Camille PINTO

Towards an effective integro-differential elimination theory

Camille PINTO

Sorbonne University & Inria Paris

with Thomas CLUZEAU (Univ. Limoges, XLIM) and Alban QUADRAT (Sorbonne Univ., Inria Paris)

25 26 27, March 2024

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Camille PINTO

Algebraic analysis is a mathematical theory which studies linear systems of PDEs using module theory, homological algebra...

It was developed by Malgrange, Bernstein, Kashiwara... in the 70's.

Introduction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

It nowadays plays a fundamental role in modern mathematics (algebraic geometry, representation theory, singularity theory...).

Question: What does algebraic analysis yield if we consider *rings of integro-differential operators* instead of rings of differential operators?

$$\dot{y(t)} + t^2 y(t) + t \int_0^t y(\tau) d\tau - t \int_0^t \tau y(\tau) d\tau + (t-1) y(0) = 0$$

Camille PINTO

Integro-differential operators

 \Bbbk = a field of characteristic 0.

Let us consider the following \Bbbk -endomorphisms of $\Bbbk[t]$:

The fundamental theorem of calculus can be written as

$$\partial \circ I = 1,$$

where 1 denotes the identity endomorphism.

We can also see that:

$$orall \ p \in \Bbbk[t], \quad (1 - I \circ \partial)(p) = p - \int_{t_0}^t \dot{p}(\tau) \, d au = p(t_0).$$

Fix $t_0 \in \mathbb{k}$ and consider the following endomorphism of $\mathbb{k}[t]$:

$$e = 1 - I \circ \partial$$
: $\Bbbk[t] \longrightarrow \Bbbk[t]$
 $p \longmapsto p(t_0).$

Camille PINTO

Definitions of $A_1(\Bbbk)$ and $\mathbb{I}_1(\Bbbk)$

Definition

 $A_1(\Bbbk)$ is the sub- \Bbbk -algebra of $\operatorname{end}_{\Bbbk}(\Bbbk[t])$ generated by t and ∂ .

Definition

 $\mathbb{I}_1(\Bbbk)$ is the sub- \Bbbk -algebra of $\mathrm{end}_\Bbbk(\Bbbk[t])$ generated by $t,\,\partial,$ / and e.

Identities of $\mathbb{I}_1(\mathbb{k})$: (\circ is ommited)

 $\partial I = 1$: 1st fundamental thm $I \partial = 1 - e$: 2nd fundamental thm $\partial p = p \partial + \dot{p}$: Leibniz rule $I p \partial = -I \partial p + p - e(p) e$: integration by parts I p I = I(p) I - I I(p) : double integration $e^2 = e, \ \partial e = 0, \ e p = e(p) e = p(t_0) e$: relations with the evaluation

Camille PINTO

Normal forms

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A consequence of these identities is that every operator of $\mathbb{I}_1(\mathbb{k})$ can be written in a canonical way (*normal form*).

Any operator of $\mathbb{I}_1(\mathbb{k})$ can uniquely be written as

$$d = \underbrace{\sum_{i=0}^{m} a_i(t) \partial^i}_{\in A_1(\Bbbk)} + \sum_{j=0}^{p} b_j(t) I c_j(t) + \underbrace{\sum_{k=0}^{q} f_k(t) e \partial^k}_{\in \langle e \rangle},$$

where $a_i, b_j, c_j, f_k \in \mathbb{k}[t], m, p, q \in \mathbb{N}$ and $\langle e \rangle$ is the only two-sided ideal of $\mathbb{I}_1(\mathbb{k})$ generated by e, i.e., $\langle e \rangle = \mathbb{I}_1(\mathbb{k}) e \mathbb{I}_1(\mathbb{k})$.

Camille PINTO

$\mathbb{I}_1(\mathbb{k})$ is not a noetherian ring

Theorem

 $\mathbb{I}_1(\mathbb{k})$ is neither a left nor right noetherian ring.

