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1. Introduction

Recall that the orbit method in representation theory, is based on the
notion of coadjoint orbit, i.e. an orbit of a Lie group G in the space g∗,
dual to the Lie algebra g = Lie(G). The method works the better, the
closer the Lie group is to its Lie algebra. Therefore the case of connected
and simply connected nilpotent Lie groups is an ideal situation, because in
this case the exponential map exp : g → G is a diffeomorphism (a smooth
bijection). The most important example of such groups is the subgroup
Nn(R) of upper unitriangular matrices in GL(n, R).

Date: Fall 2024.
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The notion of coadjoint orbit makes sense not only for ordinary Lie groups,
but for all groups for which one can define the analog of a Lie algebra
and its dual space. A challenging example is the class of algebraic matrix
groups over arbitrary field K. The main obstacle for applying the orbit
method in this case is the absence of exponential map. But for unitriangular
matrix groups, i.e., subgroups of Nn(K), it can be partially compensated by
introducing the so-called ”fake” exponential map expf, defined as

(1) expf(A) := 1 +A.

This map shares the two main properties of the exponential map: it is a
bijection of g to G and is compatible with adjoint action. Thus, it establishes
a bijection between adjoint orbits in g and conjugacy classes in G.

There is also a question about the definition of the dual space g∗ for g.
The good solution is to assume that K is a topological ring, whose additive
group K+ is Pontryagin self dual. 1 It includes the cases of finite fields
Fq, p-adic fields Qp, and the ring of adeles.

Unfortunately, the attempt to apply the orbit method to the class of
unitriangular matrix groups over finite fields was until now only partially
successful (see [K4]).

In this talk I want to speak about a smaller family Gn of finite groups,
introduced in our forthcoming joint paper with D. B. Fuchs. For these
groups, despite the above mentioned difficulties, the orbit method gives the
simple answers to all questions of representation theory.

2. Definition and properties of groups Gn(Fq)

Let Nn(Fq) (or simply Nn) be the group of upper unitriangular (n × n)
matrices over a finite field Fq. It is an affine algebraic group over K with
the Lie algebra nn(Fq) consisting of upper triangular nilpotent matrices over
K. Denote by Gn the quotient group of Nn+1 by its second commutant
[[Nn+1, Nn+1], Nn+1]. As usual, we denote by gn the Lie algebra of Gn and
by g∗n the dual vector space.

2.1. Coordinates. Both gn and g∗n are vector spaces of dimension 2n − 1
over Fq. They can be conveniently realized as subquotients of the full matrix
space Matn+1(Fq).

We choose the coordinates ai, bj for A ∈ gn and xi, yj for F ∈ g∗n, where
1 ≤ i ≤ n, 1 ≤ j ≤ n− 1, so that

A=


0 a1 b1 . . . 0 0
0 0 a2 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . an−1 bn−1

0 0 0 . . . 0 an

0 0 0 . . . 0 0

, F =


0 0 . . . 0 0 0
x1 0 . . . 0 0 0
y1 x2 . . . 0 0 0
. . . . . . . . . . . . . . . . . .
0 0 . . . xn−1 0 0
0 0 . . . yn−1 xn 0

.
1The equivalent formulation of this condition: if e is a non-trivial additive character of

K, then every additive character χ has the form χλ(x) = e(λx) for some λ ∈ K.
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For elements of the group Gn we use also the coordinates (~a,~b), writing
g
~a,~b

:= expfA
~a,~b

.

The duality between g∗n and gn has the form 〈F~x,~y, A~a,~b〉 =
∑

i aixi+
∑

j bjyj .

The group law in terms of coordinates has the form

g
~a′,~b′ · g~a′′,~b′′ = g

~a,~b
, where ai = a′i + a′′i , bj = b′j + b′′j + a′ja

′′
j+1.

All groups Gn admit the outer group automorphism τ : g → (ǧ)−1, where
“check” means the transposition with respect to the second diagonal. In
terms of coordinates, τ permutes the elements in each of the pairs

(ai, an+1−i), (bj , bn−j), (xi, xn+1−i), (yj , yn−j).

