
1 / 37

Random square-tiled surfaces and random multicurves in lar ge genus

Anton Zorich

(after joint works with V. Delecroix, E. Goujard and P. Zograf)

New Trends in celebrating Vladimir Fock and Valentin Ovsien ko’s
contributions to Geometry, Combinatorics and Mathematica l Physics

October 21, 2024



Count of square-tiled surfaces.
(Masur–Veech volume of the
moduli space of quadratic

differentials)

Count of square-tiled
surfaces

• Square-tiled surfaces

• Families of surfaces
• Tautological line
bundles

•ψ-classes

• Moduli space

• Intersection numbers

• Volume polynomials

• Ribbon graphs

• Count of metric
ribbon graphs

• Multicurve associated
to a square-tiled surface
• Ribbon graph
decomposition of a
square-tiled surface

• Count of square-tiled
surfaces: an algorithm

• Surface
decompositions

• Associated
polynomials

• Volume of Q2

Mirzakhani’s count of
closed geodesics

Random square-tiled
surfaces

2 / 37



A square-tiled surface

3 / 37



Square-tiled surfaces: formal definition
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Take a finite set of copies of identical oriented squares for which two opposite

sides are chosen to be horizontal and the remaining two sides are declared to

be vertical. Identify pairs of sides of the squares by isometries in such way that

horizontal sides are glued to horizontal sides and vertical sides to vertical. We

get a topological surface S without boundary. We consider only those surfaces
obtained in this way which are connected and oriented. The form dz2 on each

square is compatible with the gluing and endows S with a complex structure

and with a non-zero quadratic differential q = dz2 with at most simple poles.

We call such a surface a square-tiled surface.
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sides are chosen to be horizontal and the remaining two sides are declared to

be vertical. Identify pairs of sides of the squares by isometries in such way that

horizontal sides are glued to horizontal sides and vertical sides to vertical. We

get a topological surface S without boundary. We consider only those surfaces
obtained in this way which are connected and oriented. The form dz2 on each

square is compatible with the gluing and endows S with a complex structure

and with a non-zero quadratic differential q = dz2 with at most simple poles.

We call such a surface a square-tiled surface.

Fix the genus g of the surface and the number n of corners with cone angle π
(the ones adjacent to exactly two squares). The question on the asymptotic

number of such square-tiled surfaces tiled with at most N ≫ 1 squares
(connected covers over CP1 ramified over 4 points and having prescribed

ramification profile) is equivalent to evaluation of the Masur–Veech volume of

the moduli space of quadratic differentials.
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Consider a configuration of four distinct points on the Riemann sphere CP1.

Using appropriate holomorphic automorphism of CP1 we can send three out of

four points to 0, 1 and ∞. There is no more freedom: any further holomorphic

automorphism of CP1 fixing 0, 1 and ∞ is already the identity transformation.

The remaining point serves as a complex parameter in the space M0,4 of
configurations of four distinct points on CP1 (up to a holomorphic diffeomorphism).
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As before, fix the points x1, x2, x3 (by sending them to 0, 1 and ∞). Take the

tangent plane to the point x4. Considering CP1 as a complex curve (instead of

a real surface), the tangent plane should be seen rather as a tangent line.
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As before, fix the points x1, x2, x3 (by sending them to 0, 1 and ∞). Take the

tangent plane to the point x4. Considering CP1 as a complex curve (instead of

a real surface), the tangent plane should be seen rather as a tangent line.

When we move the point x4, the tangent line also moves. Recall that a location

of the point x4 parameterizes the moduli space M0,4 = CP1 \{0, 1,∞}. We

get a nice family of complex lines parameterized by points of CP1 \{0, 1,∞}.

This family, actually, forms a holomorphic line bundle over CP1 \{0, 1,∞}.

Taking cotangent planes (i.e. complex cotangent lines) we get a holomorphic
line bundle, which has its proper name: it is called the tautological line bundle.



ψ-classes
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There is a smart way to extend the tautological line bundle to the punctures

{0, 1,∞} and to get a holomorphic line bundle already over the

compactification M0,4 = CP1.

Every holomorphic line bundle defines a natural closed 2-form on the base.

