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Quantum rationals

Morier-Genoud, Ovsienko 2020: Given a regular continued fraction
x = [a1, a2, . . . , a2m], define its q-deformation by

[x]q = [a1, a2, . . . , a2m]q := [a1]q +
qa1

[a2]q−1 +
q−a2

[a3]q +
qa3

[a4]q−1 +
q−a4

. . . +
qa2m−1

[a2m]q−1

.

For natural number [n]q = 1 + q + · · ·+ qn−1 coincides with Euler’s q-integer.

Example. 2
5 = [0, 2, 2] = [0, 2, 1, 1], so[

2
5

]
q

=
1

[2]q−1 +
q−2

[1]q +
q

[1]q−1

=
q3 + q2

q3 + 2q2 + q + 1
.
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Quantized Conway-Farey Topograph
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Quantum rationals

A quantum rational is a rational function of q:[ r
s

]
q
=

R(q)

S(q)
,

▶ R(1) = r , S(1) = s, S(0) = 1,
▶ R, S are coprime, monic polynomials with non-negative integer coefficients
▶ deg(R) = a1 + a2 + · · ·+ a2m − 1 and deg(S) = deg(R)− a1.

We have the following general formulas
▶ Shift formula [x + n]q = qn[x]q + [n]q , n ∈ N,
▶ Negation formula [−x]q = −q−1[x]q−1 ,

▶ Inversion formula
[ 1
x

]
q
= 1

[x]
q−1

.

Note that R and S depend on both r and s. For example, the denominator “5” is
quantised differently in 1

5 and 2
5 :[

1
5

]
q

=
q4

q4 + q3 + q2 + q + 1
,

[
2
5

]
q

=
q3 + q2

q3 + 2q2 + q + 1
.
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Quantum irrationals

Let x ∈ R be irrational, and (xn) ⊆ Q a sequence of rationals with xn → x as n → ∞.

Morier-Genoud and Ovsienko proved that the sequence of quantised
([xn]q =

∑
k≥0 κn,kq

k ) stabilises in the sense that more and more terms of the Taylor
expansion in q become fixed, and defined the quantisation of x by

[x]q :=
∑
k≥0

κkq
k , where κk = lim

n→∞
κn,k .

The coefficients (κk ) are integers, independent of the choice of sequence (xn).

For example, for the golden ratio φ = 1+
√

5
2 = [1, 1, 1, . . .] we have

[φ]q = [1]q +
q

[1]q−1 +
q−1

[1]q +
q

[1]q−1 +
. . .

= 1 +
q

1 +
q−1

[φ]q

,

[φ]q =
q2 + q − 1 +

√
(q2 + 3q + 1)(q2 − q + 1)

2q
,

or, as the series

[φ]q = 1 + q2 − q3 + 2q4 − 4q5 + 8q6 − 17q7 + 37q8 − 82q9 + 185q10

−423q11 + 978q12 − 2283q13 + 5373q14 − 12735q15 + 30372q16 . . .

with the sequence of coefficients in [φ]q coinciding (up to the alternating sign) with
the sequence A004148 of [?] called the “generalized Catalan numbers”.
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Radius of convergence

The radius of convergence of this power series is governed by the root of
1 + 3q + q2 = 0 having minimal modulus:

R∗ =
3 −

√
5

2
.

Leclere, Morier-Genoud, Ovsienko, V. 2021 conjectured that for any real x > 0 the
radius of convergence of [x]q is at least R∗. This was proved for metallic numbers of
the form [0, n, n, n, . . .], n ∈ N by Ren 2022 and in general case recently by Elzenaar,
Gong, Martin and Schillewaert 2024.

We will be interested in opposite case: when the radius of convergence of [x]q is
maximal. If we exclude the case of positive integers

[n]q = 1 + q + q2 + · · ·+ qn−1,

the maximal radius of convergence is 1. Indeed, in rational case the denominator
S(q) is a monic polynomial with S(0) = 1, so it cannot have all roots with modulus
> 1. In the irrational case the series is clearly diverges at q = 1 since all the
coefficients are integer.
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Kronecker fractions

We call fractions r/s Kronecker if the corresponding quantum version [r/s]q has
maximal radius of convergence 1, which means that the denominator S(q) in[
r
s

]
q
= R(q)

S(q)
has all zeros on the unit circle.

Kronecker 1857: If S(q) is a monic polynomial with integer coefficients with all roots
of absolute value at most 1, then S(q) is a product of cyclotomic polynomials, and/or
a power of q.

Recall that the nth cyclotomic polynomial is defined by

Φn(x) =
n∏

k=1
gcd(k,n)=1

(x − e2πk/n) :

Φ1(x) = x−1, Φ2(x) = x+1, Φ3(x) = x2+x+1, . . . ,Φ10(x) = x4−x3+x2−x+1, . . .

