]_{q^{-1}} + \frac{q^{-2}}{\left[1\right]_q + \frac{q}{\left[1\right]_{q^{-1}}}}} = \frac{q^3 + q^2}{q^3 + 2q^2 + q + 1}.$$

Quantized Conway-Farey Topograph

(* E) * E)

A quantum rational is a rational function of q:

$$\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)},$$

|→ @ ▶ → 注 ▶ → 注 → のへで

•
$$\mathcal{R}(1) = r, S(1) = s, S(0) = 1,$$

 \blacktriangleright ${\cal R},\,{\cal S}$ are coprime, monic polynomials with non-negative integer coefficients

• $\deg(\mathcal{R}) = a_1 + a_2 + \cdots + a_{2m} - 1$ and $\deg(\mathcal{S}) = \deg(\mathcal{R}) - a_1$.

A quantum rational is a rational function of q:

$$\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)},$$

同 ト イヨ ト イヨ ト 「ヨ 」 の へ ()

•
$$\mathcal{R}(1) = r, S(1) = s, S(0) = 1,$$

- \blacktriangleright \mathcal{R} , \mathcal{S} are coprime, monic polynomials with non-negative integer coefficients
- ▶ $\deg(\mathcal{R}) = a_1 + a_2 + \cdots + a_{2m} 1$ and $\deg(\mathcal{S}) = \deg(\mathcal{R}) a_1$.

We have the following general formulas

- ▶ Shift formula $[x + n]_q = q^n [x]_q + [n]_q, n \in \mathbb{N}$,
- Negation formula $[-x]_q = -q^{-1}[x]_{q^{-1}}$,
- Inversion formula $\left[\frac{1}{x}\right]_q = \frac{1}{[x]_{q-1}}$.

A quantum rational is a rational function of q:

$$\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)},$$

•
$$\mathcal{R}(1) = r, S(1) = s, S(0) = 1,$$

- \blacktriangleright \mathcal{R} , \mathcal{S} are coprime, monic polynomials with non-negative integer coefficients
- $\deg(\mathcal{R}) = a_1 + a_2 + \cdots + a_{2m} 1$ and $\deg(\mathcal{S}) = \deg(\mathcal{R}) a_1$.

We have the following general formulas

- ▶ Shift formula $[x + n]_q = q^n [x]_q + [n]_q, n \in \mathbb{N}$,
- Negation formula $[-x]_q = -q^{-1}[x]_{q^{-1}}$,
- Inversion formula $\left[\frac{1}{x}\right]_q = \frac{1}{[x]_{q-1}}$.

Note that \mathcal{R} and \mathcal{S} depend on both r and s. For example, the denominator "5" is quantised differently in $\frac{1}{5}$ and $\frac{2}{5}$:

$$\left[\frac{1}{5}\right]_q = \frac{q^4}{q^4 + q^3 + q^2 + q + 1}, \quad \left[\frac{2}{5}\right]_q = \frac{q^3 + q^2}{q^3 + 2q^2 + q + 1},$$

Quantum irrationals

Let $x \in \mathbb{R}$ be irrational, and $(x_n) \subseteq \mathbb{Q}$ a sequence of rationals with $x_n \to x$ as $n \to \infty$.

Morier-Genoud and Ovsienko proved that the sequence of quantised $([x_n]_q = \sum_{k\geq 0} x_{n,k}q^k)$ stabilises in the sense that more and more terms of the Taylor expansion in q become fixed, and defined the quantisation of x by

$$[x]_q := \sum_{k \ge 0} \varkappa_k q^k, \quad \text{where} \quad \varkappa_k = \lim_{n \to \infty} \varkappa_{n,k}.$$

E > < E >

The coefficients (\varkappa_k) are integers, independent of the choice of sequence (x_n).

Quantum irrationals

Let $x \in \mathbb{R}$ be irrational, and $(x_n) \subseteq \mathbb{Q}$ a sequence of rationals with $x_n \to x$ as $n \to \infty$.

Morier-Genoud and Ovsienko proved that the sequence of quantised $([x_n]_q = \sum_{k\geq 0} x_{n,k}q^k)$ stabilises in the sense that more and more terms of the Taylor expansion in q become fixed, and defined the quantisation of x by

$$[x]_q := \sum_{k \ge 0} \varkappa_k q^k, \quad \text{where} \quad \varkappa_k = \lim_{n \to \infty} \varkappa_{n,k}.$$

The coefficients (\varkappa_k) are integers, independent of the choice of sequence (x_n) .

