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Objects: Higher Koszul brackets (a quick summary)

@ Soo-structure of differential forms on a homotopy Poisson (Ps)
manifold.

An infinite series of odd brackets satisfying the Leibniz rule, along
with a series of linked “higher Jacobi identities”.

Can be defined by a Hamiltonian.

Cannot be defined by higher-order differential operators (“BV type").
A.: Can be defined by A-differential operators.

© 060 ©

The usual binary Koszul bracket is part of a classical diagram:
Ak (M) —2 k(M)
a*T Ta*: dx?=Pbx; (1)
QH(M) —"— QL (M),

with vertical arrows also preserving the brackets.
Q.: Do we have an analog for higher Koszul brackets?
Q@ Q.: What happens to the diagram under “quantization”?
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Outline
@ Even and odd Poisson brackets. Binary Koszul and Schouten brackets
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Even and odd Poisson brackets

Even Poisson brackets. An even bracket on a commutative superalgebra s.t.

{a.b) = ~(-1)"{ba}, o)
{a,{b,c}} = {{a, b}, c} + (—})5b{b, {a,c}}, (3)
{a,bc} = {a,b}c + (—1)b{a, c}. (4)

This bracket is linear without signs.
Odd Poisson brackets (antisymm. version). (Or Schouten, or Gerstenhaber,
or antibracket.) An odd bracket s.t.

{a,b} = —(~1)CTIE (b a3 (5)
{a,{b,c}} = {{a, b}, c} + (1) b (4 c}} (6)
{a,bc} = {a,b}c + (—1)EFDPpLa ) . (7)

Linear with signs: {ka, b} = k{a, b}, {a, bk} = {a, b}k, and
{ak, b} = (—1)k{a, kb}. So the sign is on the comma.
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Odd Poisson brackets (symm. version). A commutative superalgebra A
with an odd bracket satisfying

{a,b} = (~1){b, a} (8)
{a,{b,c}} = (1) {{a, b}, c} + (~1)EVED(p fa e}y, (9)
{a,bc} = {a, byc+ (1) Vp{a c}. (10)

Here the sign is on the opening bracket {.
The two versions of odd bracket can be converted into one another by

{37 b}Sym = (_1)5{3? b}anti-
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Ex. Even Poisson bracket on C*°(M). Given a Poisson bivector
_ 1pab
P = 5P xpx3,

3 b Of Og
{f.g} = —(-17 P 2 (11)

Ex. Canonical even Poisson bracket on Hamiltonians, C*>°(T*M).
{f,g} =0, {Hx, f} = X(f), {Hx, Hy} = Hix y], where Hx = X?p,, for
X=Xz 8 . In particular, {p,,x?} = 62 = —(=1)3(x®, p,}. In local
coordinates,

OH 0G =5 0H 0G
(H+1) _ (_1\aH
(H, G)=(-1) O, 9x3 (1) 9% Ops
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Ex. Schouten bracket: canonical odd Poisson bracket of multivector fields.
Defined by the Leibniz rule with the initial conditions: for all
f,g € C®°(M), and vector fields X, Y,

ﬂfug]] = 07 I['DX7 f]] = X(f)v II'DX7 ’DY]] = (_1)XP[X,Y] : (13)
On C*>(NT*M), fiber coordinates in NT*M are xZ, and

Px = (—1)?X?x%,
+(F OF 0G FOF 0G
—(_ a(F+1) _1\F
[F. 61=(-1) <8x§ Ox? +(=1) Ox? 8x§> '

In particular, [x}, x] = (—=1)36% = [x®, xZ].
Ex. Koszul bracket: odd Poisson bracket of differential forms (symmetric
version). Given a Poisson manifold M.

[f,glp =0, [f,dgle = (~1)'{f,g}p, [df,dglp = —(—1) d{f g}
(15)

(14)

In particular,
[x?, xP]p =0, [x?,dx"]p = =P, [dx?, dxP]p = dP?F. (16)
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© Poisson brackets as derived brackets
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Poisson brackets as derived brackets

Notation. For an arbitrary smooth manifold (super or not) M,

Q(M) = C®(NTM), A(M) = CZ(NT*M) . (17)

inhomogeneous diff forms multivector fields

M: local coordinates x?.