For $N \in \mathbb{N}$, let us introduce

$$T_N = \sum_{k=0}^N rac{t^k}{k!} \, e \, \partial^k \quad (extsf{Taylor operators for } t_0 = 0)$$

For instance, $T_0 = e$, $T_1 = e + t e \partial$. Notice that

$$e(e + t e \partial) = e^2 + e t e \partial = e^2 + 0 = e \Rightarrow \mathbb{I}_1 T_0 \subset \mathbb{I}_1 T_1.$$

More generally:

$$T_N = T_N \ T_{N+1} \Rightarrow \ \mathbb{I}_1 \ T_N \subseteq \mathbb{I}_1 \ T_{N+1}, \quad \mathbb{I}_1 \ T_N \neq \mathbb{I}_1 \ T_{N+1}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Coherence definition

Finitely presented module

Let \mathcal{R} be a ring and \mathcal{M} a left \mathcal{R} -module finitely generated by g_1, \ldots, g_p . Then, we have the following surjective homomorphism:

$$\pi : \mathcal{R}^{1 \times p} \longrightarrow \mathcal{M}$$

 $e_i = (0 \dots 1 \dots 0) \longmapsto g_i, \quad i = 1, \dots, p.$

 ${\mathcal M}$ is said to be *left finitely presented* if the left ${\mathcal R}\text{-module}$

$$\ker \pi = \left\{ (\lambda_1, \dots, \lambda_p) \in \mathcal{R}^{1 \times p} \mid \pi(\lambda) = \sum_{i=1}^p \lambda_i \, g_i = 0 \right\}$$

is finitely generated. This is equivalent to the existence of a matrix $S \in \mathcal{R}^{q \times p}$ such that ker $\pi = \operatorname{im}_{\mathcal{R}}(\cdot S)$, i.e., we have the following exact sequence:

$$\mathcal{R}^{1\times q} \xrightarrow{\cdot S} \mathcal{R}^{1\times p} \xrightarrow{\pi} \mathcal{M} \longrightarrow 0.$$

Coherent module

A left \mathcal{R} -module \mathcal{M} is *coherent* if all of its finitely generated left \mathcal{R} -modules are left finitely presented.

elimination theory

Towards an effective

integrodifferential

Camille PINTO

$\mathbb{I}_1(\Bbbk)$ is coherent

Coherence characterization

Let ${\mathcal R}$ be a ring. The following assertions are equivalent:

- **1** \mathcal{R} is a left coherent ring.
- i) For all a ∈ R, ann_R(.a) = {r ∈ R | r a = 0} is a finitely generated left ideal.
 - ii) For all pairs of ideals \mathcal{I} and \mathcal{J} finitely generated, the left ideal $\mathcal{I} \cap \mathcal{J}$ is finitely generated.

Theorem (Bavula 2013)

 $\mathbb{I}_1(\Bbbk)$ is a coherent ring, i.e., left coherent and right coherent.

END GOAL: Give an effective proof of this theorem.

Situation

A D N A B N A B N A B N A B N A C A

Towards an effective integrodifferential elimination theory

Camille PINTO

- The first point of the characterization of the coherence property is effective (Quadrat-Regensburger 20, Cluzeau, P., Quadrat 23).
- The extension of the matrix case of the first point makes effective the second point of the characterization, i.e., $\mathcal{I} \cap \mathcal{J}$ finitely generated where \mathcal{I} and \mathcal{J} are finitely generated, in the case where \mathcal{I} and \mathcal{J} are both included in $\langle e \rangle$.
- For the intersection *I* ∩ *J*, where *I* or *J* is included in ⟨*e*⟩, we use the concept of **semisimple modules** (namely, direct sums of *simple* modules, e.g., k[*t*]^{*m*}).

A submodule of a semisimple module is semisimple Indeed, if $\mathcal{I} \subset \langle e \rangle$, then \mathcal{I} semisimple and $\mathcal{I} \cap \mathcal{J} \subset \mathcal{I}$ is also semisimple.