The automorphism τ gives rise to the involutive transformations (denoted
by the same letter τ) of many other objects, related to the group Gn: the
Lie algebra gn, its dual space g∗n, the set Cl(Gn) of conjugacy classes, the
set gn/Gn of adjoint orbits and set g∗n/Gn of coadjoint orbits.

The two different objects, related by τ , are called twins. Most of prop-
erties of an object are also valid for its twin.

2.2. The adjoint and coadjoint actions. They are are given by formulas:

(2) Ad(g
~α,~β

) : A
~a,~b
7→ A

~a,~b+αSn(~a)
, K(g

~α,~β
) : F~x,~y 7→ F~x+~αT (~y),~y.

Here Sn(~a) and Tn(~y) are matrices with elements from Fq; the first matrix
is rectangular with n rows and n− 1 columns, while the second is square of
size n. Explicitly they are

S =


a2 0 ∗ 0 0
−a1 a3 ∗ 0 0
∗ ∗ ∗ ∗ ∗
0 0 ∗ an−1 0
0 0 ∗ −an−2 an

0 0 ∗ 0 −an−1

 , T =


0 y1 ∗ 0 0 0

−y1 0 ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 yn−1 0
0 0 ∗ −yn−1 0 yn

0 0 ∗ 0 −yn 0

.
The orbits for both actions are affine submanifolds on which Gn acts by

affine transformations. The adjoint action preserves ~a and shifts ~b, while the
coadjoint action preserves ~y and shifts ~x. The dimension of the conjugacy
class, containing g

~a,~b
, is rkS(~a) and the dimension of a coadjoint orbits,

passing through F~x,~y, is rkT (~y).
Note also that the center Zn of Gn in both cases acts trivially, so the

stabilizers of a point g ∈ Gn or a point F ∈ g∗n contain the center. Hence,
they are normal subgroups and are the same for all points g ∈ C or all points
F ∈ Ω. Therefore, we denote them Stab(C) or Stab(Ω) respectfully.

3. Description of unirreps of Gn(Fq)

We show that the equivalence classes of unirreps of Gn(Fq) are naturally
labeled by coadjoint orbits.
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3.1. Basic orbits, representations and characters. The coadjoint orbit
passing through the point F~x,~y ∈ g∗n is called basic, if all y-coordinates
are non-zero. The unirreps corresponding to basic orbits, their equivalence
classes, and their characters are also called basic. The structure of basic
orbits is a bit different for odd and even n, so we consider separately these
two types.

Type 1. n = 2k is even. The matrix Tn(~y) has the full rank 2k. All basic
orbits have dimension 2k. They cover the open subset Vn ⊂ g∗n, defined
by the condition y1y2 . . . y2k 6= 0. The stabilizer of any point F ∈ Vn is the
center Zn of Gn. All elements of a basic orbit Ω have the same y-coordinates,
while the x-coordinates take arbitrary values. Therefore, all basic objects
- orbits, equivalence classes of unirreps and characters, - can be labeled by
vector ~y and we denote them respectively Ω~y, λ~y, χ~y.

Type 2. n = 2k + 1 is odd. Now rkTn = n− 1, while the size of Tn is n.

Proposition 1. The 1-dimensional kernel of Tn(~y) is spanned by the row

n-vector ~A(~y) with coordinates Aeven = 0 and coordinates Aodd given by
(3)

A1 =

k∏
s=1

y2s, A2i+1 =

i∏
s=1

y2s−1

k∏
s=i

y2s for 1 ≤ i < k, A2k+1 =

k∏
s=1

y2s−1.

All basic orbits have dimension 2k = n − 1 and cover the open subset
Vn ⊂ g∗n defined by the condition y1y2 . . . y2k 6= 0. But now the y-coordinates
no longer separate the orbits.