TM: x2,0x?,  § is even differential,

MTM: x?,dx?  dis odd differential,

T*M: x?, p,,

NT*M: x?, x;. E.g., a bivector has form P = P35 (x)x;xZ.

6x? and p; have the same parities as the corresponding coordinates.
dx? and x} have parities opposite to those of the corresponding
coordinates. Under a change of coordinates, the variables p, and x}

transform in the same way as the partial derivatives %.

Ekaterina Shemyakova (Toledo, USA) On operators generating higher brackets



Even Poisson structure on M as a derived bracket.

Theorem.
An even bivector P = 1P3¥x;x?, [P, P] = 0, generates an even Poisson

bracket on M:
{f7g}P = IIf7 IIPag]]]] (18)
~——

Schouten bracket

Odd Poisson structure on M as a derived bracket.
Theorem. An odd fiberwise quadratic Hamiltonian H = %Habpbpa,
{H,H} =0, generates an odd Poisson bracket on M:

{fag}H = _{fa{Hag}} (19)
—_————
canonical Poisson bracket of Hamiltonians

[Kosmann-Schwarzbach '94 and independently Voronov]
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© Poisson brackets from Lie algebroids
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Poisson brackets from Lie algebroids

Lie algebroids were first introduced and studied by Jean Pradines in 1967.
A Lie algebroid E — M is a vector bundle with a (super) Lie bracket on
the space of its sections I'(E) and with a vector bundle morphism

a: E — TM, the “anchor”, such that for all u,v € I'(E) and f € C*(M),

[u, fv] = a(u)(F)v + (1) F[u, v], (20)
a([u, v]) = [a(u), a(v)]. (21)

Ex. Tangent algebroid TM — M. The anchor is the identity map.
Ex. Poisson algebroid T*M — M. Given a Poisson manifold M.

[6f,0g]p :=0{f,g}p, a:5xar—>Pabi. (22)

(Using the anchor and linearity, extend the definition to non-exact 1-forms.
This is a restriction of binary Koszul bracket.)
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Q-manifold is a manifold endowed with a “homological vector field”:
odd Q such that

1
Many objects in mathematical physics can be described in this way.

The theory of @Q-manifolds was initiated by A. Schwarz, A. Vaintrob, and
M. Kontsevich.
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Manifestations of a Lie algebroid E — M.

E ne E* ne*
I
M M M M

Here E* — M is the dual vector bundle and [1 is the parity reversion
functor.

ME — M is obtained from E — M by reversing the parities of the fiber
coordinates while the transition functions remaining the same. This gives
non-trivial equivalent ways of describing a Lie algebroid.

Ekaterina Shemyakova (Toledo, USA) On operators generating higher brackets 11/42



: i

ME is a @ manifold with

[ei, ] = (—1) Q¥(x)ex Q=E'Q7 ()% + 3¢ Qf(¥)
a(e) = faia Homological v.f. of welght +1.

(Arkady Vaintrob)

E* ne*
| |
M M

{Xa,xb} =0, {u,-,TXQ} = Q7(x) {xa,xb} =0, {n,-,fxa} = Q7(x)
{uisuj} = (1Y Qf (x)ux {ni i} = (=1Y Qf (x)mk

Even Poisson bracket of weight —1.  Odd Poisson bracket of weight —1.
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Ex. Manifestations of the tangent algebroid. E = TM.
On MNE =TMTM: de Rham differential @ = d = dxaaia.
On ME* =M T*M: Schouten bracket.

Ex. Manifestations of the Poisson algebroid. E = T*M.
On NE = NT*M: Lichnerowicz differential Q = dp = [P, —].
On MNE* = NTM: Koszul bracket.
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@ Higher Poisson brackets
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Higher Poisson brackets

Pso-structures. We replace Poisson bi-vector P with an even multivector

1

P (24)

1
P = Py+ Px} + 5/Dabx;;‘x;; +

squaring to zero: [P, P] =0 . It generates on M a series of brackets by
Voronov's “higher derived brackets” construction:

{fl,...,fk}pZZ[[...l[P,fl]],...,fk]HM, }M:

(25)

x*=0"

Schouten brackets [—, —] are derivations of degree —1. Therefore, only
the term of degree i contributes to the i-ary bracket. In particular,