The closed 2-form, or rather its cohomology class, associated to the

tautological bundle is so important that it also has a proper name: it is called

ψ4, where the index “4” indicates that we used the point x4. In a complete
analogy, we could also construct ψ1, ψ2, ψ3. It can be checked that integrating

ψi over M0,4 = CP1 we get

∫

M0,4

ψi =

∫

CP1

ψi = 1 for i = 1, . . . , 4 .

By historical reasons such kind of integrals are called intersection numbers. In

our case any such integral counts the number of intersection points of the zero

section of the line bundle with any transverse holomorphic section.



Moduli space Mg,n
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Similarly, we can consider the moduli space M0,n of spheres with n cusps.

The space Mg,n of configurations of n distinct points on a smooth closed
orientable Riemann surface of genus g > 0 is even richer. While the sphere

admits only one complex structure, a surface of genus g ≥ 2 admits complex

(3g − 3)-dimensional family of complex structures. As in the case of the

Riemann sphere, complex structures on a smooth surface with marked points

are in natural bijection with hyperbolic metrics of constant negative curvature
with cusps at the marked points. For genus g ≥ 2 one can let n = 0 and

consider the space Mg = Mg,0 of hyperbolic surfaces without cusps.



Intersection numbers (Witten–Kontsevich correlators)
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The Deligne–Mumford compactification Mg,n of the moduli space of smooth

complex curves of genus g with n labeled marked points P1, . . . , Pn ∈ C is a

complex orbifold of complex dimension 3g − 3 + n.

Choose index i in {1, . . . , n}. The family of complex lines cotangent to C at

the point Pi forms a holomorphic line bundle Li over Mg,n which extends to Mg,n.
The first Chern class of this tautological bundle is denoted by ψi = c1(Li).

Any collection of nonnegative integers satisfying d1 + · · ·+ dn = 3g − 3 + n
determines a positive rational “intersection number ” (or the “correlator ” in the

physical context):

〈τd1 . . . τdn〉g :=
∫

Mg,n

ψd1
1 . . . ψdn

n .
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physical context):

〈τd1 . . . τdn〉g :=
∫

Mg,n

ψd1
1 . . . ψdn

n .

The famous Witten’s conjecture claims that these numbers satisfy certain

recurrence relations which are equivalent to certain differential equations on

the associated generating function (“partition function in 2-dimensional
quantum gravity ”). Witten’s conjecture was proved by M. Kontsevich;

alternative proofs belong to A. Okounkov and R. Pandharipande, to

M. Mirzakhani, to M. Kazarian and S. Lando (and there are more).



Volume polynomials
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Consider the moduli space Mg,n of Riemann surfaces of genus g with n
marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the

sum of nonnegative numbers, d1 + · · ·+ dn = 3g − 3 + n, let d be the

multiindex (d1, . . . , dn) and let b2d denote b2d11 · · · · · b2dnn .

Define the homogeneous polynomial Ng,n(b1, . . . , bn) of degree 6g − 6 + 2n
in variables b1, . . . , bn:

Ng,n(b1, . . . , bn) :=
∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n
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cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n

Up to a numerical factor, the polynomial Ng,n(b1, . . . , bn) coincides with the

top homogeneous part of the Mirzakhani’s volume polynomial Vg,n(b1, . . . , bn)
providing the Weil–Petersson volume of the moduli space of bordered Riemann

surfaces:

V top
g,n (b) = 22g−3+n ·Ng,n(b) .
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25g−6+2n d!
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Define the formal operation Z on monomials as

Z :
n
∏

i=1

bmi

i 7−→
n
∏

i=1

(

mi! · ζ(mi + 1)
)

,

and extend it to symmetric polynomials in bi by linearity.



Trivalent ribbon graphs
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This trivalent ribbon graph defines an orientable surface of genus g = 1 with
n = 2 boundary components. Assigning lengths to all edges of the core graph,

we endow each boundary component with an induced length defined as the

sum of the lengths of edges which it follows.

