Quantum Kronecker fractions

A.P. Veselov (Loughborough, UK) (joint with S. Evans and B. Winn)

New trends in Geometry, Combinatorics, and Mathematical Physics (Oléron France 20-25 October).

 \blacksquare

 $2Q$

ミト €

A.P. Veselov (Loughborough, UK) (joint with S. Evans and B. Winn) [Quantum Kronecker fractions](#page-36-0)

 299

准

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Morier-Genoud, Ovsienko 2020: Given a regular continued fraction $x = [a_1, a_2, \ldots, a_{2m}]$, define its q-deformation by

(すぎ) すぎ)

 $(1, 1)$

A F

G

 $2Q$

Morier-Genoud, Ovsienko 2020: Given a regular continued fraction $x = [a_1, a_2, \ldots, a_{2m}]$, define its q-deformation by

For natural number $[\eta]_q = 1 + q + \cdots + q^{n-1}$ coincides with Euler's q -integer.

御き メミメ メミメ

G

 $2Q$

Morier-Genoud, Ovsienko 2020: Given a regular continued fraction $x = [a_1, a_2, \ldots, a_{2m}]$, define its q-deformation by

$$
[x]_q = [a_1, a_2, \dots, a_{2m}]_q := [a_1]_q + \cfrac{q^{a_1}}{[a_2]_{q^{-1}} + \cfrac{q^{-a_2}}{[a_3]_q + \cfrac{q^{a_3}}{[a_4]_{q^{-1}} + \cfrac{q^{a_{2m-1}}}{[a_2]_{q^{-1}}}}}}.
$$

For natural number $[\eta]_q = 1 + q + \cdots + q^{n-1}$ coincides with Euler's q -integer. **Example.** $\frac{2}{5} = [0, 2, 2] = [0, 2, 1, 1]$, so

$$
\left[\frac{2}{5}\right]_q = \frac{1}{\left[2\right]_{q^{-1}} + \frac{q^{-2}}{\left[1\right]_q + \frac{q}{\left[1\right]_q - 1}}} = \frac{q^3 + q^2}{q^3 + 2q^2 + q + 1}.
$$

御き メミメ メミメー

4 0 8

 \equiv 990

Quantized Conway-Farey Topograph

医毛囊 医牙骨膜炎

 $(1, 1)$

A F

G

 299

A quantum rational is a rational function of q :

$$
\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)},
$$

御き メミメ メミメ

4 0 8

重

 $2Q$

$$
\blacktriangleright \mathcal{R}(1)=r, \mathcal{S}(1)=s, \mathcal{S}(0)=1,
$$

 \triangleright R, S are coprime, monic polynomials with non-negative integer coefficients

▶ deg $(R) = a_1 + a_2 + \cdots + a_{2m} - 1$ and deg $(S) = \deg(R) - a_1$.

A quantum rational is a rational function of q :

$$
\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)},
$$

医电影 化重新

G.

 200

$$
\blacktriangleright \ \mathcal{R}(1)=r, \ \mathcal{S}(1)=s, \ \mathcal{S}(0)=1,
$$

- \triangleright R, S are coprime, monic polynomials with non-negative integer coefficients
- \triangleright deg(\mathcal{R}) = a₁ + a₂ + · · · + a_{2m} 1 and deg(\mathcal{S}) = deg(\mathcal{R}) a₁.

We have the following general formulas

- ▶ Shift formula $[x + n]_q = q^n[x]_q + [n]_q, n \in \mathbb{N}$,
- ▶ Negation formula $[-x]_q = -q^{-1}[x]_{q^{-1}}$,
- ▶ Inversion formula $\left[\frac{1}{x}\right]_q = \frac{1}{[x]_q 1}$.

A quantum rational is a rational function of q :

$$
\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)},
$$

$$
\blacktriangleright \mathcal{R}(1)=r, \mathcal{S}(1)=s, \mathcal{S}(0)=1,
$$

- \triangleright R, S are coprime, monic polynomials with non-negative integer coefficients
- \triangleright deg(\mathcal{R}) = a₁ + a₂ + · · · + a_{2m} 1 and deg(\mathcal{S}) = deg(\mathcal{R}) a₁.

