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Introduction

Algebraic analysis is a mathematical theory which studies linear
systems of PDEs using module theory, homological algebra...

It was developed by Malgrange, Bernstein, Kashiwara... in the 70’s.

It nowadays plays a fundamental role in modern mathematics
(algebraic geometry, representation theory, singularity theory...).

Question: What does algebraic analysis yield if we consider rings of
integro-differential operators instead of rings of differential operators?

˙y(t) + t2 y(t) + t

∫ t

0
y(τ) dτ − t

∫ t

0
τ y(τ) dτ + (t − 1) y(0) = 0
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Integro-differential operators

k = a field of characteristic 0.

Let us consider the following k-endomorphisms of k[t]:

t : k[t] −→ k[t]
p 7−→ t p,

∂ : k[t] −→ k[t]
p 7−→ p′,

I : k[t] −→ k[t]
p 7−→

∫ t

t0
p(τ)dτ.

The fundamental theorem of calculus can be written as

∂ ◦ I = 1,

where 1 denotes the identity endomorphism.

We can also see that:

∀ p ∈ k[t], (1 − I ◦ ∂)(p) = p −
∫ t

t0

ṗ(τ) dτ = p(t0).

Fix t0 ∈ k and consider the following endomorphism of k[t]:

e = 1 − I ◦ ∂ : k[t] −→ k[t]
p 7−→ p(t0).
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Definitions of A1(k) and I1(k)
Definition
A1(k) is the sub-k-algebra of endk(k[t]) generated by t and ∂.

Definition
I1(k) is the sub-k-algebra of endk(k[t]) generated by t, ∂, I and e.

Identities of I1(k): (◦ is ommited)

∂ I = 1 : 1st fundamental thm

I ∂ = 1 − e : 2nd fundamental thm

∂ p = p ∂ + ṗ : Leibniz rule

I p ∂ = −I ∂ p + p − e(p) e : integration by parts

I p I = I (p) I − I I (p) : double integration

e2 = e, ∂ e = 0, e p = e(p) e = p(t0) e : relations with the evaluation
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Normal forms

A consequence of these identities is that every operator of I1(k) can
be written in a canonical way (normal form).

Any operator of I1(k) can uniquely be written as

d =
m∑
i=0

ai (t) ∂
i

︸ ︷︷ ︸
∈A1(k)

+

p∑
j=0

bj(t) I cj(t) +

q∑
k=0

fk(t) e ∂
k

︸ ︷︷ ︸
∈⟨e⟩

,

where ai , bj , cj , fk ∈ k[t], m, p, q ∈ N and ⟨e⟩ is the only two-sided
ideal of I1(k) generated by e, i.e., ⟨e⟩ = I1(k) e I1(k).
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I1(k) is not a noetherian ring

Theorem
I1(k) is neither a left nor right noetherian ring.

For N ∈ N, let us introduce

TN =
N∑

k=0

tk

k!
e ∂k (Taylor operators for t0 = 0)

For instance, T0 = e, T1 = e + t e ∂. Notice that

e (e + t e ∂) = e2 + e t e ∂ = e2 + 0 = e ⇒ I1 T0 ⊂ I1 T1.

More generally:

TN = TN TN+1 ⇒ I1 TN ⊆ I1 TN+1, I1 TN ̸= I1 TN+1.
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Coherence definition
Finitely presented module
Let R be a ring and M a left R-module finitely generated by
g1, . . . , gp. Then, we have the following surjective homomorphism:

π : R1×p −→ M
ei = (0 . . . 1 . . . 0) 7−→ gi , i = 1, . . . , p.

M is said to be left finitely presented if the left R-module

ker π =

{
(λ1, . . . , λp) ∈ R1×p | π(λ) =

p∑
i=1

λi gi = 0

}

is finitely generated. This is equivalent to the existence of a matrix
S ∈ Rq×p such that ker π = imR(·S), i.e., we have the following
exact sequence:

R1×q ·S // R1×p π //M // 0.