Note, however, that in general, fixing a genus g, a number n of boundary
components and integer lengths b1, . . . , bn of boundary components, we get

plenty of trivalent integral metric ribbon graphs associated to such data. The

Theorems of Kontsevich and Norbury count them.



Count of metric ribbon graphs
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Theorem (Kontsevich’92; in this stronger form — Norbury’10 ). Consider

a collection of positive integers b1, . . . , bn such that
∑n

i=1 bi is even. The

weighted count of genus g connected trivalent metric ribbon graphs Γ with

integer edges and with n labeled boundary components of lengths b1, . . . , bn
is equal to Ng,n(b1, . . . , bn) up to the lower order terms:

∑

Γ∈Rg,n

1

|Aut(Γ)| NΓ(b1, . . . , bn) = Ng,n(b1, . . . , bn) + lower order terms ,

where Rg,n denote the set of (nonisomorphic) trivalent ribbon graphs Γ of

genus g and with n boundary components.



Count of metric ribbon graphs

12 / 37

Theorem (Kontsevich’92; in this stronger form — Norbury’10 ). Consider

a collection of positive integers b1, . . . , bn such that
∑n
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integer edges and with n labeled boundary components of lengths b1, . . . , bn
is equal to Ng,n(b1, . . . , bn) up to the lower order terms:

∑

Γ∈Rg,n

1

|Aut(Γ)| NΓ(b1, . . . , bn) = Ng,n(b1, . . . , bn) + lower order terms ,

where Rg,n denote the set of (nonisomorphic) trivalent ribbon graphs Γ of

genus g and with n boundary components.

(Formal statement justifying the notion of “lower order terms”: the right-hand

side is a quasipolynomial in the integers b1, . . . , bn depending on the number

k of odd bi. The top homogeneous part is zero when k is odd.)

A version of this Theorem is an important part of Kontsevich’s proof of Witten’s

conjecture.



Multicurve associated to a square-tiled surface
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Having a square-tiled surface we associate to it a topological surface S on
which we mark all “corners” with cone angle π (i.e. vertices with exactly two

adjacent squares). By convention the associated hyperbolic metric has cusps

at the marked points.

We also consider a multicurve γ on the resulting surface composed of the waist

curves γj of all maximal horizontal cylinders. We encode the number of

horizontal bands of squares in each cylinder by taking the components of the

multicurve with integer weights.



Ribbon graph decomposition of a square-tiled surface
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Leaves of the horizontal foliation on the square-tiled surface passing through
singular points (in blue) are called critical. Considering tubular neighborhoods

of these critical leaves we get metric ribbon graphs. Cylinders (represented by

the multicurve in red) are joining boundary components of these ribbon graphs.

A dual graph to the multicurve is called stable graph Γ. The vertices of Γ are in

the natural bijection with metric ribbon graphs given by components of S \ γ.

The edges are in the bijection with the waist curves γi of the cylinders. The

marked points are encoded by “legs” — half-edges of the dual graph.



Count of square-tiled surfaces: an algorithm
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1. Fix a genus g and a number n of corners (conical points) of angle π.

2. Consider a finite collection of stable graphs encoding all possible

admissible decompositions of a hyperbolic surface of genus g with n cusps

(equivalently, all complex stable curves of genus g with n marked points).

3. For each stable graph with k edges associate formal variables b1, . . . , bk
to its edges and associate metric ribbon graphs to the vertices.

4. Using the Kontsevich–Norbury count of metric ribbon graphs, count the

number of ways to join them by square-tiled cylinders.
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2. Consider a finite collection of stable graphs encoding all possible

admissible decompositions of a hyperbolic surface of genus g with n cusps

(equivalently, all complex stable curves of genus g with n marked points).

3. For each stable graph with k edges associate formal variables b1, . . . , bk
to its edges and associate metric ribbon graphs to the vertices.

4. Using the Kontsevich–Norbury count of metric ribbon graphs, count the

number of ways to join them by square-tiled cylinders.