We have the following general formulas

- ▶ Shift formula $[x + n]_q = q^n[x]_q + [n]_q, n \in \mathbb{N}$,
- ▶ Negation formula $[-x]_q = -q^{-1}[x]_{q^{-1}}$,
- ▶ Inversion formula $\left[\frac{1}{x}\right]_q = \frac{1}{[x]_q 1}$.

Note that R and S depend on both r and s. For example, the denominator "5" is quantised differently in $\frac{1}{5}$ and $\frac{2}{5}$:

$$
\left[\frac{1}{5}\right]_q = \frac{q^4}{q^4 + q^3 + q^2 + q + 1}, \quad \left[\frac{2}{5}\right]_q = \frac{q^3 + q^2}{q^3 + 2q^2 + q + 1}.
$$

(すぎ) すぎ)

遥

 Ω

Quantum irrationals

Let $x \in \mathbb{R}$ be irrational, and $(x_n) \subseteq \mathbb{Q}$ a sequence of rationals with $x_n \to x$ as $n \to \infty$.

Morier-Genoud and Ovsienko proved that the sequence of quantised $([x_n]_q = \sum_{k \geq 0} x_{n,k} q^k)$ stabilises in the sense that more and more terms of the Taylor expansion in $\frac{1}{q}$ become fixed, and defined the quantisation of x by

$$
[x]_q := \sum_{k \geq 0} x_k q^k, \quad \text{where} \quad x_k = \lim_{n \to \infty} x_{n,k}.
$$

ヨメ メヨメ

 Ω

The coefficients (x_k) are integers, independent of the choice of sequence (x_n) .

Quantum irrationals

Let $x \in \mathbb{R}$ be irrational, and $(x_n) \subseteq \mathbb{Q}$ a sequence of rationals with $x_n \to x$ as $n \to \infty$.

Morier-Genoud and Ovsienko proved that the sequence of quantised $([x_n]_q = \sum_{k \geq 0} x_{n,k} q^k)$ stabilises in the sense that more and more terms of the Taylor expansion in q become fixed, and defined the quantisation of x by

$$
[x]_q := \sum_{k \geq 0} x_k q^k, \quad \text{where} \quad x_k = \lim_{n \to \infty} x_{n,k}.
$$

The coefficients (x_k) are integers, independent of the choice of sequence (x_n) .

For example, for the golden ratio $\varphi=\frac{1+\sqrt{5}}{2}=[1,1,1,\ldots]$ we have

$$
[\varphi]_q = [1]_q + \frac{q}{[1]_{q^{-1}} + \frac{q^{-1}}{[1]_q + \frac{q}{[1]_q + \dots + [1]_q - 1}}} = 1 + \frac{q}{1 + \frac{q^{-1}}{[\varphi]_q}},
$$

$$
[1]_{q^{-1}} + \frac{[1]_{q^{-1}} + \dots + [1]_{q^{-1}} + \dots + [1]_{q^{-1}}}{2q},
$$

or, as the series

$$
[\varphi]_q = 1 + q^2 - q^3 + 2q^4 - 4q^5 + 8q^6 - 17q^7 + 37q^8 - 82q^9 + 185q^{10}
$$

-423q¹¹ + 978q¹² - 2283q¹³ + 5373q¹⁴ - 12735q¹⁵ + 30372q¹⁶...

with the seque[n](#page-10-0)ce of coefficients in $\left[\varphi\right]_q$ $\left[\varphi\right]_q$ $\left[\varphi\right]_q$ coinciding (up t[o th](#page-9-0)[e a](#page-11-0)[lt](#page-8-0)[er](#page-9-0)na[tin](#page-0-0)[g si](#page-36-0)[gn\)](#page-0-0) [wi](#page-36-0)[th](#page-0-0) Ω A.P. Veselov (Loughborough, UK) (joint with S. Evans and B. Winn) Quantum Kronecker fractions

The radius of convergence of this power series is governed by the root of $1+3q+q^2=0$ having minimal modulus:

$$
R_*=\frac{3-\sqrt{5}}{2}.
$$

 \leftarrow \Box

B

ミト モミチ $2Q$

The radius of convergence of this power series is governed by the root of $1+3q+q^2=0$ having minimal modulus:

$$
R_*=\frac{3-\sqrt{5}}{2}.
$$

Leclere, Morier-Genoud, Ovsienko, V. 2021 conjectured that for any real $x > 0$ the radius of convergence of $[x]_q$ is at least R_* . This was proved for metallic numbers of the form $[0, n, n, n, \ldots]$, $n \in \mathbb{N}$ by Ren 2022 and in general case recently by Elzenaar, Gong, Martin and Schillewaert 2024.

