Numeric-symbolic computation of the separatrix graph of a holomorphic differential equation
 FELim

Loïc Teyssier
(joint work with R. Schilling, Strasbourg)

March 25, 2024

Rational flows on $\overline{\mathbb{C}}$

Rational flows on $\overline{\mathbb{C}}$

$$
P, Q \in \mathbb{C}[z], P \wedge Q=1
$$

$$
\dot{z}(t)=\frac{P}{Q}(z(t)) \quad, t \in \mathbb{R}
$$

Rational flows on $\overline{\mathbb{C}}$

$P, Q \in \mathbb{C}[z], P \wedge Q=1$

$$
\dot{z}(t)=\frac{P}{Q}(z(t)) \quad, t \in \mathbb{R}
$$

Trajectories
level curves of $\operatorname{lm}(T)$, the (multivalued) time function $\mathrm{d} t=\frac{Q}{P} \mathrm{~d} z$

$$
T(z):=\int^{z} \frac{Q}{P}(x) \mathrm{d} x
$$

Rational flows on $\overline{\mathbb{C}}$

$P, Q \in \mathbb{C}[z], P \wedge Q=1$

$$
\dot{z}(t)=\frac{P}{Q}(z(t)) \quad, t \in \mathbb{R}
$$

Trajectories
level curves of $\operatorname{lm}(T)$, the (multivalued) time function $\mathrm{d} t=\frac{Q}{P} \mathrm{~d} z$

$$
T(z):=\int^{z} \frac{Q}{P}(x) \mathrm{d} x
$$

Singularities in affine chart $\mathbb{C}=\{z \neq \infty\}$
$P Q=0$
■ zero-like: $P^{-1}(0)$

- pole-like: $Q^{-1}(0)$

Example (some random degree-10 flow)

Example (some random degree-10 flow)

- Saddle points: poles $Q^{-1}(0)$

Example (some random degree-10 flow)

- Saddle points: poles $Q^{-1}(0)$

■ Other stationary points: zeros P^{-1} (0)

Example (some random degree-10 flow)

- Saddle points: poles $Q^{-1}(0)$
- Other stationary points: zeros P^{-1} (0)
- Separatrices
(= trajectories passing through saddles)

Example (some random degree-10 flow)

■ Saddle points: poles $Q^{-1}(0)$

- Other stationary points: zeros P^{-1} (0)

■ Separatrices
(= trajectories passing through saddles)

■ Zones

Example (some random degree-10 flow)

Fact

Topological class of the flow
= combinatorial class of the separatrix graph 「

Douady's question

Questions

Douady's question

Questions

1 Direct problem: is there an algorithm computing Γ ?

Douady's question

Questions

1 Direct problem: is there an algorithm computing Γ ?
2 What about the inverse problem?

Douady's question

Questions

1 Direct problem: is there an algorithm computing Γ ?
2 What about the inverse problem?

Computational model

Douady's question

Questions

1 Direct problem: is there an algorithm computing Γ ?
2 What about the inverse problem?

Computational model

1 Douady asked for a theoretical algorithm with full real arithmetic and 0-test available: a BSS-machine

Douady's question

Questions

1 Direct problem: is there an algorithm computing Γ ?
2 What about the inverse problem?

Computational model

1 Douady asked for a theoretical algorithm with full real arithmetic and 0-test available: a BSS-machine

2 We produce effective algorithms for polynomials in $\mathcal{C}[z]$
\mathcal{C} : decidable number field

Douady's question

Questions

1 Direct problem: is there an algorithm computing Γ ?
2 What about the inverse problem?

Computational model

1 Douady asked for a theoretical algorithm with full real arithmetic and 0-test available: a BSS-machine

2 We produce effective algorithms for polynomials in $\mathcal{C}[z]$
\mathcal{C} : decidable number field
3 Complexity $=$ arithmetic complexity of the BSS-machine

Separatrix graph

Let $\gamma: t \in] \tau_{-}, \tau_{+}[\subset \mathbb{R} \rightarrow \gamma(t)$ be a maximal trajectory

- Either γ is periodic \longrightarrow cycle

Separatrix graph

Let $\gamma: t \in] \tau_{-}, \tau_{+}[\subset \mathbb{R} \rightarrow \gamma(t)$ be a maximal trajectory

- Either γ is periodic \longrightarrow cycle
$■$ Either $\left|\tau_{ \pm}\right|<\infty: \gamma\left(\tau_{ \pm}\right)$pole-like singularity \longrightarrow separatrix

