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Part 1: cusps of caustics by reflection

The Last Geometric Statement of Jacobi (“Lectures on Dynam-
ics” ). the conjugate locus of a (non-umbilic) point of a triaxial
ellipsoid has exactly four cusps.




To quote Marcel Berger (Riemannian Geometry During the Sec-
ond Half of the Twentieth Century, AMS, 2002):

But this latter assumption depends on the scan-
dalously unproved Jacobi “statement”:. the conjugate lo-
cus of a non-umbilical point of an ellipsoid has exactly
four cusps.

Jacobi’'s statement was proved only in this century:

J. Itoh, K. Kiyohara. The cut loci and the conjugate loci on
ellipsoids, Manuscripta Math. 114 (2004), 247—264.



Likewise, the nth caustic is the locus of nth intersections of
infinitesimally close geodesic emanating from O. (This can be
defined in terms of zeros of the Jacobi fields along the geodesics.)




Experiments with nth caustics: conjecturally, they all have four
CuUSsps:

The first, second, and third caustics (black, grey, and white):
R. Sinclair. On the Last Geometric Statement of Jacobi,
Experimental Math. 12 (2003), 477—485.



Also one has a version of the 4-vertex theorem: the conjugate
locus of a generic point on a convex surface has at least four
Cusps.

W. Blaschke attributed this “vierspitzensatz” to C. Carathéodory.
For a recent proof, see

T. Waters. The conjugate locus on convex surfaces, Geom.
Dedicata 200 (2019), 241-254.

V. Arnold, and later V. Vassiliev, proved that this results extends
to the nth caustic, provided the surface is sufficiently close to
the round sphere (the needed closeness increases with n).



Billiard version: caustics by reflection

T he caustics may escape to infinity, but they are closed in RP?
(the envelopes are projectively dual to the curves in the space of
lines).



The case of the first caustic by reflection, the catacaustic, is
well studied. See, e.qg.,

J. Bruce, P. Giblin, C. Gibson. Caustics through the looking
glass. Math. Intelligencer 6 (1984), no. 1, 47-58, or

A. Cayley. A memoir upon caustics. Philos. Trans. Royal Soc.
London 147 (1857), 273-312,

where also the first caustics by refraction were considered.



Theorem 1 [G. Bor, ST 2023]: For every n > 1, the nth caustic
by reflection Iy, in an oval has at least four cusps.

The same result holds in the spherical and hyperbolic geome-
tries, and for more general Finsler billiards with respect to pro-
jective, but not necessarily symmetric, Finsler metrics (the topic
of Hilbert's 4th Problem).
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Sketch of a proof

The space of oriented lines £ with its area form w = dp A da..

=%

p<0

p>0

Also: the inward unit tangent vectors with the foot point on the
arc length parameterized curve ~(t), making angle ¢ with it.
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Then w =sinyp dt Adp = d(cos ¢ dt), and the billiard map

T:(e)— (t1,901)
IS exact symplectic:

COS w1 dt1 — COSw dt = dL,
where L = |v(t),v(t1)]| is the generating function.

=

y(t)

Furthermore, pda is cohomologous to cosy dt, hence

T*(pda) — pda. = dF.
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The pencils of rays through fixed points are curves in the space
of lines L. In the spirit of projective duality, one could call them
“lines” . In the (a,p)-coordinates, they are sine curves

p = aCOS« -+ bsin a.

The cusps of the caustic are the second order tangencies with
these ‘“lines"”, inflections, of the curve C,, in the space of rays
L, comprising the rays that have undergone n reflections. The
curve (), is projectively dual to the caustic I,.
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Let Cy be the circle in the phase cylinder representing the initial
beam, the zero section of the cylinder, and let C, = T"(Cyp).
Since T' is exact symplectic, C,, bounds zero area.

A

We are interested in the number of inflections of C,.
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Claim 1: (), is homotopic to Cqy in the class of smooth embedded
closed curves that bound zero area.

The curve shortening flow takes C), to a horizontal curve on the
phase cylinder, and the area is preserved by the flow:

d(fpdo‘) /k(s)ds —0,

the second equality for the winding number holds for every simple
closed arc length parameterized curve C(s) that goes around the
cylinder.

Claim 2: The number of inflections can only decrease under the
curve shortening flow.

This is a manifestation of the maximum principle. See S. An-
genent. Inflection points, extatic points and curve shortening.
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Claim 3: When C,, becomes a graph p = F(«), the inflections
correspond to the solutions of

G(a) ;= F"(a) + F(a) = 0.

This is because the first harmonics comprise the kernel of the
operator d? + 1.

Since F' has zero average, the Fourier expansion of G(«) starts
with the second harmonics (or higher).