 Ω

The radius of convergence of this power series is governed by the root of $1+3q+q^2=0$ having minimal modulus:

$$
R_*=\frac{3-\sqrt{5}}{2}.
$$

Leclere, Morier-Genoud, Ovsienko, V. 2021 conjectured that for any real $x > 0$ the radius of convergence of $[x]_q$ is at least R_* . This was proved for metallic numbers of the form $[0, n, n, n, \ldots]$, $n \in \mathbb{N}$ by Ren 2022 and in general case recently by Elzenaar, Gong, Martin and Schillewaert 2024.

We will be interested in opposite case: when the radius of convergence of $[x]_q$ is maximal. If we exclude the case of positive integers

$$
[n]_q = 1 + q + q^2 + \cdots + q^{n-1},
$$

the maximal radius of convergence is 1. Indeed, in rational case the denominator $S(q)$ is a monic polynomial with $S(0) = 1$, so it cannot have all roots with modulus > 1 . In the irrational case the series is clearly diverges at $q = 1$ since all the coefficients are integer.

∢ 重 ≯ → 重 ≯

 Ω

We call fractions r/s Kronecker if the corresponding quantum version $[r/s]_q$ has maximal radius of convergence 1, which means that the denominator $S(q)$ in $\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)}$ has all zeros on the unit circle.

ほん メモト

4 0 8

G

 $2Q$

We call fractions r/s Kronecker if the corresponding quantum version $[r/s]_q$ has maximal radius of convergence 1, which means that the denominator $S(q)$ in $\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)}$ has all zeros on the unit circle.

Kronecker 1857: If $S(q)$ is a monic polynomial with integer coefficients with all roots of absolute value at most 1, then $S(q)$ is a product of cyclotomic polynomials, and/or a power of q.

ほん メヨト

€

 Ω

We call fractions r/s Kronecker if the corresponding quantum version $[r/s]_q$ has maximal radius of convergence 1, which means that the denominator $S(q)$ in $\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)}$ has all zeros on the unit circle.

Kronecker 1857: If $S(q)$ is a monic polynomial with integer coefficients with all roots of absolute value at most 1, then $S(q)$ is a product of cyclotomic polynomials, and/or a power of q.

Recall that the nth cyclotomic polynomial is defined by

$$
\Phi_n(x) = \prod_{\substack{k=1 \ \gcd(k,n)=1}}^n (x - e^{2\pi k/n}) :
$$

 $\Phi_1(x) = x-1, \ \Phi_2(x) = x+1, \ \Phi_3(x) = x^2+x+1, \dots, \Phi_{10}(x) = x^4-x^3+x^2-x+1, \dots$

イロメ イ何 メイヨメ イヨメーヨ

 Ω

Note that apart from Φ_1 , all cyclotomic polynomial have *palindromic coefficients*.

From the known properties of quantum rationals

```
[x + n]_q = q^n[x]_q + [n]_q, n \in \mathbb{N}, \quad [-x]_q = -q^{-1}[x]_{q^{-1}}
```
4 0 8

 $2Q$

G.

∢ 重 ≯ → 重 ≯

it follows that if $x \in \mathbb{Q} \cap (0,1)$ is Kronecker then the same is true for is $x + n$ and $1 - x$. So we can reduce our search of Kronecker fractions to $x \in (0, 1/2)$.

From the known properties of quantum rationals

$[x + n]_q = q^n[x]_q + [n]_q, n \in \mathbb{N}, \quad [-x]_q = -q^{-1}[x]_{q^{-1}}$

it follows that if $x \in \mathbb{Q} \cap (0,1)$ is Kronecker then the same is true for is $x + n$ and $1 - x$. So we can reduce our search of Kronecker fractions to $x \in (0, 1/2)$.