Separatrix graph

Let $\gamma: t \in] \tau_{-}, \tau_{+}[\subset \mathbb{R} \rightarrow \gamma(t)$ be a maximal trajectory
■ Either γ is periodic \longrightarrow cycle
■ Either $\left|\tau_{ \pm}\right|<\infty: \gamma\left(\tau_{ \pm}\right)$pole-like singularity \longrightarrow separatrix
■ Either $\left|\tau_{ \pm}\right|=\infty: \gamma\left(\tau_{ \pm}\right)$zero-like singularity \longrightarrow landing trajectory

Separatrix graph

Let $\gamma: t \in] \tau_{-}, \tau_{+}[\subset \mathbb{R} \rightarrow \gamma(t)$ be a maximal trajectory
■ Either γ is periodic \longrightarrow cycle
■ Either $\left|\tau_{ \pm}\right|<\infty: \gamma\left(\tau_{ \pm}\right)$pole-like singularity \longrightarrow separatrix
■ Either $\left|\tau_{ \pm}\right|=\infty: \gamma\left(\tau_{ \pm}\right)$zero-like singularity \longrightarrow landing trajectory

Remark

No limit cycles: if γ not a cycle, then $\gamma\left(\tau_{ \pm}\right) \in \overline{\mathbb{C}}$

Separatrix graph

Let $\gamma: t \in] \tau_{-}, \tau_{+}[\subset \mathbb{R} \rightarrow \gamma(t)$ be a maximal trajectory

- Either γ is periodic \longrightarrow cycle

■ Either $\left|\tau_{ \pm}\right|<\infty: \gamma\left(\tau_{ \pm}\right)$pole-like singularity \longrightarrow separatrix
■ Either $\left|\tau_{ \pm}\right|=\infty: \gamma\left(\tau_{ \pm}\right)$zero-like singularity \longrightarrow landing trajectory

Remark

No limit cycles: if γ not a cycle, then $\gamma\left(\tau_{ \pm}\right) \in \overline{\mathbb{C}}$

Definition

Separatrix graph Γ : edges-ordered graph defined by

Separatrix graph

Let $\gamma: t \in] \tau_{-}, \tau_{+}[\subset \mathbb{R} \rightarrow \gamma(t)$ be a maximal trajectory

- Either γ is periodic \longrightarrow cycle

■ Either $\left|\tau_{ \pm}\right|<\infty: \gamma\left(\tau_{ \pm}\right)$pole-like singularity \longrightarrow separatrix
■ Either $\left|\tau_{ \pm}\right|=\infty: \gamma\left(\tau_{ \pm}\right)$zero-like singularity \longrightarrow landing trajectory

Remark

No limit cycles: if γ not a cycle, then $\gamma\left(\tau_{ \pm}\right) \in \overline{\mathbb{C}}$

Definition

Separatrix graph Γ : edges-ordered graph defined by
■ vertices $P^{-1}(0) \cup Q^{-1}(0) \cup\{\infty\}$

Separatrix graph

Let $\gamma: t \in] \tau_{-}, \tau_{+}[\subset \mathbb{R} \rightarrow \gamma(t)$ be a maximal trajectory

- Either γ is periodic \longrightarrow cycle

■ Either $\left|\tau_{ \pm}\right|<\infty: \gamma\left(\tau_{ \pm}\right)$pole-like singularity \longrightarrow separatrix
■ Either $\left|\tau_{ \pm}\right|=\infty: \gamma\left(\tau_{ \pm}\right)$zero-like singularity \longrightarrow landing trajectory

Remark

No limit cycles: if γ not a cycle, then $\gamma\left(\tau_{ \pm}\right) \in \overline{\mathbb{C}}$

Definition

Separatrix graph Γ : edges-ordered graph defined by
■ vertices $P^{-1}(0) \cup Q^{-1}(0) \cup\{\infty\}$
■ edges $\left\{\gamma: \tau_{-}\right.$or $\left.\tau_{+} \in \mathbb{R}\right\}$

Structure theorem

Theorem (A. Douady-F. Estrada-P. Sentenac / B. Branner-K. Dias)
$Q=1$

Structure theorem

Theorem (A. Douady-F. Estrada-P. Sentenac / B. Branner-K. Dias)
$Q=1$
$1 \Gamma(P)$ is a tree and $\Gamma: \mathbb{C}[z] \longrightarrow$ Trees is surjective