(x7} = —P?, {x°,x"} = —(=1)7P%, {x? xb,x°} = +P? ... (26)

odd bracket even bracket odd bracket

Properties: antisymmetry, alternating parities, Leibniz and higher Jacobi.
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Soo structures. Similarly, for an odd Hamiltonian
H = H(x?, ps) = Ho + Hpa + 21H* pppa + 37H*“pcpppa + - - . squaring
to zero: {H,H} =0, we have

{flw--,fk}H Z:{...{H,fl},...,kaM, }M: pa=0" (27)
Properties: symmetry w.r.t. shifted parity, odd, Leibniz and higher Jacobi.
For both P and Su structures higher Jacobi are of the form ({—} = d):
n=1:d*>=0
n=2:d{f,g}={df, g} £ {f,dg}
n=3: {{fg},h}£{{hr} g} +{{g h} f}
=+ d{f, g h} = {df g h} £ {f, dg, h} = {f, g, dh}
n=4:+£ > {dh,h.h 6+ > {666+ > {{A k) G}

shuffle shuffle shuffle
+d{fi,fh,f,f1} =0

n=5:+ Y {dh,h,f ik}t > {{f K} 6+
shuffle shuffle

S {{fh il st > {{Ahh G Ld{A kA AL} =
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© Mackenzie-Xu symplectomorphism
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Mackenzie-Xu transformation

MX map: for an arbitrary vector bundle E — M,

MX
T E MS 1+ (28)
x3,uf X3, u;
N—— —
Pa;Pi Pa,p’

MX*(x%) = x°, MX*(u;) = pi, MX*(ps) = —pa, MX*(p)

I
—
|
—_
~
:\

Property: anti-Poisson map of the canonical brackets:

MX*({F, G}) = —{MX*(F), MX*(G)}. (29)
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1

T"EXT'E*Y —— E*

~— =

Pa;pi Pa,p’ h
M

B

ul

%

Xa

T*E has two gradings:
wy = #u' — #p; induced from the standard grading on E — M, and

Wy = #p, + #p; as the standard grading of T*E — E.
Define wz = wy + wo = #u' + #pa.
Similarly, T*E* has gradings:

wy = Fui — #p',
Wy = #pa + #plv
w3 = #uj + #pa.
Then

MX(w2) = wz, MX(w3) = ws. (30)
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Ex. Tangent algebroid. Manifests through d and through the Schouten
bracket. Using MX we can, for example, construct the master Hamiltonian
of the Schouten bracket.

nTM : d = dx* 3%

> HdeRham = anpa

lI\/IX

MT*M:  (binary) Schouten br Hsch

On MTM : x? and dx?.
On T*(NTM) : p, and 7.
OnMT*M : x? and x}.
On T*(NT*M :) p, and w2. Then
MX: T*(NT*M) — T*(NTM)
a

(x?, x5, pa, ™) — (xa =x%,dx? = (—1)3+17r ,Pa = —Pa,Ta = x;‘) :
(31)
and, therefore, MX*(Hgerham) = MX*(dx?p,) = (—=1)7%p,. A

Hamiltonian that is linear in momenta maps into one that is quadratic in

momenta.
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Ex. Poisson algebroid.

Similarly, we can proceed with T*M algebroid. Recall that it has the
following manifestations:

on MNT*M: Lichnerowicz differential Q = dp,

on MNTM: Koszul bracket.

nT*m: dp =[P, -] > Hap
IMX
NTMm (binary) Koszul br ————— Hkoszul
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@ Higher Koszul brackets
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Higher Koszul brackets

Khudaverdian, Th. Voronov'08.
Given a Py, manifold M with an even P € C>®(NT*M), [P,P] =0,

P = Po—|—PaX*—{— Pabxbx + 3'F’E”bcx*xbx +. (32)

The idea for finding Hhigher Koszul:

NT*M : New dp = [P, —] > Step 1: New Hg,
lMX
NnTMm : Soo: Higher Koszul brs Step 2: Huigher Koszul

1) New Hy, € C(T*(MT*M)). The Hamiltonian generates the same
bracket as dp: dp(Q) = {Hd,, Q}, where, on the right side, we have
canonical Poisson bracket of Hamiltonians. The Schouten bracket can be
also generated by a Hamiltonian: [P, Q] = {{Hscn, P}, @}. This implies