We say that continued fraction of $x = \frac{r}{s} = [0, a_2, \dots, a_{2n}]$ is *palindromic* if the tuple (a_2, \ldots, a_{2n}) is palindromic.

→ 重 → → 重 →

э.

 200

Evans, Winn and V. 2024: The continued fraction expansion of every Kronecker fraction is palindromic.

From the known properties of quantum rationals

$[x + n]_q = q^n[x]_q + [n]_q, n \in \mathbb{N}, \quad [-x]_q = -q^{-1}[x]_{q^{-1}}$

it follows that if $x \in \mathbb{Q} \cap (0,1)$ is Kronecker then the same is true for is $x + n$ and $1 - x$. So we can reduce our search of Kronecker fractions to $x \in (0, 1/2)$.

We say that continued fraction of $x = \frac{r}{s} = [0, a_2, \dots, a_{2n}]$ is *palindromic* if the tuple (a_2, \ldots, a_{2n}) is palindromic.

Evans, Winn and V. 2024: The continued fraction expansion of every Kronecker fraction is palindromic.

First observe that if $x = r/s$ is Kronecker, then the denominator $S(q)$ of $[r/s]_q$ is palindromic (by Kronecker's theorem). Now the proof follows from

Lemma (EVW 2024) The denominator $S(q)$ of $[r/s]_q$ is palindromic if and only if the continued fraction of $r/s = [0, a_2, \ldots, a_{2n}]$ is palindromic.

The proof is based on the result of Leclere and Morier-Genoud 2021, who proved the palindromicity of the trace of the corresponding matrix $M_{\rm x}$.

◆ロト→伊ト→ミト→ミト 三

 $2Q$

Theorem (Serret, 1848) A rational number r/s with $r < s$ has palindromic continued fraction if and only if s divides $r^2 - 1$.

(すぎ) すぎ)

4日 ▶

A F

G.

 $2Q$

Theorem (Serret, 1848) A rational number r/s with $r < s$ has palindromic continued fraction if and only if s divides $r^2 - 1$.

In combination with our Theorem we have

Corollary. For any Kronecker fraction $r/s \in (0,1)$ s divides $r^2 - 1$.

This simplifies the search for Kronecker fractions. In particular, there are 9 fractions in (0, 1) with palindromic continued fraction and numerator 17:

∢ 重 ≯ → 重 ≯

∍

 Ω

All of them are Kronecker, except $\frac{17}{72} = [0, 4, 4, 4]$.

Theorem (Serret, 1848) A rational number r/s with $r < s$ has palindromic continued fraction if and only if s divides $r^2 - 1$.

In combination with our Theorem we have

Corollary. For any Kronecker fraction $r/s \in (0,1)$ s divides $r^2 - 1$.

This simplifies the search for Kronecker fractions. In particular, there are 9 fractions in (0, 1) with palindromic continued fraction and numerator 17:

All of them are Kronecker, except $\frac{17}{72} = [0, 4, 4, 4]$.

One can use this also to identify potential series of the Kronecker functions. For example, if $s = n(n+1)(n+2)$ then for r we have the following possibilities:

$$
n^2+3n+1,\,n^2+n-1,\,2n^2+4n+1,
$$

∢ 重 ≯ → 重 ≯

 Ω

leading to 3 families of Kronecker fractions K6, K7, K8.

 \leftarrow \Box \rightarrow

→ 相手 → すき → すき →

重

 2990

A.P. Veselov (Loughborough, UK) (joint with S. Evans and B. Winn) [Quantum Kronecker fractions](#page-0-0)

④重き ④重き

D

4日)

Artin 1925: *n-strand braid group* B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$ with relations

$$
\sigma_i\sigma_{i+1}\sigma_i=\sigma_{i+1}\sigma_i\sigma_{i+1}, \quad i=1,\ldots,n-1,
$$

モミメ メミメ

 \leftarrow

G

 $2Q$

and $\sigma_i \sigma_j = \sigma_j \sigma_i$ when $|i - j| > 1$.