For example, for the golden ratio $arphi=rac{1+\sqrt{5}}{2}=[1,1,1,\ldots]$ we have

or, as the series

$$\begin{split} \left[\varphi\right]_q &= 1 + q^2 - q^3 + 2q^4 - 4q^5 + 8q^6 - 17q^7 + 37q^8 - 82q^9 + 185q^{10} \\ &- 423q^{11} + 978q^{12} - 2283q^{13} + 5373q^{14} - 12735q^{15} + 30372q^{16} \, . \, . \end{split}$$

with the sequence of coefficients in $[\varphi]_q$ coinciding (up to the alternating sign) with $[\varphi]_q \sim \infty$ A.P. Veselov (Loughborough, UK) (foint with S. Evans and B. Winn) Quantum Kronecker fractions The radius of convergence of this power series is governed by the root of $1+3q+q^2=0$ having minimal modulus:

$$R_*=\frac{3-\sqrt{5}}{2}.$$

< 注) < 注)

э

The radius of convergence of this power series is governed by the root of $1 + 3q + q^2 = 0$ having minimal modulus:

$$\mathsf{R}_* = \frac{3-\sqrt{5}}{2}.$$

Leclere, Morier-Genoud, Ovsienko, V. 2021 conjectured that for any real x > 0 the radius of convergence of $[x]_q$ is at least R_* . This was proved for *metallic numbers* of the form [0, n, n, n, ...], $n \in \mathbb{N}$ by **Ren 2022** and in general case recently by **Elzenaar**, **Gong, Martin and Schillewaert 2024**.

크아 세크아

The radius of convergence of this power series is governed by the root of $1 + 3q + q^2 = 0$ having minimal modulus:

$$R_*=\frac{3-\sqrt{5}}{2}.$$

Leclere, Morier-Genoud, Ovsienko, V. 2021 conjectured that for any real x > 0 the radius of convergence of $[x]_q$ is at least R_* . This was proved for *metallic numbers* of the form [0, n, n, n, ...], $n \in \mathbb{N}$ by **Ren 2022** and in general case recently by **Elzenaar**, **Gong, Martin and Schillewaert 2024**.

We will be interested in opposite case: when the radius of convergence of $[x]_q$ is maximal. If we exclude the case of positive integers

$$[n]_q = 1 + q + q^2 + \dots + q^{n-1},$$

the maximal radius of convergence is 1. Indeed, in rational case the denominator S(q) is a monic polynomial with S(0) = 1, so it cannot have all roots with modulus > 1. In the irrational case the series is clearly diverges at q = 1 since all the coefficients are integer.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

We call fractions r/s Kronecker if the corresponding quantum version $[r/s]_q$ has maximal radius of convergence 1, which means that the denominator S(q) in $\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{S(q)}$ has all zeros on the unit circle.

E > < E >

э

We call fractions r/s Kronecker if the corresponding quantum version $[r/s]_q$ has maximal radius of convergence 1, which means that the denominator S(q) in $\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{S(q)}$ has all zeros on the unit circle.

Kronecker 1857: If S(q) is a monic polynomial with integer coefficients with all roots of absolute value at most 1, then S(q) is a product of cyclotomic polynomials, and/or a power of q.

E > < E >

We call fractions r/s Kronecker if the corresponding quantum version $[r/s]_q$ has maximal radius of convergence 1, which means that the denominator S(q) in $\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{S(q)}$ has all zeros on the unit circle.

Kronecker 1857: If S(q) is a monic polynomial with integer coefficients with all roots of absolute value at most 1, then S(q) is a product of cyclotomic polynomials, and/or a power of q.

Recall that the nth cyclotomic polynomial is defined by

$$\Phi_n(x) = \prod_{\substack{k=1\\ \gcd(k,n)=1}}^n (x - e^{2\pi k/n}):$$

 $\Phi_1(x) = x - 1, \ \Phi_2(x) = x + 1, \ \Phi_3(x) = x^2 + x + 1, \dots, \Phi_{10}(x) = x^4 - x^3 + x^2 - x + 1, \dots$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Note that apart from Φ_1 , all cyclotomic polynomial have *palindromic coefficients*.

From the known properties of quantum rationals

```
[x+n]_q = q^n [x]_q + [n]_q, \ n \in \mathbb{N}, \quad [-x]_q = -q^{-1} [x]_{q^{-1}}
```

(E) < E) < E</p>

it follows that if $x \in \mathbb{Q} \cap (0, 1)$ is Kronecker then the same is true for is x + n and 1 - x. So we can reduce our search of Kronecker fractions to $x \in (0, 1/2)$.