Note that apart from Φ1, all cyclotomic polynomial have palindromic coefficients.
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Palindromicity theorem

From the known properties of quantum rationals

[x + n]q = qn[x]q + [n]q , n ∈ N, [−x]q = −q−1[x]q−1

it follows that if x ∈ Q ∩ (0, 1) is Kronecker then the same is true for is x + n and
1 − x . So we can reduce our search of Kronecker fractions to x ∈ (0, 1/2).

We say that continued fraction of x = r
s
= [0, a2, . . . , a2n] is palindromic if the tuple

(a2, . . . , a2n) is palindromic.

Evans, Winn and V. 2024: The continued fraction expansion of every Kronecker
fraction is palindromic.

First observe that if x = r/s is Kronecker, then the denominator S(q) of [r/s]q is
palindromic (by Kronecker’s theorem). Now the proof follows from

Lemma (EVW 2024) The denominator S(q) of [r/s]q is palindromic if and only if
the continued fraction of r/s = [0, a2, . . . , a2n] is palindromic.

The proof is based on the result of Leclere and Morier-Genoud 2021, who proved
the palindromicity of the trace of the corresponding matrix Mx .
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Serret criterion

Theorem (Serret, 1848) A rational number r/s with r < s has palindromic continued
fraction if and only if s divides r2 − 1.

In combination with our Theorem we have

Corollary. For any Kronecker fraction r/s ∈ (0, 1) s divides r2 − 1.

This simplifies the search for Kronecker fractions. In particular, there are 9 fractions in
(0, 1) with palindromic continued fraction and numerator 17:

17
18

,
17
24

,
17
32

,
17
36

,
17
48

,
17
72

,
17
96

,
17
144

,
17
288

.

All of them are Kronecker, except 17
72 = [0, 4, 4, 4].

One can use this also to identify potential series of the Kronecker functions. For
example, if s = n(n + 1)(n + 2) then for r we have the following possibilities:

n2 + 3n + 1, n2 + n − 1, 2n2 + 4n + 1,

leading to 3 families of Kronecker fractions K6,K7,K8.
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Known Kronecker families

Case Continued Fraction Rational q-Denominator
K1 [0, n + 1] 1

n+1 [n + 1]q
K2 [0, 2, n − 1, 2] 2n−1

4n [2]q [n]q(1 + q2)

K3 [0, n, 1, n] n+1
n(n+2) [n]q [n + 2]q

K4 [0, n, 2, n] 2n+1
2n(n+1) [n]q [n + 1]q(1 + q2)

K5 [0, n, 1, n, 1, n] n2+3n+1
n(n+1)(n+3) [n]q [n + 1]q [n + 3]q

K6 [0, n, n + 3, n] n2+3n+1
n(n+1)(n+2) [n]q [n + 1]q [n + 2]q(1 − q + q2)

K7 [0, n + 2, n − 1, n + 2] n2+n−1
n(n+1)(n+2) [n]q [n + 1]q [n + 2]q(1 − q + q2)

K8 [0, n, 1, 2n, 1, n] 2n2+4n+1
2n(n+1)(n+2) [n]q [n + 1]q [n + 2]q(1 + qn+1)

K9 [0, n + 1, 1, n − 1, 1, n + 1] n2+3n+1
n(n+2)(n+3) [n]q [n + 2]q [n + 3]q

K10 [0, 2n + 1, 1, n − 1, 1, 2n + 1] 2n2+4n+1
4n(n+1)(n+2) [n]q [n + 1]q [n + 2]q(1 + qn+1)2

K11 [0, n, 2, 2n, 2, n] 8n2+8n+1
4n(n+1)(2n+1) [n]q [n + 1]q [2n + 1]q(1 + q2)2

K12 [0, n, 1, 2n, 1, 2n, 1, n] 4n3+12n2+9n+1
n(n+2)(2n+1)(2n+3) [n]q [n + 2]q [2n + 1]q [2n + 3]q

K13 [0, n, 1, n, 2n + 2, n, 1, n] 2n4+8n3+12n2+8n+1
2n(n+1)3(n+2)

[n]q [n + 1]3q [n + 2]q(1 + qn+1)(1 − q + q2)
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Sporadic cases with denominator less than 2000

Case Continued Fraction Rational q-Denominator

E1 [0, 2, 1, 1, 2, 1, 1, 2] 31
80 [2]3q [5]q(1 + q2)

E2 [0, 3, 3, 1, 3, 3] 49
160 [2]2q [5]q(1 + q2)3

E3 [0, 3, 2, 1, 1, 1, 2, 3] 71
240 [2]2q [3]q [5]q(1 + q2)2

E4 [0, 2, 1, 2, 3, 2, 1, 2] 89
240 [2]2q [3]q [5]q(1 + q2)2

E5 [0, 2, 3, 1, 2, 1, 3, 2] 127
288 [2]3q [3]

2
q (1 + q2)2(1 − q + q2)