The result now follows from the Sturm-Hurwitz theorem: the
number of roots of a 2w-periodic function is not less than the
number of roots of its first harmonic.
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This theorem has a proof by the heat equation (G. Polya, 1933):

Let G(a) = G(«,0) be the initial distribution of heat on the
circle. Consider the propagation of heat:

OG(a,t)  9%G(a,t)

ot  9a2
The number of sign changes of G(«,t) (as a function of «) does
not increase with t: an iceberg can melt down in a warm sea, but
cannot appear out of nowhere (the maximum principle in PDE).
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One solves the heat equation:

G(o,t) = ) ekt (a, coska + by sinka) .
k>n
The higher harmonics tend to zero faster than the first non-
trivial one. As t — oo, the (renormalized) function tends to its
first non-trivial harmonic, that has exactly 2n zeroes. Hence
G (a) has no less than 2n zeroes.

19



The case of ellipses

Conjecture 1: If the curve is an ellipse, then all caustics by
reflection generically have exactly four cusps (if the source of
light is not a focus).

Conjecture 2: If the curve is not an ellipse then, for some
choice of the source of light and some n > 1, the nth caustic by
reflection has more than four cusps.

Theorem 2 [G. Bor-M. Spivakovsky-ST 2024]: Conjecture 1
holds for circles.
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Theorem 3 [G. Bor-M. Spivakovsky-ST 2024|: Consider the
four rays tangent to the two confocal conics through point O.
After n reflections, their tangency points to these conics are
cusps of the nth caustic by reflection.
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Sketch of a proof

The billiard ball map T is integrable:

\\
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Phase portrait:
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T he billiard ball map 1, restricted to invariant curves, is a par-
allel translation therein (a particular case of the Arnold-Liouville
theorem).
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Let A enumerate confocal conics

72 Y2
R WL
and t be the “Arnold-Liouville” coordinate on these conics. Then
(t,A) are local coordinates in the phase space, and vq is the “line”

through point O.
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Claim: rq := T"(rg) is an inflection point of the curve T"(~p),
i.e., the 2-jets of v1 and T"(~vg) coincide.

A
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A /N /
" NN
0! 1
§ t
to t1

One has: 7o o {(to + &, 20 +ae?)}, 71 {(t1 4 6, A0 + ad*)}
because the difference of the t-coordinates of the intersections
of these two curves with a horizontal line are equal.
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Next, T"(t,A\) = (t + c¢(N), \), hence
T(v0) 2 {(to+e+c(ho + ag?), Ao + ac?)}
~ 1(tot+e+clro) + ac' (Mo)e?, Ao + ac?)}
= {(t1 + e + ad(Ag)e?, Ao + ac?)}.

Set § = ¢ + ac’(A\g)e?. Then
71 o {(t1 + 8,20 + a6%)}
~ At +e+ ac’(Mp)e®, Ao + ale + ad (Ag)e*)?)}
~iltitet ac'(Ag)e?, Ao + ag?)} ~ T(v0),

as needed.
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Generalization: Liouville billiards

Liouville metric: (f(z) 4+ g(y))(dz? + dy?); the coordinate lines
form a Liouville net. Example:

Liouville billiards are completely integrable, and a version of the
above proof applies.
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Part 2: a 4-point theorem

Theorem 4 [W. Graustein 1936]: The average curvature of a
plane oval is attained at least at four points.

This, of course, implies the 4-vertex theorem.

Theorem 5 [ST 2024]: The same holds for a closed strictly
convex spherical curve and for a closed horocyclically convex
curve in the hyperbolic plane.

Recall that a curve of constant curvature in H? is a circle if
k > 1, a horocycle if k = 1, and an equidistant (from a straight
line) curve if k < 1.
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Sketch of a proof

Let v(s) = vo(s) be the initial oval and ~(s) be the equidistant
family of curves. That is, 7o is the source of light, and ~; is the
time-t wave front.

008000
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In the Euclidean geometry,

k(s)
1+ tk(s)’
(Steiner’'s formulas), and if k(s) = k, then k;(s) = k; for all t.

Ri(s) = R(s)4+t, ki(s) = Ly = L42nt, Ay = A+Lt+mt?

Let ¢t = '—% = —%. Then Ly = 0, and k(s) = k = 2T iff ki(s) =
oo, that is, v (s) is a cusp.

Assume that ~; has only two cusps (which exist ‘“for free”):

Then L+ # 0, a contradiction.
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In the spherical geometry:

Ri(s) = R(s) +1t, ki(s) = cot R(s) = cot(R(s) + 1),
L = Lcost+ (2n — A)sint, Ay =27+ Lsint— (2r — A) cost,
and if k(s) = k, then ki (s) = k; for all t.

Let t = tan—1 (QWL_A>. Then A; = 27, and k; = QWL_tAt = 0 by

Gauss-Bonnet. We need to show that ~ has four inflections.

This is due to Arnold’s tennis ball theorem:
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In the hyperbolic geometry:

Ri(s) = R(s) +t, ki(s) = coth R:;(s) = coth(R(s) +t),
Ly = Lcosht+ (2n + A)sinht, Ay = —27 + Lsinht+ (2 + A) cosht.

Let t = —coth™! (QWﬁA), then L; = 0, and the argument is
similar to the Euclidean case.

And a counter-example, a “fattened” half-circle (R > 1.386):
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Valya and VVolodya,

You two, combined, have reached the Biblical 120.

Wish each of you to reach it individually!
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