Coherent module
A left R-module M is coherent if all of its finitely generated left
R-modules are left finitely presented.
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I1(k) is coherent
Coherence characterization
Let R be a ring. The following assertions are equivalent:

1 R is a left coherent ring.

2 i) For all a ∈ R, annR(.a) = {r ∈ R | r a = 0} is a finitely
generated left ideal.

ii) For all pairs of ideals I and J finitely generated, the left ideal
I ∩ J is finitely generated.

Theorem (Bavula 2013)
I1(k) is a coherent ring, i.e., left coherent and right coherent.

END GOAL: Give an effective proof of this theorem.

⇒ Effective development of an integro-differential elimination theory

∀ R ∈ I1q×p ∃ Q ∈ I1r×q : kerI1(.R) = imI1(.Q)

R η = ζ ⇒ Q ζ = Q R η = 0 (elimination of η)
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Situation

• The first point of the characterization of the coherence property
is effective (Quadrat-Regensburger 20, Cluzeau, P., Quadrat 23).

• The extension of the matrix case of the first point makes
effective the second point of the characterization, i.e., I ∩ J
finitely generated where I and J are finitely generated, in the
case where I and J are both included in ⟨e⟩.

• For the intersection I ∩ J , where I or J is included in ⟨e⟩, we
use the concept of semisimple modules (namely, direct sums of
simple modules, e.g., k[t]m).
A submodule of a semisimple module is semisimple
Indeed, if I ⊂ ⟨e⟩, then I semisimple and I ∩ J ⊂ I is also
semisimple.
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Link intersection and annihilator
I = ⟨u1, . . . , un⟩ and J = ⟨v1, . . . , vm⟩.

x ∈ I ∩ J ⇐⇒x =
n∑

i=1

ai ui =
m∑
j=1

bj vj ⇐⇒
n∑

i=1

ai ui −
m∑
j=1

bj vj = 0

⇐⇒
(
a1 . . . an

)u1
...
un

−
(
b1 . . . bm

)v1
...
vm

 = 0

⇐⇒
(
a1 . . . an −b1 · · · − bm

)


u1
...
un
v1
...
vm


︸ ︷︷ ︸

R

= 0

⇐⇒
(
a1 . . . an −b1 · · · − bm

)
∈ kerI1 (·R)
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I ∩ J where I,J ⊂ ⟨e⟩
Theorem
Let R ∈ ⟨e⟩q×p and R =

∑n
k=0 Rk(t) e ∂

k , where Rk ∈ k[t]q×p. Let
m = maxk∈J0,nK deg(Rk), and

C =

 R0 . . . Rn

...
...

R
(m+1)
0 . . . R

(m+1)
n

 ∈ kq(m+2)×p(n+1), Jm+1 =


Iq
Iq ∂
...

Iq ∂
m+1

.
Let D ∈ k[t]r×q(m+2) be a full row rank matrices satisfying

kerk[t](.C ) = imk[t](.D)

and let us define
(
u1 . . . ur

)T
= D Jm+1 ∈ I1r×q, where

u1, . . . , ur belong to I11×q. Then, we have:

kerI1(.R) = imI1(.D Jm+1) =
r∑

i=1

I1 ui .
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Computation of I ∩ J where
I,J ⊂ ⟨e⟩

Algorithm 1 Compute generators of I ∩ J where I,J ⊆ ⟨e⟩
Require: p1, . . . , pn1 generators of I, q1, . . . , qn2 generators of J
• Set R = (p1 . . . pn1 q1 . . . qn2)

T .
• Compute the matrix C corresponding to R.
• Compute D such that kerk[t](.C ) = imk[t](.D).
• Compute u = (u1, . . . , ur )

T = D Jm+1, where ui = (ui,1 ui,2).
return {u1,1 p, . . . , un1,1 p}



Towards an
effective
integro-

differential
elimination

theory

Camille PINTO

Semisimple structure

Consider I ⊂ ⟨e⟩ generated by a1, . . . aq ∈ ⟨e⟩.