Masur–Veech volume of the moduli space of quadratic differe ntials . This
moduli space is the total space of the cotangent bundle to the moduli space

Mg,n of complex curves with n marked points and, hence, has a canonical

symplectic structure, and a volume element. Square-tiled surfaces represent

integer points in this space. Those, which are tiled with at most N squares, are

integer points in a “bundle of balls of radius N ” over Mg,n. Thus, asymptotics

of the number of square-tiled surfaces of genus g with n conical points of angle
π tiled with at most N → +∞ squares gives us the Masur–Veech volume.
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(
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3! · ζ(4)
)

= 1
720 · π6

b1
b2

1
192 · b1b32

Z7−→ 1
192 ·

(

1! · ζ(2)
)

·
(

3! · ζ(4)
)

= 1
17280 · π6

b1
b2

b3
1
16b1b2b3

Z7−→ 1
16 ·

(

1! · ζ(2)
)3

= 1
3456 · π6

b1
b2

b3
1
24b1b2b3

Z7−→ 1
24 ·

(

1! · ζ(2)
)3

= 1
5184 · π6

VolQ2 =
128
5 ·

(

1
1512 +

1
72576 +

1
720 +

1
17280 +

1
3456 +

1
5184

)

· π6 = 1
15π

6 .
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b1
1

192 · b51
Z7−→ 1

192 ·
(

5! · ζ(6)
)

= 1
1512 · π6

b1

1
9216 · b51

Z7−→ 1
9216 ·

(

5! · ζ(6)
)

= 1
72576 · π6

b1 b2
1
16(b

3
1b2+

+b1b
3
2)

Z7−→ 1
16 · 2

(

1! · ζ(2)
)

·
(

3! · ζ(4)
)

= 1
720 · π6

b1
b2

1
192 · b1b32

Z7−→ 1
192 ·

(

1! · ζ(2)
)

·
(

3! · ζ(4)
)

= 1
17280 · π6

b1
b2

b3
1
16b1b2b3

Z7−→ 1
16 ·

(

1! · ζ(2)
)3

= 1
3456 · π6

b1
b2

b3
1
24b1b2b3

Z7−→ 1
24 ·

(

1! · ζ(2)
)3

= 1
5184 · π6

VolQ2 =
128
5 ·

(

1
1512 +

1
72576 +

1
720 +

1
17280 +

1
3456 +

1
5184

)

· π6 = 1
15π

6 .
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Simple closed multicurve, its topological type and underly ing
primitive multicurve

20 / 37

Having an arbitrary collection of complicated non self-intersecting and non

pairwise intersecting curves (called a multicurve), one can apply an appropriate

diffeomorphism of the surface which “unwraps” the multicurve to a simple

canonical representative.

A general multicurve ρ:

the canonical representative γ = 3γ1 + γ2 + 2γ3 in its orbit Mod2 · ρ under

the action of the mapping class group and the associated reduced multicurve.

γ = 3γ1 + γ2 + 2γ3. γreduced = γ1 + γ2 + γ3

γ1

γ2

γ3

(You can practice in unwinding curves at https://aharalab.sakura.ne.jp/teruaki.html)



Geodesic representatives of multicurves
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Consider several pairwise nonintersecting essential simple closed curves

γ1, . . . , γk on a smooth surface Sg,n of genus g with n punctures. In the

presence of a hyperbolic metric X on Sg,n the simple closed curves

γ1, . . . , γk contract to simple closed geodesics.

Fact. For any hyperbolic metric X the simple closed geodesics representing
γ1, . . . , γk do not have pairwise intersections.

We define the hyperbolic length of a multicurve γ :=
∑k

i=1 aiγi as

ℓγ(X) :=
∑k

i=1 aiℓX(γi), where ℓX(γi) is the hyperbolic length of the

simple closed geodesic in the free homotopy class of γi.

Denote by sX(L, γ) the number of simple closed geodesic multicurves on X
of topological type [γ] and of hyperbolic length at most L.



Frequencies of multicurves
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Theorem (Mirzakhani’08). For any integral multi-curve γ and any hyperbolic

surface X in Mg,n the number sX(L, γ) of simple closed geodesic

multicurves on X of topological type [γ] and of hyperbolic length at most L has

the following asymptotics:

sX(L, γ) ∼ µTh(BX) · c(γ)
bg,n

· L6g−6+2n as L→ +∞ .

