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⚠ This is mostly about ideas and conjectures. The motto :

Derived categories serve as a meeting point between combinatorics and singularity
theory.



On the combinatorial side

In the field of enumerative combinatorics, one aims at counting things.

Sometimes, one gets closed formulas, of various sorts. Maybe the nicest sort is a
product formula.
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This formula can be written as follows

which has the general shape

for some multi-set  and integer  (here ).
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Fact: Many famous enumeration results in combinatorics involve formulas of this
precise shape !

Dyck paths, Dyck paths of slope  (Catalan and Fuss-Catalan numbers) 
Plane partitions (MacMahon), symmetric plane partitions 
Alternating sign matrices (Mills-Robbins-Rumsey, Zeilberger, Kuperberg) 
Various kinds of planar maps (Tutte)
2-stack sortable permutations (West, Zeilberger) 
intervals in the Tamari lattices 
clusters and tilting modules for Dynkin quivers (Fomin and Zelevinsky) 

m A108
A6366

A5130

A139
A260

A1700

https://oeis.org/A000108
https://oeis.org/A006366
https://oeis.org/A005130
https://oeis.org/A000139
https://oeis.org/A000260
https://oeis.org/A001700
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und so weiter...

No obvious general reason is known for these formulas to exist. Some partial reasons
explain some cases.

https://oeis.org/A000108
https://oeis.org/A006366
https://oeis.org/A005130
https://oeis.org/A000139
https://oeis.org/A000260
https://oeis.org/A001700


For example, the number of clusters in a cluster algebra of finite type is given by

where  and the  are the Coxeter number and the degrees of the
associated finite Weyl group.
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where  and the  are the Coxeter number and the degrees of the
associated finite Weyl group.
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Using the symmetry of the degrees  for some bijection , this is
the same as

which has exactly the expected shape with .

di ↔ h + 2 − dφ(i) φ
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On the singularity side

We will look at isolated quasi-homogeneous singularities of polynomial functions
.

These were studied by Milnor, in famous and classical works.

Recall that  is a singular point of  if all partial derivatives of
 vanish at .

The word "isolated" means that  has an isolated singular point, that we assume to
be .

We will also assume that .
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The word "quasi-homogeneous" means that there exists integers  and 
such that:

the total degree of , when giving weight  to the variable , is given by .

Example:  has total degree  if  has weight  and  has weight .
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f di zi D
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So every quasi-homogeneous isolated singularity comes with the data of
.

Conversely, fix  and pick  as a generic quasi-homogeneous
polynomial w.r.t. this data.

Fact: There exists necessary and sufficient conditions on  in order to
ensure that  has an isolated singularity.

I will not write explicitely these rather technical conditions. We will always assume
that they hold. Then
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Fact (A): The product  is an integer.

Fact (B): The product  is a polynomial in .

Here  denotes the -integer .

Both facts are not clear a priori. They only belong clearly to  and .
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Milnor �ber and Milnor number

A quick little piece of geometry now, from Milnor.

Choose  with quasi-homogeneous isolated singularity. Let  be a small-enough ball
around .

The fibers  for  in a small circle around  are all
diffeomorphic.

They form a locally-trivial fibration over the small circle.

They have the homotopy type of a bouquet of  spheres of dimension .
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around .

The fibers  for  in a small circle around  are all
diffeomorphic.

They form a locally-trivial fibration over the small circle.
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Fact (A2): the integer  (Milnor number of the singularity)

Fact (B2): the polynomial  describes a filtration on the homology of the

fibers

Also the dimension and graded dimension of the Jacobian ring of the singularity.
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Homology and monodromy

Because fibers are bouquets 💐 of spheres 🌎 of the same dimension, only one
interesting homology group  isomorphic to .

Turning once around the small circle and following cycles by local triviality, one
obtains a linear map

 which is called the monodromy map of the singularity.

You can think of the monodromy as a  matrix of integers (once a basis has
been chosen).