GOAL : Find generators of I of the form pure evaluation,
namely, evalutions of the form e p(∂) where p ∈ k[∂].
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Semisimple strucuture
Notations and definitions
• A =

(
a1 . . . aq

)
=
∑n

k=0 Ak(t) e ∂
k where Ak ∈ k[t]q×1

• m = maxk∈J0,nK deg(Ak)

• C =

 A0 . . . An

...
...

A
(m+1)
0 . . . A

(m+1)
n

 =


A0 . . . An

...
...

A
(m)
0 . . . A

(m)
n

0 . . . 0

 =

(
C ′

0

)

• D = (D0 . . . Dm+1), where Di ∈ k[t]r×q, is such as

kerk[t](.C ) = imk[t](.D).

Note that D =

(
D ′ 0
0 Iq

)
, where D ′ ∈ k[t](r−q)×q(m+1)

• B = D Jm+1 =

(∑m
k=0 D

′
i ∂

i

∂m+1 Iq

)
=

(
B ′

∂m+1 Iq

)
• M = cokerI1(.B) = I11×q

/(
I11×r B

)
Then, kerI1(.A) = imI1(.B) and M ∼= imI1(.A) =

∑q
i=1 I1 ai .
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Semisimple structure

I11×r .B // I11×q .A // I = imI1(.A) // 0

I11×r .B // I11×q π //M = cokerI1(.B)

∼= ψ: ψ(π(λ))=λA

OO

// 0

{yi = π(ei )}1≤i≤q generates M.
y = (y1 . . . yq)

T satisfy the left I1-linear relations B y = 0.
In particular, we have:

∂m+1y = 0 ⇔ Im+1 ∂m+1y = 0 ⇔ y = Tm y .

Moreover, we have:

y = Tm y =
m∑

k=0

tk

k!
e ∂k y︸ ︷︷ ︸

zk

=
m∑

k=0

tk

k!
zk .

Then, the zk ’s generate M and I1 zk = I1 e ∂k y = k[t] zk yields

M =
m∑

k=0

I1 zk =
m∑

k=0

k[t] zk .
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Semisimple Structure
What are the relations between the zk ’s?
z = (zT0 . . . zTm )T

• e z = z

• Since 0 = B ′ y = B ′ ∑m
k=0

tk

k! zk =
∑m

k=0 B
′
(

tk

k!

)
zk

Set P :=
(
B ′(1) B ′(t) . . . B ′

(
tm

m!

))
∈ k[t](r−q)×q(m+1),

P z = 0
•

M ∼= M′ = cokerI1

(
.

(
P

(1 − e) Iq(m+1)

))
• B ′ =

∑m
k=0 D

′
i ∂

i ⇒ B ′
(

tk

k!

)
= D ′

0
tk

k! + D ′
1

t(k−1)
(k−1)! + . . .+ D ′

k

• P = (D ′
0 . . . D ′

m)︸ ︷︷ ︸
D′


Iq t Iq . . . tm

m!
Iq

0 Iq . . . tm−1

(m−1)! Iq
...

. . .
...

0 . . . Iq


︸ ︷︷ ︸

U invertible

= D ′ U.



Towards an
effective
integro-

differential
elimination

theory

Camille PINTO

Semisimple Structure
• We have

kerk[t](P.) = kerk[t](D
′ U.) = U−1 kerk[t](D

′.)

= U−1 imk[t](C
′.) = imk[t](U

−1 C ′.).

• We have

U−1 C ′ =


Iq −t Iq . . .

(−t)m

m!
Iq

0 Iq . . .
(−t)m−1

(m−1)! Iq

... Iq
...

0 . . . . . . Iq


 A0 . . . An

...
...