The stabilizer of the point F~x,~y is spanned by the center Zn ant the 1-

parametric subgroup of elements {g~a,~0}, for with ~a = κ · ~A(~y) for some

κ ∈ Fq. The coefficient κ, is an invariant of the coadjoin action. This
invariant together with coordinates y1, . . . yn−1 form the full system of in-
variants, separating the orbits. In terms of coordinates it is a polynomial
function J (n)(~x, ~y, linear in x-coordinates and homogeneous of degee k in
y-coordinates. The explicit formula is

(4) J (n) =
∑
iodd

Ai(~y)xi.

Thus, all basic objects are labeled by pairs {~y, κ} and we denote them
Ω~y,κ, λ~y,κ, χ~y,κ respectively. In total, there are Q2kq basic orbits in Vn.

3.2. Deviation. The case of Lie groups. For a simply connected nilpo-
tent Lie group G there is a standard procedure (see [K4]) for the construction
of a concrete unirrep πΩ of the class λΩ. Let us recall it briefly here.

We have to choose a point F0 ∈ Ω and a so-called polarization of F0,
which is a Lie group H, satisfying two conditions:

1. StabF0 ⊂ H ⊂ G and dimH = dimStabF0+dimG
2 .

2. The restriction of F0 to the commutant [h, h] vanishes.
4



The second condition means that the restriction of F0|h is a Lie algebra
homomorphism of h to the field Fq, considered as a 1-dimensional Lie algebra
with zero bracket. We denote by ρ the 1-dimensional unirrep of H

(5) ρ(expfA) = e2πiF0(A).

The H-orbits in Ω are Lagrangian submanifolds of Ω. Let E be a complex
1-dimensional G-vector bundle over Ω with a connection ∇, whose curvature
is the symplectic structure form σ on Ω. The desired unirrep πΩ acts on the
space Γ(E, H, Ω) of sections of E, which are covariantly constant along the
H-orbits.

It is also known as the induced representation IndGHρ and can be realized
in the space L(G, H, ρ) of complex-valued functions φ on G, satisfying the
condition

(6) φ(hg) = ρ(h)φ(g) for all h ∈ H, g ∈ G.

The group G acts on L(G, H, ρ) by right shifts and
(
πΩ(g′)φ

)
(g) = φ(gg′).

3.3. Basic unirreps of Gn. We imitate the construction described above,
but now instead of the differential geometry we shall use combinatorics and
number theory. Again we consider separately the cases of even and odd n.

Case I. n = 2k. We choose as F0 the point F~0,~y ∈ Ω~y. The polarization

H consists of those g
~α,~β

, for which all coordinates αeven are zero. It is a

normal abelian subgroup of Gn.
Let T be the abelian subgroup in Gn, which consists of elements

(7) s(~τ) = g~α,~0 with αodd = 0 and α2i = τi, 1 ≤ i ≤ k.

Clearly, T is isomorphic to the vector group Fkq and is complementary to H,
so that the whole group Gn is a semi-direct product T nH.

The unirrep π~y acts in the space L(Gn, H, ρ) of functions φ on Gn,
satisfying the condition (6) above. Actually, there is a bijection between
L(Gn, H, ρ) and Fun(T ), because every function φ ∈ L(Gn, H, ρ) is com-
pletely determined by its restriction to T , which is f(~τ) := φ(s(~τ)).

To rewrite the unirrep π~y in terms of functions f ∈ FunT , we have to
solve the so-called Master Equation:

(8) s(t)g = hs(t′) with given t ∈ T , g ∈ Gn and unknown h ∈ H, t′ ∈ T .
The result is

(9)
(
φ(g)f

)
(t) = ρ(h)f(t′) where h and t′ are solutions to (8).