Structure theorem

Theorem (A. Douady-F. Estrada-P. Sentenac / B. Branner-K. Dias)
$Q=1$
$1 \Gamma(P)$ is a tree and $\Gamma: \mathbb{C}[z] \longrightarrow$ Trees is surjective 2 $\Gamma(P) \simeq \Gamma(\hat{P}) \Leftrightarrow$ topologically equivalent flows

Structure theorem

Theorem (A. Douady-F. Estrada-P. Sentenac / B. Branner-K. Dias)
$Q=1$
$1 \Gamma(P)$ is a tree and $\Gamma: \mathbb{C}[z] \longrightarrow$ Trees is surjective
2 $\Gamma(P) \simeq \Gamma(\hat{P}) \Leftrightarrow$ topologically equivalent flows

Conjecture

The mapping $\Gamma: \mathbb{C}(z) \longrightarrow P$ lanarGraphs is surjective

Main result

Main Theorem

$$
Q=1, \quad P(z)=z^{k+1}+a_{k-1} z^{k-1}+\cdots+a_{0}, \quad k \in \mathbb{Z}_{>0}
$$

Main result

Main Theorem

$Q=1 \quad, \quad P(z)=z^{k+1}+a_{k-1} z^{k-1}+\cdots+a_{0} \quad, \quad k \in \mathbb{Z}_{>0}$
1 There exists an effective algorithm computing $\Gamma(P)$

Main result

Main Theorem

$Q=1 \quad, \quad P(z)=z^{k+1}+a_{k-1} z^{k-1}+\cdots+a_{0} \quad, \quad k \in \mathbb{Z}_{>0}$
1 There exists an effective algorithm computing $\Gamma(P)$
2 Complexity

$$
\mathrm{O}\left(\operatorname{Re}(\mathfrak{b}(P)) \times k^{4}\left(\frac{9}{4}|P|_{k}\right)^{k} \times \ln ^{2} \frac{\tan \arg \mathfrak{b}(P)}{k}\right)
$$

where:

Main result

Main Theorem

$Q=1 \quad, \quad P(z)=z^{k+1}+a_{k-1} z^{k-1}+\cdots+a_{0}, \quad k \in \mathbb{Z}_{>0}$
1 There exists an effective algorithm computing $\Gamma(P)$
2 Complexity

$$
\mathrm{O}\left(\operatorname{Re}(\mathfrak{b}(P)) \times k^{4}\left(\frac{9}{4}|P|_{k}\right) k \times \ln ^{2} \frac{\tan \arg \mathfrak{b}(P)}{k}\right)
$$

where:

- $\mathcal{L}=\mathbb{Z} / 2 \mathbb{Z}\left[2 \mathrm{i} \pi \operatorname{res}\left(\frac{1}{P} ; z\right): z \in P^{-1}(0)\right]$

Main result

Main Theorem

$Q=1 \quad, \quad P(z)=z^{k+1}+a_{k-1} z^{k-1}+\cdots+a_{0}, \quad k \in \mathbb{Z}_{>0}$
1 There exists an effective algorithm computing $\Gamma(P)$
2 Complexity

$$
\mathrm{O}\left(\operatorname{Re}(\mathfrak{b}(P)) \times k^{4}\left(\frac{9}{4}|P|_{k}\right) k \times \ln ^{2} \frac{\tan \arg \mathfrak{b}(P)}{k}\right)
$$

where:

- $\mathcal{L}=\mathbb{Z} / 2 \mathbb{Z}\left[2 \mathrm{i} \pi \operatorname{res}\left(\frac{1}{P} ; z\right): z \in P^{-1}(0)\right]$
- $\mathfrak{b}(P):=\max |\mathcal{L}|+\mathrm{imin}|\operatorname{lm}(\mathcal{L} \backslash \mathbb{R})|$

Main result

Main Theorem

$Q=1 \quad, \quad P(z)=z^{k+1}+a_{k-1} z^{k-1}+\cdots+a_{0}, \quad k \in \mathbb{Z}_{>0}$
1 There exists an effective algorithm computing $\Gamma(P)$
2 Complexity

$$
\mathrm{O}\left(\operatorname{Re}(\mathfrak{b}(P)) \times k^{4}\left(\frac{9}{4}|P|_{k}\right) k \times \ln ^{2} \frac{\tan \arg \mathfrak{b}(P)}{k}\right)
$$

where:

- $\mathcal{L}=\mathbb{Z} / 2 \mathbb{Z}\left[2 \mathrm{i} \pi \operatorname{res}\left(\frac{1}{P} ; z\right): z \in P^{-1}(0)\right]$
- $\mathfrak{b}(P):=\max |\mathcal{L}|+\mathrm{i} \min |\operatorname{Im}(\mathcal{L} \backslash \mathbb{R})|$
with $\min \emptyset:=+\infty$
- $|P|_{k}:=\max \left\{\left|k a_{\ell}\right|^{\frac{1}{k+1-\ell}}: 0 \leq \ell<k\right\}$

Main result

Main Theorem

$Q=1 \quad, \quad P(z)=z^{k+1}+a_{k-1} z^{k-1}+\cdots+a_{0}, \quad k \in \mathbb{Z}_{>0}$
1 There exists an effective algorithm computing $\Gamma(P)$
2 Complexity

$$
\mathrm{O}\left(\operatorname{Re}(\mathfrak{b}(P)) \times k^{4}\left(\frac{9}{4}|P|_{k}\right) k \times \ln ^{2} \frac{\tan \arg \mathfrak{b}(P)}{k}\right)
$$

where:

- $\mathcal{L}=\mathbb{Z} / 2 \mathbb{Z}\left[2 \mathrm{i} \pi \operatorname{res}\left(\frac{1}{P} ; z\right): z \in P^{-1}(0)\right]$

■ $\mathfrak{b}(P):=\max |\mathcal{L}|+\mathrm{imin}|\operatorname{Im}(\mathcal{L} \backslash \mathbb{R})|$
with $\min \emptyset:=+\infty$

- $|P|_{k}:=\max \left\{\left|k a_{\ell}\right|^{\frac{1}{k+1-\ell}}: 0 \leq \ell<k\right\}$

3 Simple roots: $k^{4} \rightarrow(k \ln k)^{2}$

Bifurcation parameter

Remark

$$
P(z)=z^{k+1}+a_{k-1} z^{k-1}+\cdots+a_{0}, \quad k \in \mathbb{Z}_{>0}
$$

Bifurcation parameter

Remark

$$
\begin{gathered}
P(z)=z^{k+1}+a_{k-1} z^{k-1}+\cdots+a_{0}, \quad k \in \mathbb{Z}_{>0} \\
\quad \mathbb{L}=\mathbb{Z} / 2 \mathbb{Z}\left[2 \mathrm{i} \pi \operatorname{res}\left(\frac{1}{P} ; z\right): z \in P^{-1}(0)\right]
\end{gathered}
$$

Bifurcation parameter

Remark

$$
\begin{aligned}
& P(z)=z^{k+1}+a_{k-1} z^{k-1}+\cdots+a_{0}, \quad k \in \mathbb{Z}_{>0} \\
& \quad ■ \mathcal{L}=\mathbb{Z} / 2 \mathbb{Z}\left[2 \mathrm{i} \pi \operatorname{res}\left(\frac{1}{P} ; z\right): z \in P^{-1}(0)\right] \\
& \quad \mathfrak{b}(P):=\max |\mathcal{L}|+\mathrm{imin}|\operatorname{lm}(\mathcal{L} \backslash \mathbb{R})|
\end{aligned}
$$

Bifurcation parameter

Remark

$$
\begin{gathered}
P(z)=z^{k+1}+a_{k-1} z^{k-1}+\cdots+a_{0}, \quad k \in \mathbb{Z}_{>0} \\
\quad \backsim \mathcal{L}=\mathbb{Z} / 2 \mathbb{Z}\left[2 \operatorname{ii} \pi \operatorname{res}\left(\frac{1}{P} ; z\right): z \in P^{-1}(0)\right] \\
\quad \mathfrak{b}(P):=\max |\mathcal{L}|+\operatorname{imin}|\operatorname{lm}(\mathcal{L} \backslash \mathbb{R})|
\end{gathered}
$$

I $\operatorname{Re}(\mathfrak{b}(P)) \rightarrow+\infty \Longleftrightarrow$ roots collide saddle-node bifurcation