50P ;0P
. = {Hsch, P} = (-1 .+ (—=1)? 2.
{Hsch, P} = (=1) 5 pa + (<175 5 (33)

On operators generating higher brackets
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Update our diagram accordingly:

NT*M - New dp = |]:P, _]] — Hdp — (71)5({)6)2 Pa + (71)’525371_2
lMX
MNTM: S : Higher Koszul brs Step 2: Hhtigher Koszul

2) Hamiltonian for Higher Koszul brackets. Applying MX to the odd linear
in momenta Hamiltonian Hy, € C°(T*(INT*M)), we obtain a
Hamiltonian from C*°(T*(NTM)):

oP

< oP
HHigherKoszul = _(_1)3 aX; (va TFb)Pa - %(Xb

,7Tb)an . (34)

Here we used

MX: T*(MNTM) — T*(NT*M)

a

(x?, dx?, pa, ma) — (X = x4 X} =T pai= —pa, = (—l)ﬂldxa) )

(35)
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HHigherkoszul €an be used as the generating element in Voronov's higher
derived brackets construction:

[wi, ..., wklp := {{HHigherkoszul, w1}, - - - Wk } i (36)

In particular, we have

[fle = {f}pr .
[A,....filp=0, k=2,
[f,df, ..., df]p = (—1){fA,.... flp,
[dfi,dfy, ..., df]p = (=1 d{f,..., fi}p ,

where e = (k — 1) + (k= 2)fa + - + fi_1 + k.
Higher Koszul brackets properties:

(1) all odd,

2) symmetric,

3) Leibniz,

4) higher Jacobi

an S structure)

(
(
(
(
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@ Brackets generated by differential operators
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Brackets generated by differential operators

By operators of order < 2.

Batalin-Vilkovisky (BV) algebra is a commutative (super) algebra A with
an odd Poisson bracket and an odd differential operator A : A — A,

ord A < 2, so that

A(ab) = A(a)b+ (—1)7aA(b) + [a, b] . (41)

Thm. A? = 0 implies the Jacobi identity for the bracket
(Lian-Zuckermann, E.Getzler, Penkava-Schwarz).

Classical example 1. [—, —] Schouten bracket of multivector fields. Here
A is an odd second-order divergence operator,

0T = (_1)5p(1x)aax=" (p(x)g)z;k) defined using a choice of a volume
element p on M.

(Since at least 1950s, see e.g. Kirillov's survey.)

Classical example 2. [—, —] Koszul bracket of diff. forms on a Poisson
manifold M. An odd second-order operator A = Jp := [d, i(P)].
i(P) =3P 9,50 (Koszul'8s).
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Generating by operators of order > 2.
Koszul'85: for arbitrary operator A : A — A, define a series of brackets,
PRIAX - x A= A

da(a) = (A - A(1))(a) (42)
®2 (a, b) = A(ab) — A(a)b — (—1)*2aA(b) + A(1)ab  (43)
3 (a, b, c) A(abc) — A(ab)c + aA(bc) + A(ca)b
A(a)bc £ A(b)ca+ A(c)ab
A(1)abc
dh(a,b,c)=[...[Aa1],...,a]1)=... (44)
All CDZ = [—,...,—] are symmetric and of parity equal to the parity of A.
Only for ord A < 2, A(1) = 0, Koszul proved that if A =1 and A? =0,
then we have the Jacobi identity for ®% = [—, —] and higher brackets

vanish.
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Olga Kravchenko: in general, for odd A of higher order, A% = 0 implies
the identities of an L.-algebra (i.e. higher Jacobi) for all

On = [—,...,~]

Fusun Akman: studied generalizations to non-commutative,
non-associative case.

A problem: for ord A > 2, brackets ®3 do not obey Leibniz rule. Bracket
&1 is the obstruction for the Leibniz rule for ¢7:

[fl,...,fn,]_,fg]A =
[fia ey fnflg f]Ag + (_1)(A+f1+m+f1)ff[fl7 ey fn,]_,g]A
+[fla"'>fn717f>g]A (45)

Both generating brackets by differential operators and by Hamiltonians are
instances of Ted Voronov's higher derived brackets.
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© 7-differential operators to generate higher Koszul brackets
@ Problem and solution
@ Formal h-differential operators
@ Quantum brackets
@ Operator generating Higher Koszul brackets
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© 7-differential operators to generate higher Koszul brackets
@ Problem and solution
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Problem: can higher Koszul brackets be also described by differential
operators? Using Koszul or Kravchenko directly, no.