This formula allows to prove

Proposition 2. The basic character has the form

(10) χ~y(g~a,~b) = qk
2k∏
i=1

δ(ai)
2k−1∏
s=1

e(ysbs).
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Case II. n = 2k + 1. Now rkTn = n − 1 while the size of Tn is n. All
basic orbits have dimension n−1 and cover the open subset Vn ⊂ g∗n defined
by the condition y1y2 . . . y2k 6= 0. The polarization H is the same for every
F~x,~y ∈ Vn. It consists of g

~a,~b
with αeven = 0. The geometry of orbits is

described by

Proposition 3. 1. The 1-dimensional kernel of Tn(~y) is spanned by the

row n-vector ~A(~y) with zero coordinates Aeven, and non-zero Aodd given by
(11)

A1 =

k∏
s=1

y2s, A2i+1 =

i∏
s=1

y2s−1

k∏
s=i

y2s for 1 ≤ i < k, A2k+1 =

k∏
s=1

y2s−1.

2. The complete system, separating orbits in Vn, consists of coordinates
yj , 1 ≤ j ≤ 2k, and the polynomial 2

(12) J (n)(~x, ~y) =
k∑
i=0

x2i+1A2i+1(~y).

3. The stabilizer of F~x,~y ∈ Vn is spanned by the center Zn and the 1-
parametric abelian subgroup of elements {g~a,~0}, satisfying the condition

(13) ~a = κ · ~A(~y) for some κ ∈ Fq.
4. The character χ~y,J(n)(g~a~b) vanishes outside the domain where ~a is pro-

portional to ~A and is qk
∏k
i=0 e(a2i+1x2i+1)

∏2k
j=1 e(bjyj) on this domain.

Thus, the basic objects are labeled by pairs {~y, Jn} and we denote them
Ω~y, Jn , π~y, Jn , χ~y, Jn respectively. In total, there are Q2kq basic orbits in Vn.

It remains the problem, how to express the value χ~y, Jn(g
~a,~b

) in terms of

Jn, ~y and the parameters of the class, containing g.
E.g., for n = 3 the class, containing g

~a,~b
with a2 = 0 is determined by the

adjoint invariant I2 = a1b2 +b1a3 and we have χ~y,κ(g) = qe(κJ (1) +κ−1I2).

3.4. Ordered partitions. We say, that a finite ordered set S = {n1, n2, . . . ,
nm} of positive integers (possibly, with repetitions) is a ordered partition

of number n ∈ N, if
∑

i ni = n. Denote by P̃n the set of all such partitions

for given n and by p̃n the cardinality of P̃n.
In the case n = 0 our definition needs a special consideration. It is

convenient to agree that the set P̃0 consists of the only element, an empty
set ∅, and therefore p̃0 = 1. For positive n we have

Proposition 4.

(14) p̃n = 2n−1 for all n > 0.

2To memorize the form of coordinates A2i+1 and monomials entering in J(n), note that
all of them have the is x1y2y4 . . . y2n + y1x3y4 . . . y2n + y1y3x5 . . .
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Proof. In this case all elements S ∈ P̃n are non-empty. Let us sort them
by the first term n1. If n1 = k, then the other terms define the ordered
partition of n − k, hence, there are p̃n−k possibiliiies. We come to the
recurrent relation: p̃n =

∑
k≥1 p̃n−k

3 Comparing the recurrent relations for
n and for n − 1, we get the equality p̃n = p̃n−1 + p̃n−1. Hence, p̃n = 2p̃n−1

and we are done.

3.5. The coupling operation. For any I ⊂ [1, n − 1], denote by V I
n the

subset of g∗n, consisted of those F~x,~y, for which yi = 0 exactly when i ∈ I.

When I is empty, V I
n is an open domain in g∗n, covered by basic orbits.

For a nonempty I = {i1, . . . , im} we put i0 = 0, im+1 = n, and define
the numbers nk as ik − ik−1 for k = 1, 2, . . . ,m+ 1.

There is a remarkable pair of dual maps p, p∗. The first is the surjec-
tion p : Gn →

∏m+1
i=1 Gni . The second is the injection p∗ : V I

n → g∗n.
The definition of p and p∗ in terms of coordinates looks rather cumbersome
and we postpone it. Much better is to illustrate these maps by pictures.
E.g., for n = 7, m = 2, I = (2, 5) ⊂ [1, 6] the pictures are shown below.