Hm−1 Zμ

Hm−1 → Hm−1

μ × μ



Derived categories as a mediating object

Main idea : relate product formulas in combinatorics to Milnor formula for Milnor
number  of singularities

HOW ? Using derived categories

on the combinatorial side, enrich combinatorial objets with partial orders

and consider finite-dimensional modules over their incidence algebras over a
field

(basis are all pairs  such that  and product is concatenation)

μ

(x, y) x ≤ y
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Main idea : relate product formulas in combinatorics to Milnor formula for Milnor
number  of singularities

HOW ? Using derived categories

on the combinatorial side, enrich combinatorial objets with partial orders

and consider finite-dimensional modules over their incidence algebras over a
field

(basis are all pairs  such that  and product is concatenation)

μ

(x, y) x ≤ y

on the singularity side, consider a categorification  of the Milnor fiber
homology and monodromy

This  should be a triangulated category, recovering the geometric data
when passing to .

DMil

DMil

K0



⚠ WARNING: this kind of category is attributed to Seidel. I am not sure in which
generality it is known to exist.

This  should be a Directed Fukaya Category 🦄 or a Fukaya-Seidel category 🦄,
whatever it is.

Here some hand-waving about A-Model, B-model, mirror symmetry, Berglund-
Hübsch invertible polynomials ✴ ?

DMil



Motto / main idea

Suppose that you have a familly of combinatorial objects  counted for each
index  by a combinatorial formula of the shape

for some multi-sets  and integers  depending on the index  in some regular
way.

(Example : Dyck paths and Catalan numbers)
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THEN 🎁

There should exist partial orders  on the combinatorial objects such that the
derived category  of modules over the incidence algebra of  is triangle-
equivalent to the derived category  attached to the quasi-homogeneous
singularity of a generic quasi-homogeneous polynomial with weights  and total
weight .

(Example: the natural partial order on Dyck paths by inclusion)

Claim: all the derived categories involved should be fractional Calabi-Yau.

≤
DP (Pn, ≤)

DMil

E
D



Calabi-Yau (CY) and fractional Calabi-Yau (fCY)

categories

Let  be triangulated category with finite-dimensional  spaces over a field.

A Serre functor on  is an auto-equivalence of  such that

functorially in both arguments.

This name comes from the Serre duality functor on coherent sheaves in algebraic
geometry. Unique up to isomorphism.

T Hom

T T

Hom(X,Y )∗ ≃ Hom(Y ,SX)



Calabi-Yau (CY) and fractional Calabi-Yau (fCY)

categories

Let  be triangulated category with finite-dimensional  spaces over a field.

A Serre functor on  is an auto-equivalence of  such that

functorially in both arguments.

This name comes from the Serre duality functor on coherent sheaves in algebraic
geometry. Unique up to isomorphism.

T Hom

T T

Hom(X,Y )∗ ≃ Hom(Y ,SX)

The category  is Calabi-Yau if  is isomorphic to a shift functor .

This names comes from the properties of coherent sheaves on Calabi-Yau manifolds.

The category  is fractional Calabi-Yau if a power of  is isomorphic to a shift
functor. (Kontsevich, around 2000)

meaning that  for some integers  and . Abusingly,  is called the Calabi-
Yau dimension.

T S [D]

T S

Sq ≃ [p] p q p/q



Examples of fCY categories

some examples come from algebraic geometry : pieces in semi-orthogonal
decompositions of derived categories coming from Fano manifolds

derived categories of representations of Dynkin quivers (types )

some examples from singularity theory using categories of matrix
factorisations

Combinatorics of posets-with-product-formula as a new source of examples !