Here µTh(BX) depends only on the hyperbolic metric X ; the constant bg,n
depends only on g and n; c(γ) depends only on the topological type of γ and

admits a closed formula (in terms of the intersection numbers of ψ-classes).
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Theorem (Mirzakhani’08). For any integral multi-curve γ and any hyperbolic

surface X in Mg,n the number sX(L, γ) of simple closed geodesic

multicurves on X of topological type [γ] and of hyperbolic length at most L has

the following asymptotics:

sX(L, γ) ∼ µTh(BX) · c(γ)
bg,n

· L6g−6+2n as L→ +∞ .

Here µTh(BX) depends only on the hyperbolic metric X ; the constant bg,n
depends only on g and n; c(γ) depends only on the topological type of γ and

admits a closed formula (in terms of the intersection numbers of ψ-classes).

Corollary (Mirzakhani’08). For any hyperbolic surface X in Mg,n, and any

two rational multicurves γ1, γ2 on a smooth surface Sg,n considered up to the

action of the mapping class group one obtains

lim
L→+∞

sX(L, γ1)

sX(L, γ2)
=
c(γ1)

c(γ2)
.



Example
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.

Example (Mirzakhani’08) ; confirmed experimentally in 2017 by M. Bell;

confirmed in 2017 by more implicit computer experiment of V. Delecroix and by

relating it to Masur–Veech volume.

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.

In this sense one can say that for any hyperbolic metric X on a sphere with 6
cusps, a long simple closed geodesic separates the cusps as (3 + 3) with

probability 4
7 and as (2 + 4) with probability 3

7 .

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
.



Hyperbolic and flat geodesic multicurves
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2γ1

γ2

γ3

2γ4

Left picture represents a geodesic multicurve γ = 2γ1 + γ2 + γ3 + 2γ4 on a
hyperbolic surface in M0,7. Right picture represents the same multicurve this

time realized as the union of the waist curves of horizontal cylinders of a

square-tiled surface of the same genus, where cusps of the hyperbolic surface

are in the one-to-one correspondence with the conical points having cone

angle π (i.e. with the simple poles of the corresponding quadratic differential).
The weights of individual connected components γi are recorded by the

heights of the cylinders. Clearly, there are plenty of square-tiled surface

realizing this multicurve.



Hyperbolic and flat geodesic multicurves
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2γ1

γ2

γ3

2γ4

Theorem (Delecroix–Goujard–Zograf–Zorich’21). For any topological class

γ of simple closed multicurves considered up to homeomorphisms of a surface

Sg,n, the associated Mirzakhani’s asymptotic frequency c(γ) of hyperbolic
multicurves coincides with the asymptotic frequency of simple closed flat
geodesic multicurves of type γ represented by associated square-tiled

surfaces.

Remark. Francisco Arana Herrera has found an alternative proof of this result.
His proof uses more geometric approach.



Multicurves on a surface of genus two and their frequencies
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The picture below illustrates all topological types of primitive multicurves on a

surface of genus two without punctures; the fractions give frequencies of

non-primitive multicurves γ having a reduced multicurve γreduced of the

corresponding type.

16

63

8

15

1

9

1

189

1

45

2

27

In genus 3 there are already 41 types of multicurves, in genus 4 there are 378
types, in genus 5 there are 4554 types and this number grows faster than

exponentially when genus g grows. It becomes pointless to produce tables: we

need to extract a reasonable sub-collection of most common types which

ideally, carry all Thurston’s measure when g → +∞.
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Statistics of prime decompositions: random integer number s
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The Prime Number Theorem states that an integer number n taken randomly in

a large interval [1, N ] is prime with asymptotic probability logN
N .

Actually, one can tell much more about prime decomposition of a large random

integer. Denote by ω(n) the number of prime divisors of an integer n counted

without multiplicities. In other words, if n has prime decomposition
n = pm1

1 . . . pmk

k , let ω(n) = k. By the Erdős–Kac theorem, the centered and

rescaled distribution prescribed by the counting function ω(n) tends to the

normal distribution:

Erdős–Kac Theorem (1939)

lim
N→+∞

1

N
card

{

n ≤ N
∣

∣

∣

ω(n)− log logN√
log logN

≤ x

}

=
1√
2π

∫ x

−∞
e−

t2

2 dt .