1

1

1

1

1

1

1

1

α1

α2

α3

α4

α5

α6

α7

β1

β2

β3

β4

β5

β6

......................................................................................................................................................................................................................................................................



.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

......................................................................................................................................................................................................................................................................

........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

1

1

1

α1

α2

β1

................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..... 1

1

1

1

α3

α4

α5

β3

β4



.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

1

1

1

α6

α7

β6

................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

p
.............................................................................. .....................
.......
.......
.......
. , ,

0

0

0

0

0

0

0

0

x1

x2

x3

x4

x5

x6

x7

y1

0

y3

y4

0

y6

......................................................................................................................................................................................................................................................................



.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

......................................................................................................................................................................................................................................................................



.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

0

0

0

x1

x2y1

................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..... 0

0

0

0

x3

x4

x5

y3

y4



.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

0

0

0

x6

x7y6

................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

..........................................................................................................
.......
.......
. , ,

The first picture shows that the kernel of p consists of those g
~α,~β

for wich

β2 = β5 = 0. (In general case, this condition is βi1 = · · · = βim = 0.) The
image p(g

~α,~β
) is the element (g1, . . . gm+1), where coordinates of gi are those

of coordinates of (~α, ~β), which are inside the i-th square.

3For n = 1 this formula takes the form p̃1 = p̃0. It it justifies our choice p̃0 = 1.
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The second picture shows that the image of p∗ is exactly V
(2, 5)

7 . (In

general, it is V I
n .) Let F (s), 1 ≤ s ≤ m + 1, be the points in g∗ns with

coordinates (~x
(s)
i , ~y

(s)
j ), 1 ≤ i ≤ ni, 1 ≤ j ≤ nj − 1 and let Ω(s) be the

coadjoint orbit in g∗ns , passing through F (s). Then the point F~x,~y in V I
n will

be the image (F (1), . . . , F (m+1)) under p∗ iff x
(s)
i = xi+s−1.

Thus, any coadjoint orbit Ω in V I
n is in bijection with the product

∏m+1
s=1 Ω(s)

of basic orbits Ω(s) ∈ g∗ns .

The orbits Ω(s) determine basic unirreps π(s) of groups Gns with the

characters χ(s). We can define the unirrep π of
∏m+1
s=1 Gns as the direct

product of π(s), and finally define the desired unirrep πΩ ofGn by the formula
πΩ(g) = π(p(g). Clearly, the character of this representation is χΩ(g) =∏m=1
s=1 χs(g

(s)) where g(s) is the s-th component of p(g) in
∏m+1
s=1 Gns .

The general orbits in g∗n are labeled by rigged ordered partitions of n.
Practically, such a label is visualized by a strip of height 1 and length ?,
split on rectangular boxes of different size. The box, corresponding to an
even summand ni = 2mi, has the format 1 × ni − 1 and is filled up by
ni − 1 y-coordinates. To an odd summand ni = 2mi − 1 we associate the
box of format 1 × ni − 1 and is fill it up by ni − 1letters y; sizes 1 × ni. A
box of odd length 2s-1 is rigged by the letter J2s−1 and 2(s − 1) letters y,
and a box of even length 2s is rigged by 2s− 1 letters y. E.g.:

J0 y y J1 y y y J2 y y y y y 15=1+2+3+5+4

Proposition 5. Every unirrep of Gn can be obtain by the coupling procedure
from exactly one ordered partition S of n and exactly one choice of basic
orbits Ω(s) ∈ g∗ns for 1 ≤ s ≤ m.

4. The manifold M

4.1. General facts and notations. There is a remarkable submanifold
M ⊂ Gn(Fq), which consist of those g

~a~b
, for which A2

~a~b
= 0. When q is even,

the manifold M is just the set Inv(Gn) of all involutions in Gn(Fq).4 Indeed,
for even q we have g2

~a~b
= (1 +A

~a~b
)2 = 1 +A2

~a~b
. So, g ∈M ⇐⇒ g2 = 1.