Bifurcation parameter

Remark

$$
\begin{aligned}
& P(z)=z^{k+1}+a_{k-1} z^{k-1}+\cdots+a_{0}, \quad k \in \mathbb{Z}_{>0} \\
& \quad \mathcal{L}=\mathbb{Z} / 2 \mathbb{Z}\left[2 \operatorname{ii} \pi \operatorname{res}\left(\frac{1}{P} ; z\right): z \in P^{-1}(0)\right] \\
& \quad \mathfrak{b}(P):=\max |\mathcal{L}|+\operatorname{imin}|\operatorname{lm}(\mathcal{L} \backslash \mathbb{R})|
\end{aligned}
$$

■ $\operatorname{Re}(\mathfrak{b}(P)) \rightarrow+\infty \Longleftrightarrow$ roots collide
[$\operatorname{lm}(\mathfrak{b}(P)) \rightarrow 0 \Longleftrightarrow$ loop forms
proximity to bifurcation saddle-node bifurcation center/focus bifurcation

Example

Where do the separatrices land?

What is being computed

What is being computed

What is being computed (generic case)

All roots are simple, no cycle (in particular $\mathcal{L} \cap \mathbb{R}=\{0\}$)

Douady-Estrada-Sentenac non-crossing involution:
$\left[\begin{array}{cccccccccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\ 2 & 1 & 6 & 5 & 4 & 3 & 18 & 9 & 8 & 17 & 14 & 13 & 12 & 11 & 16 & 15 & 10 & 7\end{array}\right]$

What is being computed (general case)

What is being computed (general case)

The zones are of different nature and define a sectors partition near ∞

What is being computed (general case)

Lemma
The polar partition is a colored non-crossing partition of $\mathbb{Z} / 2 \mathrm{k} \mathbb{Z}$

What is being computed (general case)

Definition

Here goes a boring, never ending list of properties defining a colored non-crossing partition of $\mathbb{Z} / 2 k \mathbb{Z}$, ascertaining that this is the right concept to state provable theorems. It is a combinatorial counterpart to the dynamical properties of holomorphic flows that have previously been discussed

What is being computed (general case)

Main Proposition

There is a 1-1 correspondence between classes of non-crossing colored partitions (up to cyclic action of $\mathbb{Z} / 2 k \mathbb{Z}$) and topological classes of flows

3 colors:

What is being computed (general case)

Main Proposition

There is a 1-1 correspondence between classes of polar partitions (up to cyclic action of $\mathbb{Z} / 2 k \mathbb{Z}$) and topological classes of flows

Examples

Examples

$k=2$

Examples

Definition

Generic = structurally stable flows (open condition)
= hyperbolic blocks with 2 elements

Generic polar partition = non-crossing involution

Examples

Definition

Generic = structurally stable flows (open condition)
= hyperbolic blocks with 2 elements

Generic polar partition = non-crossing involution

Examples

Definition

Generic = structurally stable flows (open condition)
= hyperbolic blocks with 2 elements

Generic polar partition $=$ non-crossing involution

k	1	2	3	4	5	6	7
\#NCInv (k)	1	1	2	3	6	14	34
\#NonCrossing (k)	3	6	26	123	801	5686	43846

(Computations by T. Tomasini)

How to compute a polar partition

Aim

To compute the polar connections near ∞ without going there

How to compute a polar partition

Aim

To compute the polar connections near ∞ without going there

Method

How to compute a polar partition

Aim

To compute the polar connections near ∞ without going there

Method

1 Take $P \in \mathcal{C}[z]$, prepare it in the form $z^{k+1}+* z^{k-1}+\cdots$ and compute $\mathfrak{b}(P)$ and $|P|_{k}$

How to compute a polar partition

Aim

To compute the polar connections near ∞ without going there

Method

1 Take $P \in \mathcal{C}[z]$, prepare it in the form $z^{k+1}+* z^{k-1}+\cdots$ and compute $\mathfrak{b}(P)$ and $|P|_{k}$

2 Determine the computation parameters (a priori bounds)

How to compute a polar partition

Aim

To compute the polar connections near ∞ without going there

Method

1 Take $P \in \mathcal{C}[z]$, prepare it in the form $z^{k+1}+* z^{k-1}+\cdots$ and compute $\mathfrak{b}(P)$ and $|P|_{k}$

2 Determine the computation parameters (a priori bounds)
3 Find $2 k$ convenient initial values, each one close to a separatrix

How to compute a polar partition

Aim

To compute the polar connections near ∞ without going there

Method

1 Take $P \in \mathcal{C}[z]$, prepare it in the form $z^{k+1}+* z^{k-1}+\cdots$ and compute $\mathfrak{b}(P)$ and $|P|_{k}$