From the known properties of quantum rationals

$$[x+n]_q = q^n [x]_q + [n]_q, \ n \in \mathbb{N}, \quad [-x]_q = -q^{-1} [x]_{q^{-1}}$$

it follows that if $x \in \mathbb{Q} \cap (0, 1)$ is Kronecker then the same is true for is x + n and 1 - x. So we can reduce our search of Kronecker fractions to $x \in (0, 1/2)$.

We say that continued fraction of $x = \frac{r}{s} = [0, a_2, \dots, a_{2n}]$ is *palindromic* if the tuple (a_2, \dots, a_{2n}) is palindromic.

3

Evans, Winn and V. 2024: The continued fraction expansion of every Kronecker fraction is palindromic.

From the known properties of quantum rationals

 $[x+n]_q = q^n [x]_q + [n]_q, \ n \in \mathbb{N}, \quad [-x]_q = -q^{-1} [x]_{q^{-1}}$

it follows that if $x \in \mathbb{Q} \cap (0, 1)$ is Kronecker then the same is true for is x + n and 1 - x. So we can reduce our search of Kronecker fractions to $x \in (0, 1/2)$.

We say that continued fraction of $x = \frac{r}{s} = [0, a_2, \dots, a_{2n}]$ is *palindromic* if the tuple (a_2, \dots, a_{2n}) is palindromic.

Evans, Winn and V. 2024: The continued fraction expansion of every Kronecker fraction is palindromic.

First observe that if x = r/s is Kronecker, then the denominator S(q) of $[r/s]_q$ is palindromic (by Kronecker's theorem). Now the proof follows from

Lemma (EVW 2024) The denominator S(q) of $[r/s]_q$ is palindromic if and only if the continued fraction of $r/s = [0, a_2, ..., a_{2n}]$ is palindromic.

The proof is based on the result of Leclere and Morier-Genoud 2021, who proved the palindromicity of the trace of the corresponding matrix M_x .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ の へ の

Theorem (Serret, 1848) A rational number r/s with r < s has palindromic continued fraction if and only if s divides $r^2 - 1$.

(신문) (신문)

< 🗇 🕨

Theorem (Serret, 1848) A rational number r/s with r < s has palindromic continued fraction if and only if s divides $r^2 - 1$.

In combination with our Theorem we have

Corollary. For any Kronecker fraction $r/s \in (0, 1)$ s divides $r^2 - 1$.

This simplifies the search for Kronecker fractions. In particular, there are 9 fractions in (0, 1) with palindromic continued fraction and numerator 17:

★ Ξ ► ★ Ξ ► Ξ

17	17	17	17	17	17	17	17	17
$\overline{18}^{,}$	24,	32,	36,	48'	72,	96 ,	$\overline{144}$,	288

All of them are Kronecker, except $\frac{17}{72} = [0, 4, 4, 4]$.

Theorem (Serret, 1848) A rational number r/s with r < s has palindromic continued fraction if and only if s divides $r^2 - 1$.

In combination with our Theorem we have

Corollary. For any Kronecker fraction $r/s \in (0, 1)$ s divides $r^2 - 1$.

This simplifies the search for Kronecker fractions. In particular, there are 9 fractions in (0, 1) with palindromic continued fraction and numerator 17:

17	17	17	17	17	17	17	17	17
$\overline{18}$,	24,	32,	36,	48'	72'	96 ,	$\overline{144}^{,}$	288

All of them are Kronecker, except $\frac{17}{72} = [0, 4, 4, 4]$.

One can use this also to identify potential series of the Kronecker functions. For example, if s = n(n+1)(n+2) then for r we have the following possibilities:

$$n^2 + 3n + 1$$
, $n^2 + n - 1$, $2n^2 + 4n + 1$,

3

leading to 3 families of Kronecker fractions K6, K7, K8.