Solution in a nutshell: use A-differential operators.

Hamiltonian Hyjgherkoszul Will be quantized into an “h-differential
operator”,

canonical Poisson bracket will be quantized into [—, —],

the higher Koszul brackets will be the limit of “quantum brackets"”.
Quantum brackets will be L-structure plus h-deformed Leibniz; higher
Koszul brackets will be L.o-structure plus strict Leibniz (i.e. give precisely
Soo-structure)
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© 7-differential operators to generate higher Koszul brackets

@ Formal h-differential operators

Ekaterina Shemyakova (Toledo, USA) On operators generating higher brackets



A formal h-differential operator is (see Voronov'18 and the theory in
She'23) a (non-commutative) formal power series in /i and p;,

[e.9]

L= Z (LZ?“"""(x),a‘.,,1 e Pay + (—IR)LT T (X) Py v Payg oy F -
n=0

+ (—ih)"L?,(x)) . (46)

considered together with the “Heisenberg commutation relation”

of

[ﬁav f] - _Ih% 9

(47)
which is homogeneous with respect to the total degree in h and p,s.

(1) Formal h-differential operators have grading (not filtration) by

#pa + #h, which is invariant under changes of variables.

(2) Each homogeneous component has a finite number of derivatives.
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The principal symbol o(L) € C*°(T*M) is a (formal) Hamiltonian defined
as follows: L mod & with identification of p, and p,.

=3 (Lél'"a"(x)/sal oyt (—fh)"LS(x>> -

n=0

o(L) = L3 (x)pay .- pay, (48)
n=0

Theorem. For formal h-differential operators,
o(AB) = o(A)o(B). (49)
The commutator [A, B] is always divisible by 7 and
o(ih"*[A, B]) = {o(A),5(B)}, (50)
where at the right-hand side there is the Poisson bracket on T*M.

Ekaterina Shemyakova (Toledo, USA) On operators generating higher brackets 28 /42



Table of Contents

© 7-differential operators to generate higher Koszul brackets

@ Quantum brackets
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[Voronov'05] For an operator L on an algebra, the quantum n-bracket and
the classical n-bracket (n =0,1,2,3,...) generated by L are respectively

(R bin = (—iR) " [ [L AL, £ (1), (51)
(Ao = (=) [ [LA]L....f](1) (modh).  (52)

In order to avoid negative powers of #, we assume that any n-fold
commutator [...[L, fi],..., fy] in the above formulas is divisible by (—ih)".
In particular, this is true for formal h-differential operators.

The n-bracket generates the (n 4 1)-bracket as the obstruction to the
Leibniz rule:

{f,.. ot fgtin="{f,.. o1, Fling+ (1) F{f,.... fi1, 8}
+ (—ih){f, ... . foc1, . 8 00 s

where (1) = (—1)(Z+’F1+“'+F"*1)F.

Hence, the corresponding classical brackets satisfy the Leibniz rule, i.e are
multiderivations, and can be generated by a Hamiltonian H.
Thm.[She'23] H = o(L).
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© 7-differential operators to generate higher Koszul brackets

@ Operator generating Higher Koszul brackets
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Operator generating Higher Koszul brackets.
[See She'23.] 1. Khudaverdian-Voronov obtained Hamiltonian for the

Higher Koszul brackets as Higherkoszut = MX* ({Hscm P}) Alternatively,

Huigherkoszul = —{MX*(Hsch), MX*(P)}.
Recall Mackenzie-Xu for our case:

MX: T*(NT*M) — T*(NTM)

(x, p, x5, 1) = (x,dx? = (=1)""7?, —p, 7, == x}). (53)
Hence,
Hhigherkoszul = —{ HdeRham» P(x,72)} .
2. Quantize:
Ap=1] 4 P =[d,P 54
Pm il ~—~~ =[d.P]. (54)

—ihd p(x,—ih52)

3. We proved that higher Koszul brackets can be generated by
Ap = [d, P] as the quantum brackets taken modulo #.
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@ The diagram for a general P
@ Mapping Higher Koszul brackets into Schouten bracket
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© The problem: quantization of one famous diagram
@ The diagram for a general P
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The de Rham and Poisson complexes. An even Poisson bivector
P= %Pabxg‘x;k, [P, P] =0, induces:
@ On the differential forms Q(M) = C*°(INTM): Koszul bracket.
@ On the multivector fields A(M) = C*(MNT*M): Lichnerowicz
differential dp = [P, —].
Besides this, we have the following canonical structures:
© On the differential forms: de Rham differential d.
@ On the multivector fields: Schouten bracket [—, —].