ADE



Monodromy on both sides

On the geometry side, the expected categorification  of Milnor's fibration should
be such that

 is a free abelian group of rank ,
on which the Serre functor  induces the monodromy matrix.

 depends only on the data 
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Monodromy on both sides

On the geometry side, the expected categorification  of Milnor's fibration should
be such that

 is a free abelian group of rank ,
on which the Serre functor  induces the monodromy matrix.

 depends only on the data 

DMil

K0(DMil) μ
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On the combinatorial side, the derived category  of modules over an incidence
algebra of a partial order  has an Auslander-Reiten functor  (equivalent to having a
Serre functor )

 is a free abelian group of rank the cardinality of ,
 induces a linear map on  with an easy matrix, computed directly from

the partial order 

DP

P τ
S

K0(DP ) P

τ K0(T )

≤P



posets

triangulated
categories
with Serre
functor

fractional
Calabi-Yau
triangulated
categories

Weights

polynomials
products of
cyclotomic
polynomials



The Coxeter criterion

Suppose you have combinatorial objects counted by a product formula.

Suppose moreover that you have found partial orders on these objects.

How to convince yourself that they are "good" in the sense of our motto 🎁 ?



The Coxeter criterion

Suppose you have combinatorial objects counted by a product formula.

Suppose moreover that you have found partial orders on these objects.

How to convince yourself that they are "good" in the sense of our motto 🎁 ?

💡 IDEA : compare the characteristic polynomials of monodromy !

Product formula  weights  and degree   formula for characteristic
polynomial (Milnor-Orlik)

So one has a guess for the characteristic polynomial, to compare with the one from
the partial order (called the Coxeter polynomial of )

If they match, one can hope to be on a good track !

⟹ E D ⟹

P



Concrete example (almost for babies ���)

Consider the partial orders on Dyck paths by inclusion (being always below)

In size , there are  Dyck paths.

The general formula is the Catalan number .

For , this gives the product formula

so that  and .

From this, one finds that the monodromy of a generic singularity has char.
polynomial .
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same concrete example, combinatorial side

On the other hand, one computes the matrix of the Auslander-Reiten translation 
and finds

which has the same char. polynomial (up to technical details about shifts and signs).

In fact, this case is derived equivalent to representations of a quiver of Dynkin type
, hence fCY.

τ

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 −1

0 0 1 0 −1

0 1 0 0 −1

−1 1 1 0 −1

0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟
⎠

D5



Derived equivalences between partial orders

It can very well happen that two famillies of combinatorial objects share the same
product formula.

It can also happen that one finds different partial orders both being good w.r.t. this
product formula.

In this case, one should expect the derived categories of posets to be triangle-
equivalent and fractional Calabi-Yau. This can be proved by purely algebraic means.



Derived equivalences between partial orders

It can very well happen that two famillies of combinatorial objects share the same
product formula.

It can also happen that one finds different partial orders both being good w.r.t. this
product formula.

In this case, one should expect the derived categories of posets to be triangle-
equivalent and fractional Calabi-Yau. This can be proved by purely algebraic means.

Prototypical examples : Dyck words for inclusion and binary trees for rotation (Tamari
order)

both counted by Catalan numbers, both apparently sharing the same char.
polynomials.

It is known (Rognerud) that Tamari orders are indeed fractional Calabi-Yau.

Not known yet for Dyck paths under inclusion.



Formulas without good posets

Sometimes not easy to find good partial orders for which the motto 🎁 would work

good candidate for the famous formula for alternating sign matrices, partial
order found by J. Striker.

no candidate known for the formula by Tutte counting intervals in the Tamari
lattices

no candidate known for the formula enumerating 2-stack sortable
permutations

So there remains nice things to discover in the wild out there

🦕



Bonus track : factorising derived categories

Thom-Sebastiani sum of singularities :  and  with disjoint variables, consider 

in terms of weight data  and , this means:

scale both data so that , then take the disjoint union

For example  and  together give 

The the monodromy of Milnor fibers is the tensor product of monodromies

Then the associated Fukaya-style categories should be tensor product of the smaller
Fukaya-style categories.

On the combinatorial side, for the cartesian product of posets, one also gets that the
derived category is the tensor product of categories for factor posets.

 if you can factorise the weight data, you should be able to factorise the poset
(up to derived equivalence)

☕

f g f + g

(d1, … , dm);D (e1, … , en);E

E = D

(1); 3 (1); 4 (4, 3); 12

⟹
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