Artin 1925: *n-strand braid group* B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$ with relations

$$
\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \quad i = 1, \ldots, n-1,
$$

and $\sigma_i \sigma_j = \sigma_i \sigma_j$ when $|i - j| > 1$.

Burau 1936: *Burau representation* $\rho_n : B_n \to GL(n-1, \mathbb{Z}[t, t^{-1}])$ *.* In the simplest case $n = 3$ it is defined by

$$
\rho_3: \quad \sigma_1 \quad \mapsto \quad \begin{pmatrix} -t & 1 \\ 0 & 1 \end{pmatrix}, \quad \sigma_2 \quad \mapsto \quad \begin{pmatrix} 1 & 0 \\ t & -t \end{pmatrix}, \tag{1}
$$

ヨメ メヨメ

 Ω

where t is a formal parameter.

Artin 1925: *n-strand braid group* B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$ with relations

$$
\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \quad i = 1, \ldots, n-1,
$$

and $\sigma_i \sigma_j = \sigma_i \sigma_j$ when $|i - j| > 1$.

Burau 1936: *Burau representation* $\rho_n : B_n \to GL(n-1, \mathbb{Z}[t, t^{-1}])$ *.* In the simplest case $n = 3$ it is defined by

$$
\rho_3: \quad \sigma_1 \quad \mapsto \quad \begin{pmatrix} -t & 1 \\ 0 & 1 \end{pmatrix}, \quad \sigma_2 \quad \mapsto \quad \begin{pmatrix} 1 & 0 \\ t & -t \end{pmatrix}, \tag{1}
$$

∢ 重 ≯ → 重 ≯

 Ω

where t is a formal parameter.

It is known after Arnold 1968, Magnus and Peluso 1969 that ρ_3 is faithful.

(Note that for $n > 5$ the Burau representation is known to be non-faithful and that for $n = 4$ the question is still open.)

Quantum rationals and Burau specialization problem

Bharathram and Birman 2022:

At which complex specializations of $t \in \mathbb{C}^*$ is the Burau representation ρ_3 faithful?

 \rightarrow \Rightarrow \rightarrow

ミト

 \leftarrow

B

 $2Q$

Quantum rationals and Burau specialization problem

Bharathram and Birman 2022:

At which complex specializations of $t \in \mathbb{C}^*$ is the Burau representation ρ_3 faithful?

Examples: when $t = 1 \rho_3$ is specialised to the canonical homomorphism $B_3 \rightarrow S_3$, when $t=-1$ - to the homomorphism $\varphi: B_3 \to SL(2,\mathbb{Z})$ with kernel $<(\sigma_1\sigma_2)^6>$:

$$
\varphi(\sigma_1) = R := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad \varphi(\sigma_2) = L^{-1} := \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.
$$

ほん メヨト

€

 200

Bharathram and Birman 2022:

At which complex specializations of $t \in \mathbb{C}^*$ is the Burau representation ρ_3 faithful?

Examples: when $t = 1 \rho_3$ is specialised to the canonical homomorphism $B_3 \rightarrow S_3$, when $t=-1$ - to the homomorphism $\varphi: B_3 \to SL(2,\mathbb{Z})$ with kernel $<(\sigma_1\sigma_2)^6>$:

$$
\varphi(\sigma_1) = R := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad \varphi(\sigma_2) = L^{-1} := \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.
$$

Define $\Sigma \subset \mathbb{C}^*$ as the union of complex poles of all q-rationals and $\Sigma_* := \Sigma \cup \{1\}$.

メミメ メミメ

€

 Ω

Morier-Genoud, Ovsienko, V. 2023 The Burau representation ρ_3 specialized at $t_0 \in \mathbb{C}^*$ is faithful if and only if $-t_0 \notin \Sigma_*$.

Bharathram and Birman 2022:

At which complex specializations of $t \in \mathbb{C}^*$ is the Burau representation ρ_3 faithful?