The following commutative diagram arises:

AL (M) —2P— k(M)
Q*T Ta*: dx?=Pabx; (55)
QK (M) —L Qk+L(M),

with vertical arrows also preserving the brackets.

Ekaterina Shemyakova (Toledo, USA) On operators generating higher brackets 31/42



So, if P is a Poisson bivector, then:

Qlk(M)all_a_]] Qlk+1(M)a|I_a_]]
a*T T dxa:P"bx; (56)
Qk(M)>[_a_] ——% Qk+1(M)v[_7_]

What if P is replaced with an arbitrary multivector? (Even, and
[P,P] =0.) Then:
© On the differential forms Q(M): higher Koszul brackets.
@ On the multivectors 2A(M): an analog of Lichnerowicz's dp = [P, —].

AM) —L— A(M) A(M), [, -1)
T de8:(-1)5+1% ???T (57)
Q(M) d_, Q(M), (M), Soo higher Koszul brs),

The left diagram shows the results of Khudaverdian-Voronov'08, and the
right one — of Khudaverdian-Voronov'24. 7?7 should be an L.,-morphism.
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© The problem: quantization of one famous diagram

@ Mapping Higher Koszul brackets into Schouten bracket
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The idea is easier to see in the context of Lie algebroids.
For a Lie algebroid E — M, one can continue with the philosophy of
manifestations, applying it to the anchor a: E — TM:

On MNE: NE ;) nT™m Q-morphism, i.e. Qoa* =a*od
adual
On NE™: nr=m > NE™ (a?¥2")* maps br into Schouten br

Specifically, for the Poisson algebroid T*M — M:

On MNE: NT*M —— NTM
adual dual
On NE* : NT*M —— nTM &% = +a

Equality a"?' = +a explains the famous diagram — why the same map is
a chain map of complexes AND also respects the bracket structures.
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Now we have an L, algebroid T*M — M. We have the anchor
a: T*M ~» TM, which is an L,.-morphism of L.,-algebroids. The anchor
has the following manifestations:

On ME : NT*M ——— NT™ a non-linear map!

On NE*: nrm—nTMm dual for a non-linear map??

A problem: a = (—1)3“887’3* is a non-linear map. How to get its dual?

(On functions, we need an Lo.-morphism! How to get it?)
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Thick morphism (Voronov'14) & : M; =M, is a Lagrangian submanifold
in T*M, x —T*M; w.r.t. to symplectic form wy — wy, specified by an
even generating function of the form

. 1 . 1 .
S(x,q) = S°(x) + ¢'(x)gi + 557 (ajai + gs”k(X)qkqjq; +... (58)

Here the local coordinates in My and M» are x? and yi; and the momenta
are p, and gj, respectively.
The pullback of a thick morphism ®* : C*°(M,) — C>*°(M):

w0 =60+ St ¥, (59)
6= 5E0) ¥ = (-1 (). (60)

Theorem. If odd Hamiltonians H1 and H> are ®-related, i.e. if

S 5 0S
— _1)ai
Hq <x, e (x, q)) H, (( 1) 94,

(x.a).9) (61)
then ®* : C*°(My) — C>°(My) is an Loo-morphism of the S, higher
brackets structures defined by H; and Ho.
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The L,.-morphism mapping higher Koszul brackets into Schouten bracket.