2 Determine the computation parameters (a priori bounds)
3 Find $2 k$ convenient initial values, each one close to a separatrix
4 Compute the partial trajectories (Taylor series method)

How to compute a polar partition

Aim

To compute the polar connections near ∞ without going there

Method

1 Take $P \in \mathcal{C}[z]$, prepare it in the form $z^{k+1}+* z^{k-1}+\cdots$ and compute $\mathfrak{b}(P)$ and $|P|_{k}$

2 Determine the computation parameters (a priori bounds)
3 Find $2 k$ convenient initial values, each one close to a separatrix
4 Compute the partial trajectories (Taylor series method)
5 Stop when the trajectory has "almost landed"

How to compute a polar partition

Aim

To compute the polar connections near ∞ without going there

Method

1 Take $P \in \mathcal{C}[z]$, prepare it in the form $z^{k+1}+* z^{k-1}+\cdots$ and compute $\mathfrak{b}(P)$ and $|P|_{k}$

2 Determine the computation parameters (a priori bounds)
3 Find $2 k$ convenient initial values, each one close to a separatrix
4 Compute the partial trajectories (Taylor series method)
5 Stop when the trajectory has "almost landed"
6 We end up with the incidence matrix of Γ

Simple example

Naive approach

Computational shortcut: root-traps

Root-trapping is not a crime

A typical computation

A typical computation

Determining the parameters: separatrix arcs

Determining the parameters: separatrix arcs

In t-space

Trajectories in different coordinates, $\left\{\begin{array}{ll}P(z) & \simeq z^{k+1} \\ t=T(z) & \simeq \frac{-1}{k z^{k}}\end{array}\right.$ if $r>r_{\infty}$

Determining the parameters: staying away

Safety annulus around the polar neighborhoods

Determining the parameters: time-strips

Zone in t-space (left) and atlas of the time surface (right)

Determining the parameters: periodgon

Periodgon in t-space (A. Chéritat, M. Klimes, C. Rousseau) Its edges belong to $\mathcal{L}=\mathbb{Z} / 2 \mathbb{Z}$ [residues of $\frac{1}{P}$]

Determining the parameters

Main Lemma

We can compute a priori bounds on:

for correct computation of Γ

Determining the parameters

Main Lemma

We can compute a priori bounds on:

1 safety radius r_{∞} around ∞

$$
P(z) \simeq z^{k+1} \text { and } T(z) \simeq \frac{-1}{k z^{k}}
$$

for correct computation of Γ

Determining the parameters

Main Lemma

We can compute a priori bounds on:
1 safety radius r_{∞} around ∞
$P(z) \simeq z^{k+1}$ and $T(z) \simeq \frac{-1}{k z^{k}}$
2 width of separatrix arcs

for correct computation of Γ

Determining the parameters

Main Lemma

We can compute a priori bounds on:
1 safety radius r_{∞} around ∞
$P(z) \simeq z^{k+1}$ and $T(z) \simeq \frac{-1}{k z^{k}}$
2 width of separatrix arcs
3 maximum ODE-solving time before

for correct computation of Γ

Determining the parameters

Main Lemma

We can compute a priori bounds on:
1 safety radius r_{∞} around ∞

$$
P(z) \simeq z^{k+1} \text { and } T(z) \simeq \frac{-1}{k z^{k}}
$$

2 width of separatrix arcs
3 maximum ODE-solving time before
1 getting close to a stationary point, or
for correct computation of Γ

Determining the parameters

Main Lemma

We can compute a priori bounds on:
1 safety radius r_{∞} around ∞

$$
P(z) \simeq z^{k+1} \text { and } T(z) \simeq \frac{-1}{k z^{k}}
$$

2 width of separatrix arcs
3 maximum ODE-solving time before
1 getting close to a stationary point, or
2 root-trapping a stationary point, or
for correct computation of Γ

Determining the parameters

Main Lemma

We can compute a priori bounds on:
1 safety radius r_{∞} around ∞

$$
P(z) \simeq z^{k+1} \text { and } T(z) \simeq \frac{-1}{k z^{k}}
$$

2 width of separatrix arcs
3 maximum ODE-solving time before
1 getting close to a stationary point, or
2 root-trapping a stationary point, or
3 reaching a separatrix arc (homoclinic loop)
for correct computation of Γ