Case	Continued Fraction	Rational	q-Denominator		
K1	[0, <i>n</i> + 1]	$\frac{1}{n+1}$	$[n + 1]_q$		
K2	[0, 2, n - 1, 2]	$\frac{2n-1}{4n}$	$[2]_q[n]_q(1+q^2)$		
К3	[0, <i>n</i> , 1, <i>n</i>]	$\frac{n+1}{n(n+2)}$	$[n]_{q}[n+2]_{q}$		
K4	[0, <i>n</i> , 2, <i>n</i>]	$\frac{2n+1}{2n(n+1)}$	$[n]_q[n+1]_q(1+q^2)$		
K5	[0, n, 1, n, 1, n]	$\frac{n^2+3n+1}{n(n+1)(n+3)}$	$[n]_q[n+1]_q[n+3]_q$		
K6	[0, n, n + 3, n]	$\frac{n^2+3n+1}{n(n+1)(n+2)}$	$[n]_q[n+1]_q[n+2]_q(1-q+q^2)$		
K7	[0, n+2, n-1, n+2]	$\frac{n^2+n-1}{n(n+1)(n+2)}$	$[n]_q[n+1]_q[n+2]_q(1-q+q^2)$		
K8	[0, n, 1, 2n, 1, n]	$\frac{2n^2+4n+1}{2n(n+1)(n+2)}$	$[n]_q[n+1]_q[n+2]_q(1+q^{n+1})$		
K9	[0, n+1, 1, n-1, 1, n+1]	$\frac{n^2+3n+1}{n(n+2)(n+3)}$	$[n]_q[n+2]_q[n+3]_q$		
K10	[0, 2n+1, 1, n-1, 1, 2n+1]	$\frac{2n^2+4n+1}{4n(n+1)(n+2)}$	$[n]_q[n+1]_q[n+2]_q(1+q^{n+1})^2$		
K11	[0, n, 2, 2n, 2, n]	$\frac{8n^2+8n+1}{4n(n+1)(2n+1)}$	$[n]_q[n+1]_q[2n+1]_q(1+q^2)^2$		
K12	[0, n, 1, 2n, 1, 2n, 1, n]	$\frac{4n^3+12n^2+9n+1}{n(n+2)(2n+1)(2n+3)}$	$[n]_q[n+2]_q[2n+1]_q[2n+3]_q$		
K13	[0, n, 1, n, 2n + 2, n, 1, n]	$\frac{2n^4 + 8n^3 + 12n^2 + 8n + 1}{2n(n+1)^3(n+2)}$	$[n]_q[n+1]_q^{\bf 3}[n+2]_q(1+q^{n+1})(1-q+q^2)$		

Sporadic cases with denominator less than 2000

Case	Continued Fraction	Rational	q-Denominator		
E1	[0, 2, 1, 1, 2, 1, 1, 2]	31 80	$[2]_{q}^{3}[5]_{q}(1+q^{2})$		
E2	[0, 3, 3, 1, 3, 3]	49 160	$[2]_q^2[5]_q(1+q^2)^3$		
E3	[0, 3, 2, 1, 1, 1, 2, 3]	71 240	$[2]_q^2[3]_q[5]_q(1+q^2)^2$		
E4	[0, 2, 1, 2, 3, 2, 1, 2]	89 240	$[2]_{q}^{2}[3]_{q}[5]_{q}(1+q^{2})^{2}$		
E5	[0, 2, 3, 1, 2, 1, 3, 2]	127 288	$[2]_q^3[3]_q^2(1+q^2)^2(1-q+q^2)$		
E6	[0, 2, 2, 1, 5, 1, 2, 2]	<u>134</u> 315	$[3]_{q}^{2}[5]_{q}[7]_{q}$		
E7	[0, 3, 1, 1, 6, 1, 1, 3]	<u>99</u> 350	$[2]_{q}[5]_{q}^{2}[7]_{q}$		
E8	[0, 2, 3, 2, 1, 2, 3, 2]	209 480	$[2]_q^2[3]_q[5]_q(1+q^2)^3$		
E9	[0, 3, 2, 1, 4, 1, 2, 3]	<u>161</u> 540	$[2]_q[3]_q^3[5]_q(1+q^2)(1-q+q^2)$		
E10	[0, 4, 1, 1, 6, 1, 1, 4]	<u>127</u> 576	$[2]_q^{5}[3]_q^{2}(1+q^{2})(1-q+q^{2})^{3}$		
E11	[0, 2, 2, 1, 1, 3, 1, 1, 2, 2]	251 600	$[2]_q^2[3]_q[5]_q^2(1+q^2)$		
E12	[0, 2, 3, 1, 1, 2, 1, 1, 3, 2]	<u>351</u> 800	$[2]_q^3[5]_q^2(1+q^2)^2$		
E13	[0, 2, 6, 1, 2, 1, 6, 2]	<u>391</u> 840	$[2]_q[3]_q[5]_q[7]_q(1+q^2)(1+q^4)$		
E14	[0, 3, 1, 1, 2, 2, 2, 1, 1, 3]	<u>251</u> 900	$[2]_q[3]_q^2[5]_q^2(1+q^2)$		
E15	[0, 2, 7, 4, 7, 2]	<u>449</u> 960	$[2]_q^3[3]_q[5]_q(1+q^2)^2(1-q+q^2)^2(1+q^4)$		
E16	$\left[0,2,1,1,2,1,3,1,2,1,1,2 ight]$	559 1440	$[2]_q^4[3]_q^2[5]_q(1+q^2)(1-q+q^2)$		
E17	[0, 4, 1, 2, 7, 2, 1, 4]	323 1512	$[2]_q^2[3]_q^3[7]_q(1+q^2)(1-q+q^2)^2$		
E18	[0, 2, 6, 2, 1, 2, 6, 2]	701 1512	$[2]_q^2[3]_q^3[7]_q(1+q^2)(1-q+q^2)^2$		
E19	[0, 3, 1, 1, 3, 2, 3, 1, 1, 3]	449 1600	$[2]_q^{\bf 3}[5]_q^{\bf 2}(1+q^{\bf 2})^{\bf 3}$		