The subsequent results of A. Selberg (1954) and of A. Rényi and P. Turán

(1958) describe the rate of convergence.



Statistics of prime decompositions: random permutations
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Denote by Kn(σ) the number of disjoint cycles in the cycle decomposition of a

permutation σ in the symmetric group Sn. Consider the uniform probability

measure on Sn. A random permutation σ of n elements has exactly k cycles in

its cyclic decomposition with probability P
(

Kn(σ) = k
)

= s(n,k)
n! , where

s(n, k) is the unsigned Stirling number of the first kind. It is immediate to see
that P

(

Kn(σ) = 1
)

= 1
n . V. L. Goncharov computed the expected value and

the variance of Kn as n→ +∞:

E(Kn) = logn+ γ + o(1) , V(Kn) = logn+ γ − ζ(2) + o(1) ,

and proved the following central limit theorem:

Theorem (V. L. Goncharov, 1944)

lim
n→+∞

1

n!
card

{

σ ∈ Sn

∣

∣

∣

Kn(σ)− logn√
log n

≤ x

}

=
1√
2π

∫ x

−∞
e−

t2

2 dt .



Shape of a random square-tiled surface of large genus
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Questions.

• How many singular horizontal leaves (in blue on the right picture) has a
random square-tiled surface of genus g?

• Find the probability distribution for the number Kg(S) = 1, 2, 3, . . . , 3g − 3
of maximal horizontal cylinders (represented by red waist curves on the left

picture)

• What are the typical heights h1, . . . , hk of the cylinders?

• What is the shape of a random square-tiled surface of large genus?



Shape of a random multicurve (random square-tiled surface)
on a surface of large genus in simple words
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Theorem (Delecroix–Goujard–Zograf–Zorich’20. ) With probability which

tends to 1 as g → ∞,

• The reduced multicurve γreduced = γ1 + · · ·+ γk associated to a random
integral multicurve γ = m1γ1 + . . .mkγk does not separate the surface;

• γreduced has about (log g)/2 components and has one of the following types:

0.09 log(g) components

. . . . . . . . . . . .

0.62 log(g) components

P

(

0.09 log g < Kg(γ) < 0.62 log g
)

= 1−O
(

(log g)24g−1/4
)

.

A random square-tiled surface (without conical points of angle π) of large genus

has about log(g)
2 cylinders, and all conical points sit at the same horizontal

and the same vertical level with probability which tends to 1 as g → ∞.



Heights of cylinders of a ransom square-tiled surface
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Theorem (Delecroix–Goujard–Zograf–Zorich’19 ). If we fix any k and

consider only k-cylinder square-tiled surfaces, then a (conditional) probability

that every horizontal cylinder is composed of a single band of squares tends to

1 as g → +∞.

Theorem (Delecroix–Goujard–Zograf–Zorich’19 ). If we do not fix the

number of horizontal cylinders, then the probability that every horizontal
cylinder of a random square-tiled surface is composed of a single band of

squares tends to
√
2
2 as genus grows. More generally, each of the heights

m1, . . .mk of horizontal cylinders of a random square-tiled surface is bounded

from above by an integer m with probability which tends to
√

m
m+1 as

g → +∞.

However, the mean value of m1 + ...+mk is infinite in any genus g.



Main Theorem (informally)

32 / 37

Main Theorem (Delecroix–Goujard–Zograf–Zorich’20 ). As g grows, the

probability distribution P(Kg = k) rapidly becomes, basically, indistinguishable

from the distribution of the number K3g−3(σ) of disjoint cycles in a random
permutation σ of 3g − 3 elements (with respect to some explicit nonuniform

probability measure on the symmetric group). In particular, for any j ∈ N the

difference of the j-th moments of the two distributions is of the order O(g−1).
We have an explicit asymptotic formula for all cumulants. It gives

E(Kg) =
log(6g − 6)

2
+
γ

2
+ log 2 + o(1) ,

V(Kg) =
log(6g − 6)

2
+
γ

2
+ log 2− 3

4
ζ(2) + o(1) ,

where γ = 0.5772 . . . denotes the Euler–Mascheroni constant.