@ Consider a: NT*M — MNTM as a thick morphism (a usual map
@ : My — My is a thick morphism with generating f. S = ¢/(x)q;):

5.1 OP
S =S5(xx}; payma) = x7pa+ (—l)aH%(X,Xﬂﬂa- (62)

a

@ Apply MX to the equations defining the Lagrangian submanifold, and
then get

oP

S* =S*(y,y",payma) = y?pa + (—1)58X:

(< mo)ys - (63)

@ Define 2?2 MT*M=>TTM as the thick morphism with S*. As a is
an S, thick morphism, then a?“? is also an S, thick morphism. This
means that the pullback of this thick morphism,

(%Y . C®(NTM) — C®(NT*M) (64)

is an Loo-morphism.
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To sum up, we have the following:
When P is a multivector:

A(M) —"— AM) (@A(M).[-.-])
S*T Ta*: dx?=(—1)71 95 TLOO:(athick dual)»
Q(M) 4, QM), (Q(M), Sw : Higher Koszul brs)
. (65)
Here, Hsch and Hp are athick dual_rejated.
Quantizing this, we have:
AM) = (M) (A(M), ~125,)
a*T Ta* T/??? (66)
QM) =19 o(m), (UM), Soon : Ap),

Here, operators —h2(5p and Ap are /-related.
Q. What is /? Construct /.
This will also imply an L..-morphism for quantum brackets.
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This is a quantum anchor problem.
Consider manifestations of the anchor in L,.-algebroid T*M and its
quantization:

ne : a:I'IT*I\/l—>I'ITvaj/i~/W~>Sameabut Q®s mult. by —ih
Q-morphism Ih-l\/lx
% h
nes: a4 T*M=s ITM ~~~rsssy (3*) NT*M — MTTM

Hsen &Hp are a®?-related —h26,&Ap are intertwined by /

To construct the desired (a%“2')*, we apply #-MX to a in the right top
quadrant. (A-MX is a “quantum MX transformation” explained below.)
Anchor a is a usual map. With

S = S(x?,x¥; pa, ma) = x7py + (—1)31 88551 (x,x*)m, we can write its
pullback a* as

(1) a pullback ®* of a thick morphism ¢, or

(2) a quantum pullback ®} of a thick quantum morphism ®j,.
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We need the quantum pullback option. So,
a*: C*®(NTM) — C>*(NT*M) can be re-written as

E; ﬂ *
fi(x, x*) _/Ddy Dyt et (DI ip ). (67)

n(n+1

where Dy* = (2wh)~™(ih)"(—1)" 2 Dy*
By a theorem from She’'23, operator (a*)*: C*(NTM) — C*(NT*M)
can be written as follows:

if((_1\a+1 0P *_xe* dx?@
gz(Xay*):/Ddex*eh(( DT gy ad )gl(X,dX)¢ (68)

n( n+1

where Dx* = (2rh)~™(ik)"(—1)" 2  Dx*.
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Now, to sum up:

dpa” =a"d (69)

(—ihdp) o a* = a* o (—ihd) (70)
(a*) o dp =d* o (a%)* (71)

(a*)* o (—ihdp)* = (—h?6,) 0 (a*)*. (72)

That would be the intertwining relation we are looking for if we had
(—ihdp)* = Ap. But we know that (Ap)* = —ihdp — ihd,(P), so
(—ihdp)* # Ap unless §,(P) = 0.

So, to get an intertwining between 6, and Ap, a correction is needed to
the integral operator that we have obtained; and this has been done.
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She'23: Quantum Mackenzie-Xu (7-MX or also * as the usual MX) is an
anti-isomorphism (meaning the order of factors reversed) between the
algebras of operators on dual vector bundles E and E*, induced by the
following pairing.

Given a volume element p = p(x)Dx on the base M, for functions
f=1f(x,u) € C*(E), g = g(x,u*) € C>®(E*), define

(f.g)p = / p(x)Dx Du Du* e 7440 f(x, u)g(x, u*),  (73)
ExyE*
The quantum Mackenzie-Xu (%-MX) transformation of an operator
A: C®(E;) — C=(Ey) is the adjoint A*: C®(E5) — C®(E}):
(A(F). &) = (1) (f, A*(g)) (74)
Let E=TTM and E* = NT*M. Then (f(x))* = f(x), and

(9 *__,1 a i ayx _ - o §+1a .
<8x3> =—p e op; (dx?)* = —ih(-1) o

. 0 * N * - _ 3 9
<_Ih8dx3> =x3; d*=—iho, =—ih(-1) ()8xap( )8x
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Thank You!

Happy birthday, Vladimir and
Valentin!

Ekaterina Shemyakova (Toledo, USA)
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