E6 [0, 2, 2, 1, 5, 1, 2, 2] 134
315 [3]2q [5]q [7]q

E7 [0, 3, 1, 1, 6, 1, 1, 3] 99
350 [2]q [5]2q [7]q

E8 [0, 2, 3, 2, 1, 2, 3, 2] 209
480 [2]2q [3]q [5]q(1 + q2)3

E9 [0, 3, 2, 1, 4, 1, 2, 3] 161
540 [2]q [3]3q [5]q(1 + q2)(1 − q + q2)

E10 [0, 4, 1, 1, 6, 1, 1, 4] 127
576 [2]5q [3]

2
q (1 + q2)(1 − q + q2)3

E11 [0, 2, 2, 1, 1, 3, 1, 1, 2, 2] 251
600 [2]2q [3]q [5]

2
q (1 + q2)

E12 [0, 2, 3, 1, 1, 2, 1, 1, 3, 2] 351
800 [2]3q [5]

2
q (1 + q2)2

E13 [0, 2, 6, 1, 2, 1, 6, 2] 391
840 [2]q [3]q [5]q [7]q(1 + q2)(1 + q4)

E14 [0, 3, 1, 1, 2, 2, 2, 1, 1, 3] 251
900 [2]q [3]2q [5]

2
q (1 + q2)

E15 [0, 2, 7, 4, 7, 2] 449
960 [2]3q [3]q [5]q(1 + q2)2(1 − q + q2)2(1 + q4)

E16 [0, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2] 559
1440 [2]4q [3]

2
q [5]q(1 + q2)(1 − q + q2)

E17 [0, 4, 1, 2, 7, 2, 1, 4] 323
1512 [2]2q [3]

3
q [7]q(1 + q2)(1 − q + q2)2

E18 [0, 2, 6, 2, 1, 2, 6, 2] 701
1512 [2]2q [3]

3
q [7]q(1 + q2)(1 − q + q2)2

E19 [0, 3, 1, 1, 3, 2, 3, 1, 1, 3] 449
1600 [2]3q [5]

2
q (1 + q2)3
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Braid groups and Burau representation

Artin 1925: n-strand braid group Bn is generated by σ1, . . . , σn−1 with relations

σiσi+1σi = σi+1σiσi+1, i = 1, . . . , n − 1,

and σiσj = σjσi when |i − j | > 1.

Burau 1936: Burau representation ρn : Bn → GL(n − 1,Z[t, t−1]). In the simplest
case n = 3 it is defined by

ρ3 : σ1 7→
(
−t 1

0 1

)
, σ2 7→

(
1 0

t −t

)
, (1)

where t is a formal parameter.

It is known after Arnold 1968, Magnus and Peluso 1969 that ρ3 is faithful.

(Note that for n ≥ 5 the Burau representation is known to be non-faithful and that for
n = 4 the question is still open.)
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Quantum rationals and Burau specialization problem

Bharathram and Birman 2022:

At which complex specializations of t ∈ C∗ is the Burau representation ρ3 faithful?

Examples: when t = 1 ρ3 is specialised to the canonical homomorphism B3 → S3,
when t = −1 - to the homomorphism φ : B3 → SL(2,Z) with kernel < (σ1σ2)6 >:

φ(σ1) = R :=

(
1 1

0 1

)
, φ(σ2) = L−1 :=

(
1 0

−1 1

)
.

Define Σ ⊂ C∗ as the union of complex poles of all q-rationals and Σ∗ := Σ ∪ {1}.

Morier-Genoud, Ovsienko, V. 2023 The Burau representation ρ3 specialized at
t0 ∈ C∗ is faithful if and only if −t0 /∈ Σ∗.

Key observation: let

φ(β) =

(
r v

s u

)
, ρ3(β) =

(R(t) V(t)
S(t) U(t)

)
,

then [r/s]q = R(t)
S(t)

and [v/u]q = V(t)
U(t)

with t = −q.

The braids, corresponding to the Kronecker fractions, are special since they belong to
the kernel of the Burau representation specialized only at some roots on unity.
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Kronecker knots?

There is a class of rational (or two-bridge) knots and links labelled by the continued
fractions (Simony 1882, Schubert 1954, Conway 1967).

Lee, Schiffler 2019, Morier-Genoud, Ovsienko 2020: For rational knot Kr/s the
(normalised) Jones polynomial can be expressed as

J r
s
(q) = qR(q) + (1 − q)S(q).

Here are the examples of knots and links (taken from Rolfsen 1976) corresponding to
some fractions from the Kronecker families K1 − K5 :394
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Figure: Knots and links corresponding to the Kronecker fractions
[0, 9], [0, 2, 4, 2], [0, 3, 1, 3], [0, 3, 2, 3], [0, 2, 1, 2, 1, 2].

What is special (apart from palindromic symmetry) about knots/links, corresponding
to Kronecker fractions?
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Happy-60!

Many Happy Returns, Valya and Volodya!
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