In practice, already for g = 12 the match of the graphs of the distributions is

such that they are visually indistinguishable.



Keystone underlying result
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Our results use the Delecroix–Goujard–Zograf–Zorich’19 conjecture proved in

Theorem (Aggarwal’21). The Masur–Veech volume of the moduli space of

holomorphic quadratic differentials has the following large genus asymptotics:

VolQg ∼ 4

π
·
(

8

3

)4g−4

as g → +∞ .
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Our results use the Delecroix–Goujard–Zograf–Zorich’19 conjecture proved in

Theorem (Aggarwal’21). The Masur–Veech volume of the moduli space of

holomorphic quadratic differentials has the following large genus asymptotics:

VolQg ∼ 4

π
·
(

8

3

)4g−4

as g → +∞ .

The similar conjecture of Eskin–Zorich’03 on the large genus asymptotics of

Masur–Veech volumes of individual strata of Abelian differentials is recently

proved by Aggarwal’19 and by Chen–Möller–Sauvaget–Zagier’20. The

analogous conjecture for quadratic differentials still resists:

Conjecture (ADGZZ’20). The Masur–Veech volume of any stratum of

meromorphic quadratic differentials with at most simple poles has the following

large genus asymptotics (with the error term uniformly small for all partitions d):

VolQ(d1, . . . , dn)
?∼ 4

π
·

n
∏

i=1

2di+2

di + 2
as g → +∞ ,

under assumption that the number of simple poles is bounded or grows much

slower than the genus.



Combinatorial formulation of Witten’s conjecture
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Initial data: 〈τ30 〉 = 1, 〈τ1〉 = 1
24 .

String equation:

〈τ0τd1 . . . τdn〉g,n+1 = 〈τd1−1 . . . τdn〉g,n + · · ·+ 〈τd1 . . . τdn−1〉g,n .

Dilaton equation:

〈τ1τd1 . . . τdn〉g,n+1 = (2g − 2 + n)〈τd1 . . . τdn〉g,n .
Virasoro constraints (in Dijkgraaf–Verlinde–Verlinde form; k ≥ 1):

〈τk+1τd1 · · · τdn〉g =
1

(2k + 3)!!

[

n
∑

j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
〈τd1 · · · τdj+k · · · τdn〉g

+
1

2

∑

r+s=k−1
r,s≥0

(2r + 1)!!(2s+ 1)!!〈τrτsτd1 · · · τdn〉g−1

+
1

2

∑

r+s=k−1
r,s≥0

(2r+1)!!(2s+1)!!
∑

{1,...,n}=I
∐

J

〈τr
∏

i∈I
τdi〉g′〈τs

∏

i∈J
τdi〉g−g′

]

.



Keystone underlying result
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We also strongly use the uniform large genus asymptotics of ψ-classes, which

we conjectured in 2019. We proved it for 2-correlators; a general formula was

proved by A. Aggarwal:

Theorem (Aggarwal’21). The following uniform asymptotic formula is valid:
∫

Mg,n

ψd1
1 . . . ψdn

n =

=
1

24g
· (6g − 5 + 2n)!

g! (3g − 3 + n)!
· d1! . . . dn!

(2d1 + 1)! · · · (2dn + 1)!
·
(

1 + ε(d)
)

,

where ε(d) = O
(

1 + (n+log g)2

g

)

uniformly for all n = o(
√
g) and all

partitions d, d1 + · · ·+ dn = 3g − 3 + n, as g → +∞.



Arnold’s problem (2002-8)
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Glue randomly two boundary components of a braid with a large number N of

strands on a surface of genus g − 1 so that the endpoints fit.

Theorem. The probability pg to get a single connected curve upon a random

gluing of a random braid is

pg =
1

(4g − 2)22g−4VolHg
→ 1

4g
+ o

(

1

g

)

as g → +∞ .

Examples: p1 =
6

π2
, p2 =

45

2π4
, p3 =

243

2π6
.



Rue des Petits-Carreaux
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