< ≣⇒

Artin 1925: *n-strand braid group* B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$ with relations

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \quad i = 1, \ldots, n-1,$$

and $\sigma_i \sigma_j = \sigma_j \sigma_i$ when |i - j| > 1.

Artin 1925: *n-strand braid group* B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$ with relations

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \quad i = 1, \ldots, n-1,$$

and $\sigma_i \sigma_j = \sigma_j \sigma_i$ when |i - j| > 1.

Burau 1936: Burau representation $\rho_n : B_n \to GL(n-1, \mathbb{Z}[t, t^{-1}])$. In the simplest case n = 3 it is defined by

$$\rho_3 : \sigma_1 \quad \mapsto \quad \begin{pmatrix} -t & 1 \\ 0 & 1 \end{pmatrix}, \quad \sigma_2 \quad \mapsto \quad \begin{pmatrix} 1 & 0 \\ t & -t \end{pmatrix}, \tag{1}$$

(E) < E) E</p>

where t is a formal parameter.

Artin 1925: *n*-strand braid group B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$ with relations

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \quad i = 1, \dots, n-1,$$

and $\sigma_i \sigma_j = \sigma_j \sigma_i$ when |i - j| > 1.

Burau 1936: Burau representation $\rho_n : B_n \to GL(n-1, \mathbb{Z}[t, t^{-1}])$. In the simplest case n = 3 it is defined by

$$\rho_3 : \sigma_1 \quad \mapsto \quad \begin{pmatrix} -t & 1 \\ 0 & 1 \end{pmatrix}, \quad \sigma_2 \quad \mapsto \quad \begin{pmatrix} 1 & 0 \\ t & -t \end{pmatrix}, \tag{1}$$

★週 ▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

where t is a formal parameter.

It is known after Arnold 1968, Magnus and Peluso 1969 that ρ_3 is faithful.

(Note that for $n \ge 5$ the Burau representation is known to be non-faithful and that for n = 4 the question is still open.)

Quantum rationals and Burau specialization problem

Bharathram and Birman 2022:

At which complex specializations of $t \in \mathbb{C}^*$ is the Burau representation ρ_3 faithful?

프 🖌 🔺 프 🕨

э

Bharathram and Birman 2022:

At which complex specializations of $t \in \mathbb{C}^*$ is the Burau representation ρ_3 faithful?

Examples: when $t = 1 \rho_3$ is specialised to the canonical homomorphism $B_3 \rightarrow S_3$, when t = -1 - to the homomorphism $\varphi : B_3 \rightarrow SL(2, \mathbb{Z})$ with kernel $< (\sigma_1 \sigma_2)^6 >$:

$$\varphi(\sigma_1) = R := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad \varphi(\sigma_2) = L^{-1} := \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

▲글▶ ▲글▶

э

Bharathram and Birman 2022:

At which complex specializations of $t \in \mathbb{C}^*$ is the Burau representation ρ_3 faithful?