Examples: when $t = 1 \rho_3$ is specialised to the canonical homomorphism $B_3 \rightarrow S_3$, when $t=-1$ - to the homomorphism $\varphi: B_3 \to SL(2,\mathbb{Z})$ with kernel $<(\sigma_1\sigma_2)^6>$:

$$
\varphi(\sigma_1) = R := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad \varphi(\sigma_2) = L^{-1} := \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.
$$

Define $\Sigma \subset \mathbb{C}^*$ as the union of complex poles of all q-rationals and $\Sigma_* := \Sigma \cup \{1\}.$

Morier-Genoud, Ovsienko, V. 2023 The Burau representation ρ_3 specialized at $t_0 \in \mathbb{C}^*$ is faithful if and only if $-t_0 \notin \Sigma_*$.

Key observation: let

$$
\varphi(\beta) = \begin{pmatrix} r & v \\ s & u \end{pmatrix}, \quad \rho_3(\beta) = \begin{pmatrix} \mathcal{R}(t) & \mathcal{V}(t) \\ \mathcal{S}(t) & \mathcal{U}(t) \end{pmatrix},
$$

then $[r/s]_q = \frac{\mathcal{R}(t)}{\mathcal{S}(t)}$ and $[v/u]_q = \frac{\mathcal{V}(t)}{\mathcal{U}(t)}$ with $t = -q$.

The braids, corresponding to the Kronecker fractions, are special since they belong to the kernel of the Burau representation specialized only at some roots on unity.

イ押 トイヨ トイヨ トー

 \Rightarrow

 200

There is a class of rational (or two-bridge) knots and links labelled by the continued fractions (Simony 1882, Schubert 1954, Conway 1967).

Lee, Schiffler 2019, Morier-Genoud, Ovsienko 2020: For rational knot $\mathsf{K}_{\mathsf{r}/\mathsf{s}}$ the (normalised) Jones polynomial can be expressed as

 $J_{\frac{r}{s}}(q) = q\mathcal{R}(q) + (1-q)\mathcal{S}(q).$

医电影 医医家庭

4 0 8

 $2Q$

G.

There is a class of rational (or two-bridge) knots and links labelled by the continued fractions (**Simony 1882, Schubert 1954, Conway 1967**).

Lee, Schiffler 2019, Morier-Genoud, Ovsienko 2020: For rational knot $\mathcal{K}_{r/s}$ the (normalised) Jones polynomial can be expressed as

 $J_{\frac{r}{s}}(q) = q\mathcal{R}(q) + (1-q)\mathcal{S}(q).$

Here are the examples of knots and links (taken from **Rolfsen 1976**) corresponding to
some fractions from the Kronecker families *K*1 – *K*5 : some fractions from the Kronecker families $K1-K5$: -21 3-1

化重压 化重压

つひへ

 $[0, 9], [0, 2, 4, 2], [0, 3, 1, 3], [0, 3, 2, 3], [0, 2, 1, 2, 1, 2].$ Figure: Knots and links corresponding to the Kronecker fractions There is a class of rational (or two-bridge) knots and links labelled by the continued fractions (**Simony 1882, Schubert 1954, Conway 1967**).

Lee, Schiffler 2019, Morier-Genoud, Ovsienko 2020: For rational knot $\mathcal{K}_{r/s}$ the (normalised) Jones polynomial can be expressed as

 $J_{\frac{r}{s}}(q) = q\mathcal{R}(q) + (1-q)\mathcal{S}(q).$

Here are the examples of knots and links (taken from **Rolfsen 1976**) corresponding to
some fractions from the Kronecker families *K*1 – *K*5 : some fractions from the Kronecker families $K1-K5$: -21 3-1

 $[0, 9], [0, 2, 4, 2], [0, 3, 1, 3], [0, 3, 2, 3], [0, 2, 1, 2, 1, 2].$ Figure: Knots and links corresponding to the Kronecker fractions

What is special (apart from palindromic symmetry) about knots/links, corresponding
to Kronecker fractions? to Kronecker fractions?

イ押 トイヨ トイヨ ト

遥

 Ω

 \leftarrow \Box \rightarrow

メ御 トメ ミト メミト

重

 299

 \leftarrow \Box \rightarrow

 299

€ **B** ∍

Many Happy Returns, Valya and Volodya!