The set M clearly is stable under inner automorphisms. Hence, it is the
union of conjugacy classes. We call them M-classes.

4.2. Sparse sequences. Introduce in Z the relation a << b which means
that the integers a, b satisfy the inequality a < b − 1. A sequence I =
(i1, . . . , ik) ⊂ Z is called sparse, if it satisfies the condition is << is+1 for
all s. A set {i1, . . . , ik} ⊂ Z is call sparse, if |is − it| > 1 for any s 6= t. If
we list its elements in increasing order, we get a sparse sequence.

We denote by S(n, k) the collection of all sparse k-subsets in [1, n] and
by s(n, k) its cardinality. Sometimes it is convenient to extend I ∈ S(n, k)

4Some authors define involutions as elements of order 2. We prefer to include in Inv(G)
the unit element e of order 1.
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to a bigger subset Ĩ, by adding two more points i0 = −1 and ik+1 = n+ 1.
Then i0, i1, . . . , ik, ik+1 will be also a sparse sequence.

Proposition 6. The number of sparse sequences of the type (n, k) is

(15) s(n, k) =

(
n− k
k

)
.

It can be easily proven by induction, but there is more simple way. By
definition, the number

(
n−k
k

)
is the cardinality of the set Cn−kn of all (k−1)-

point subsets in [1, . . . n − k]. So, to prove the proposition, it is enough to
find a bijection between S(n, k and Cn−kn . Let I = (i1, . . . , ik) corresponds
the subset ∆ = (δ1, . . . , δk−1), where δ1 = i1, δs = is − is−1 − 1 for 2 ≤ s ≤
k − 2, δk−1 = n − ik. Conversely, to ∆ = (δ1, . . . , δk−1) there corresponds
I ∈ S(n, k) with i1 = d1, is = 2s−1+

∑
t=1s δt for2 ≤ s ≤ k−2, δk−1 = n−ik.

As a curious remark, observe that the sum
∑

k≥0 s(n, k), which is the

number of all sparse sequence in the segment [1, n − 1], is the well-known
Fibonacci number Fn+1.

For the amateurs of combinatorics, I can suggest the following question.

Find the explicit formula for the sum of those binomial coefficients (k+l)!
k! l! for

which the point (k, l) ∈ N2 is on the line La,b,c : ak + bl + c = 0.

5. Anatomy of Gn(Fq)

Here we discuss some questions about unirreps of Gn which can be an-
swered using the orbit method.

5.1. The function ζG. Recall, that the ζ-function for a compact group G

is defined as ζG(s) =
∑k

i=1 d
−s
i , where d1, . . . , dk are dimensions of unirreps

of G.5

It is well-known that the values of ζG at the points 0 and -2 have nice
interpretations. Namely, ζG(0) is equal to the numbef |CL(G)| of conjugacy
classes in G and the value ζG(−2) is equal to the numbef |G| of points in G.

Less known is the interpretation of ζG(−1). It is related with the manifold
M , introduced in the Section 4.

Consider the linear operation J in the space FunG defined by (Jf)(g) =
f(g−1). Let us compute the trace of J , using two different bases in FunG.

The first basis consists of functions δx(g) =

{
1 if g = x

0 if g 6= x
. Clearly, the

matrix of J in this basis is equal to the number of fixed points for the map
g 7→ g−1, i.e. the number of involutions in G.

The second basis consists of matrix coefficients πij of unirreps of G. Recall
that the unirreps of a compact group G are of three types: real, complex
and quaternionic. A unirrep π belongs to the real type, if in an appropriate

5For the group SU(2,C) it is the classical Riemann ζ-function.
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basis all operators π(g) have real matrices; it belongs to the quaternionic
type, if the operators π(g) can be realized by matrices with quaternionic
entries. In both cases the character χλ is a real-valued function. Finally,
π belongs to the complex type, if its character is not real-valued. The
Frobenius-Schur index of π, takes by definition the value 1, -1, 0 for the
real, quaternionc or complex unirrep.