Determining the parameters

Main Lemma

We can compute a priori bounds on:
1 safety radius r_{∞} around ∞

$$
P(z) \simeq z^{k+1} \text { and } T(z) \simeq \frac{-1}{k z^{k}}
$$

2 width of separatrix arcs
3 maximum ODE-solving time before
1 getting close to a stationary point, or
2 root-trapping a stationary point, or
3 reaching a separatrix arc (homoclinic loop)
4 Taylor solver order and time-step
for correct computation of Γ

Applications

Applications

1 Atlas of Riemann surfaces of certain logarithmic sums

Applications

1 Atlas of Riemann surfaces of certain logarithmic sums
2 Computing periodgons: complete analytic invariant of the flow

Applications

1 Atlas of Riemann surfaces of certain logarithmic sums
2 Computing periodgons: complete analytic invariant of the flow
3 Certified ODE solver: once the periodgon is known, better constants

Applications

1 Atlas of Riemann surfaces of certain logarithmic sums
2 Computing periodgons: complete analytic invariant of the flow
3 Certified ODE solver: once the periodgon is known, better constants
4 Use of machine learning (with D. Vlah, Zagreb)

Applications

1 Atlas of Riemann surfaces of certain logarithmic sums
2 Computing periodgons: complete analytic invariant of the flow
3 Certified ODE solver: once the periodgon is known, better constants
4 Use of machine learning (with D. Vlah, Zagreb)
1 for fast determination of polar partitions ($k \leq 10$ or more?)

Applications

1 Atlas of Riemann surfaces of certain logarithmic sums
2 Computing periodgons: complete analytic invariant of the flow
3 Certified ODE solver: once the periodgon is known, better constants
4 Use of machine learning (with D. Vlah, Zagreb)
1 for fast determination of polar partitions ($k \leq 10$ or more?)
2 for the inverse problem

Applications

1 Atlas of Riemann surfaces of certain logarithmic sums
2 Computing periodgons: complete analytic invariant of the flow
3 Certified ODE solver: once the periodgon is known, better constants
4 Use of machine learning (with D. Vlah, Zagreb)
1 for fast determination of polar partitions ($k \leq 10$ or more?)
2 for the inverse problem
5 If the inverse problem is solved:

Applications

1 Atlas of Riemann surfaces of certain logarithmic sums
2 Computing periodgons: complete analytic invariant of the flow
3 Certified ODE solver: once the periodgon is known, better constants
4 Use of machine learning (with D. Vlah, Zagreb)
1 for fast determination of polar partitions ($k \leq 10$ or more?)
2 for the inverse problem
5 If the inverse problem is solved:
1 dessins d'enfants

Applications

1 Atlas of Riemann surfaces of certain logarithmic sums
2 Computing periodgons: complete analytic invariant of the flow
3 Certified ODE solver: once the periodgon is known, better constants
4 Use of machine learning (with D. Vlah, Zagreb)
1 for fast determination of polar partitions ($k \leq 10$ or more?)
2 for the inverse problem
5 If the inverse problem is solved:
1 dessins d'enfants
2 explicitely embedding finite graphs

Further work

Further work

1 Atlas/periodgon of finitely determined translation surfaces

Further work

1 Atlas/periodgon of finitely determined translation surfaces

1 Rational flows and periodgon (on a sphere)

Further work

1 Atlas/periodgon of finitely determined translation surfaces

1 Rational flows and periodgon (on a sphere)
2 Algebraic flows and periodgon (on a genus-g Riemann surface)

Further work

1 Atlas/periodgon of finitely determined translation surfaces

1 Rational flows and periodgon (on a sphere)
2 Algebraic flows and periodgon (on a genus-g Riemann surface)
3 Transcendent flows

Further work

1 Atlas/periodgon of finitely determined translation surfaces

1 Rational flows and periodgon (on a sphere)
2 Algebraic flows and periodgon (on a genus- g Riemann surface)
3 Transcendent flows
2 Inverse problem

Further work

1 Atlas/periodgon of finitely determined translation surfaces

1 Rational flows and periodgon (on a sphere)
2 Algebraic flows and periodgon (on a genus-g Riemann surface)
3 Transcendent flows
2 Inverse problem

Conjecture

Any finite graph can be obtained as the separatrix graph of an algebraic flow

Thank you for your attention

(and enjoy a nice meal!)