Examples: when $t = 1 \rho_3$ is specialised to the canonical homomorphism $B_3 \rightarrow S_3$, when t = -1 - to the homomorphism $\varphi : B_3 \rightarrow SL(2, \mathbb{Z})$ with kernel $< (\sigma_1 \sigma_2)^6 >$:

$$\varphi(\sigma_1) = R := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad \varphi(\sigma_2) = L^{-1} := \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

Define $\Sigma \subset \mathbb{C}^*$ as the union of complex poles of all *q*-rationals and $\Sigma_* := \Sigma \cup \{1\}$.

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → ○ � ()

Morier-Genoud, Ovsienko, V. 2023 The Burau representation ρ_3 specialized at $t_0 \in \mathbb{C}^*$ is faithful if and only if $-t_0 \notin \Sigma_*$.

Bharathram and Birman 2022:

At which complex specializations of $t \in \mathbb{C}^*$ is the Burau representation ρ_3 faithful?

Examples: when $t = 1 \rho_3$ is specialised to the canonical homomorphism $B_3 \rightarrow S_3$, when t = -1 - to the homomorphism $\varphi : B_3 \rightarrow SL(2, \mathbb{Z})$ with kernel $< (\sigma_1 \sigma_2)^6 >$:

$$\varphi(\sigma_1) = R := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad \varphi(\sigma_2) = L^{-1} := \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Define $\Sigma \subset \mathbb{C}^*$ as the union of complex poles of all *q*-rationals and $\Sigma_* := \Sigma \cup \{1\}$.

Morier-Genoud, Ovsienko, V. 2023 The Burau representation ρ_3 specialized at $t_0 \in \mathbb{C}^*$ is faithful if and only if $-t_0 \notin \Sigma_*$.

Key observation: let

$$\varphi(\beta) = \begin{pmatrix} r & v \\ s & u \end{pmatrix}, \quad \rho_3(\beta) = \begin{pmatrix} \mathcal{R}(t) & \mathcal{V}(t) \\ \mathcal{S}(t) & \mathcal{U}(t) \end{pmatrix},$$

then $[r/s]_q = \frac{\mathcal{R}(t)}{\mathcal{S}(t)}$ and $[v/u]_q = \frac{\mathcal{V}(t)}{\mathcal{U}(t)}$ with t = -q.

The braids, corresponding to the Kronecker fractions, are special since they belong to the kernel of the Burau representation specialized **only at some roots on unity**.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

There is a class of *rational (or two-bridge) knots and links* labelled by the continued fractions (Simony 1882, Schubert 1954, Conway 1967).

Lee, Schiffler 2019, Morier-Genoud, Ovsienko 2020: For rational knot $K_{r/s}$ the (normalised) Jones polynomial can be expressed as

 $J_{rac{r}{s}}(q)=q\mathcal{R}(q)+(1-q)\mathcal{S}(q).$

伺 ト イヨ ト イヨ ト ニヨ ニ のく(や

There is a class of *rational (or two-bridge) knots and links* labelled by the continued fractions (Simony 1882, Schubert 1954, Conway 1967).

Lee, Schiffler 2019, Morier-Genoud, Ovsienko 2020: For rational knot $K_{r/s}$ the (normalised) Jones polynomial can be expressed as

 $J_{rac{r}{\epsilon}}(q)=q\mathcal{R}(q)+(1-q)\mathcal{S}(q).$

Here are the examples of knots and links (taken from **Rolfsen 1976**) corresponding to some fractions from the Kronecker families K1 - K5:

(1日) (日) (日)

Figure: Knots and links corresponding to the Kronecker fractions [0,9], [0,2,4,2], [0,3,1,3], [0,3,2,3], [0,2,1,2,1,2].

There is a class of *rational (or two-bridge) knots and links* labelled by the continued fractions (Simony 1882, Schubert 1954, Conway 1967).

Lee, Schiffler 2019, Morier-Genoud, Ovsienko 2020: For rational knot $K_{r/s}$ the (normalised) Jones polynomial can be expressed as

 $J_{rac{r}{\epsilon}}(q)=q\mathcal{R}(q)+(1-q)\mathcal{S}(q).$

Here are the examples of knots and links (taken from **Rolfsen 1976**) corresponding to some fractions from the Kronecker families K1 - K5:

Figure: Knots and links corresponding to the Kronecker fractions [0,9], [0,2,4,2], [0,3,1,3], [0,3,2,3], [0,2,1,2,1,2].

What is special (apart from palindromic symmetry) about knots/links, corresponding to Kronecker fractions?

イロト イヨト イヨト イヨト 三日

(4回) (4 注) (4 注) (注)

< ∃⇒

э

Many Happy Returns, Valya and Volodya!