A
(m)
0 . . . A

(m)
n

 = C ′(0)

• kerk[t](P.) = imk[t](C
′(0).) = imk[t](Q

′.), where Q ′ ∈ kq(m+1)×s

is a full column rank matrix and s = rankk(C
′(0)).

• D has a right inverse ⇒ D ′ has a right inverse ⇒ P has a right
inverse ⇒ cokerk[t](.P) is a free k[t]-module of rank s.

• P has a right inverse ⇒ Q ′ has a left inverse T ∈ ks×q(m+1).
• Set w = T z = T e Jm y . The entries wi of the vector w are

pure evaluations and I =
∑s

i=1 k[t]ψ(wi ) = k[t]1×s (T e Jm A).
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Semisimple structure
Theorem
I = I1 a1 + . . . I1 aq ⊂ ⟨e⟩ and let A = (a1 . . . aq)

T . Then, I is a
semisimple k[t]-module that can be generated by a finite set of pure
evaluations.

• C ′ =

 A0 . . . An

...
...

A
(m)
0 . . . A

(m)
n


• s = rankk(C (0)).
• Q ′ ∈ k(q(m+1)×s and B ∈ I1r×q such as imk(Q

′.) = imk(C
′(0).)

and kerI1(.A) = imI1(.B).
• y = (π(e1) . . . π(eq))

T , where π : I11×q −→ M = cokerI1(.B)
• z = (e y e ∂ y . . . e ∂m y)T ,
• T ∈ ks×q(m+1) a left inverse of Q ′,
• w = T z ∈ Ms ,

I =
s∑

i=1

k[t]π−1(wi )A = k[t]1×s (T e Jm A).
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Algorithm

Algorithm 2 Compute pure evaluation generators of a finitely gener-
ated evaluation ideal I as a k[t]-module
Require: a1, . . . , aq generators of I
• Set A = (a1 . . . aq)

T and compute the matrix C ′ .
• Compute a full column rank matrix Q ′ whose columns define a
basis of imk(C

′(0).).
• Compute a left inverse T of Q ′.
• Compute g = (g1 . . . gs)

T = T (e e ∂ . . . e ∂m)T A
return {g1, . . . , gs}.
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Example
Consider q = 2; m = 1; s = rankk(C (0)) = 2 and

A =

(
t e + e ∂ + (t + 1) e ∂2

t e + t e ∂ + 2 t e ∂2

)
=

(
t
t

)
︸︷︷︸
A0

e +

(
1
t

)
︸︷︷︸
A1

e ∂ +

(
t + 1
2 t

)
︸ ︷︷ ︸

A2

e ∂2.

C ′ =


t 1 t + 1
t t 2 t
1 0 1
1 1 2

 and U =

(
I2 t I2
0 I2

)

Q = U−1 C ′ =


0 1 1
0 0 0
1 0 1
1 1 2

 =
(
Q1 Q2 Q3

)
and Q ′ =

(
Q1 Q2

)

T =

(
0 0 1 0
1 0 0 0

)
w = T z =

(
e ∂
e

)
g = w A =

(
e + e ∂2

0

)
.

Then, we have

I = I1 e (1 + ∂2) = k[t] e (1 + ∂2)
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Perspectives

• We have also effectively proved that a finitely generated left
ideal of ⟨e⟩ is principal.

• The semisimple structure of the ideals of ⟨e⟩ gives another
effective proof of I ∩ J finitely generated, where I and J are
two finitely generated left ideals in ⟨e⟩.

• The semisimple structure of the ideals of ⟨e⟩ gives a theoretical
proof of I ∩ J finitely generated, where I and J are finitely
generated ideals and one of them is in ⟨e⟩.
We are now working on an algorithmic proof of this point.

• The last step for an algorithmic proof of the coherence of I1 is
the case of I ∩ J , where I and J are finitely generated ideals,
I /∈ ⟨e⟩ and J /∈ ⟨e⟩.