There is a nice formula for the index:

(16) indπ =
∑
g∈G

χλ(g2).

Proposition 7. For a group G, for which all unirreps belong to the real
type, we have

(17) ζGn(−1) = |Mn|.

The proof consists of two parts. First, consider the case of even q. Here
the set Mn coincides with Inv(Gn) and |Mn| is the number of involutions
in Gn. On the other hand, the character e for even q takes the values ±1,
hence all unirreps are of real type. Thus, we can assume that matrices πij
have real entries. Therefore, they are real orthogonal, the operator J is just
the transposition and the contribution of π to the trace of J is equal to
dimπ and we are done.

Consider now the case of general q. We use the fact, that both trπ(g)
and ζGn(−1) are polynomial functions of q We already know, that they are
equal for all q of the form 2k, hence, they coincide for all q.

5.2. Numbers mk(Gn). Denote by mk the number of the coadjoint orbits
of dimension 2k in g∗n, equal to the number of qk-dimensional unirreps of
Gn(Fq). The collection of these numbers is the important characteristic of
the group. The ζ-function for the group Gn(Fq) is by definition

ζGn(s) =
∑
k

mk(Gn)q−sk.

Proposition 8.

(18) mk(Gn) = Qkqn−k−2
[(n− k − 2

k

)
q +

(
n− k − 1

k − 1

)]
.

The formula (18) shows that mk(Gn) are polynomial functions of q.
Therefore, many other quantities, which are defined in terms of numbers
mk, are also polynomial functions of q.
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Table. Numbers mk for the groups Gn(Fq) (To be corrected)

group m0 m1 m2 m3 ζ(0) ζ(−1) ζ(−2)

G3 q2 Q 0 0 q(2q − 1) q2 + q − 1 q3

G4 q3 qQ(q + 1) 0 0 ? 5q2 q5

G5 q4 q2Q(2q + 1) qn−4Q2((n− 5)q + 1) 0 ? ? q7

G6 q5 q3Q(3q + 1) qQ ? ? ? q9

G7 q6 q4Q(4q + 1) ? ? ? ? q11

G8 q7 q5Q(5q + 1) ? ? ? ? q13

5.3. The model representation. By definition, it is a (reducible) uni-
tary representation of a group G, which contains every equivalence class
of unirreps with multiplicity 1. Some of them admit a simple geometric
description.

E.g., for G = SO(3, R) the natural representation π in the space of func-
tions on S2, which are restrictions of polynomial funcions in coordinates
(x, y, z), is a model. The n + 1-dimensional unirrep πn is realised here in
the space of restrictions of homogeneous polynomials of degree n.

The natural generalizations of this example are the so-called geometrical
model representations. They are acting in the space of sections of some G-
vector bundle E over a G-set B.

In our paper we showed that all groups Gn have geometric model repre-
sentations for which the base space is the manifold M . Unfortunately, the
approprtate vector bundle is not unique.

The construction of this bundle is a sort of the packing problem, because

the problem is to put ”things”, labeled by λ ∈ Ĝn, into several ”containers”,
labeled by symbols C(I), where C is a M -class and I = {i1, . . . , im} is the
sparce set of indices, for which coordinates ai 6= 0 for elements of C. Every
container C(I) is the union of q`(q−1)m ”boxes” of capacity qn−1−`, labeled
by M -classes.

The goal of the packing procedure is: every thing wilmust be packed and
every box must be completely filled up. The necessary condition for the
existing such a packing is that sum of sizes of all things is equal to the sum
of capacities of all containers. And it is true according to (17).

We have seen in the section 3.3 and 3.5 that the properties of a basic
representation of Gn depend on parity of n and the properties of general
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representation, related to the given ordered partition p̃, depend on the num-
ber ν(p̃) of odd parts. It turns out that ν(p̃) also plays a role in the solution
of the packing problem.

Namely, let Stab C be the common stabilizer for all elements of the M -
class C. Every box in a container, related to C, is labeled by some character
of StabC. The number of things, going to the same box is 2ν(p̃).
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