Link intersection and annihilator

$$\mathcal{I} = \langle u_1, \ldots, u_n \rangle$$
 and $\mathcal{J} = \langle v_1, \ldots, v_m \rangle$.

Camille PINTO

Х

$$\in \mathcal{I} \cap \mathcal{J} \iff x = \sum_{i=1}^{n} a_i \, u_i = \sum_{j=1}^{m} b_j \, v_j \iff \sum_{i=1}^{n} a_i \, u_i - \sum_{j=1}^{m} b_j \, v_j = 0$$

$$\iff (a_1 \quad \dots \quad a_n) \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} - (b_1 \quad \dots \quad b_m) \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix} = 0$$

$$\iff (a_1 \quad \dots \quad a_n \quad -b_1 \quad \dots -b_m) \begin{pmatrix} u_1 \\ \vdots \\ u_n \\ v_1 \\ \vdots \\ v_m \end{pmatrix} = 0$$

$$\iff (a_1 \quad \dots \quad a_n \quad -b_1 \quad \dots -b_m) \in \ker_{\mathbb{I}_1} (\cdot R)$$

$\mathcal{I}\cap\mathcal{J}$ where $\mathcal{I},\mathcal{J}\subset\langle e angle$

Theorem

elimination theory Camille PINTO

Towards an effective integro-

differential

Let $R \in \langle e \rangle^{q \times p}$ and $R = \sum_{k=0}^{n} R_k(t) e \partial^k$, where $R_k \in \Bbbk[t]^{q \times p}$. Let $m = \max_{k \in \llbracket 0,n \rrbracket} \deg(R_k)$, and

$$C = \begin{pmatrix} R_0 & \dots & R_n \\ \vdots & & \vdots \\ R_0^{(m+1)} & \dots & R_n^{(m+1)} \end{pmatrix} \in \mathbb{k}^{q(m+2) \times p(n+1)}, \ J_{m+1} = \begin{pmatrix} I_q \\ I_q \partial \\ \vdots \\ I_q \partial^{m+1} \end{pmatrix}$$

Let $D \in \Bbbk[t]^{r \times q(m+2)}$ be a full row rank matrices satisfying

$$\mathsf{ker}_{\Bbbk[t]}(.C) = \mathrm{im}_{\Bbbk[t]}(.D)$$

and let us define $(u_1 \ldots u_r)^T = D J_{m+1} \in \mathbb{I}_1^{r \times q}$, where u_1, \ldots, u_r belong to $\mathbb{I}_1^{1 \times q}$. Then, we have:

$$\ker_{\mathbb{I}_1}(.R) = \operatorname{im}_{\mathbb{I}_1}(.D J_{m+1}) = \sum_{i=1}^r \mathbb{I}_1 u_i$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

Camille PINTO

Computation of $\mathcal{I} \cap \mathcal{J}$ where $\mathcal{I}, \mathcal{J} \subset \langle e angle$

Algorithm 1 Compute generators of $\mathcal{I} \cap \mathcal{J}$ where $\mathcal{I}, \mathcal{J} \subseteq \langle e
angle$

Require: p_1, \ldots, p_{n_1} generators of \mathcal{I} , q_1, \ldots, q_{n_2} generators of \mathcal{J}

• Set
$$R = (p_1 \ \dots \ p_{n_1} \ q_1 \ \dots \ q_{n_2})^T$$
.

- Compute the matrix C corresponding to R.
- Compute D such that $\ker_{\Bbbk[t]}(.C) = \operatorname{im}_{\Bbbk[t]}(.D)$.
- Compute $u = (u_1, \ldots, u_r)^T = D J_{m+1}$, where $u_i = (u_{i,1}, u_{i,2})$. return $\{u_{1,1}, p, \ldots, u_{n_1,1}, p\}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Semisimple structure

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Camille PINTO

Consider $\mathcal{I} \subset \langle e \rangle$ generated by $a_1, \ldots a_q \in \langle e \rangle$.

GOAL : Find generators of \mathcal{I} of the form *pure evaluation*, namely, evalutions of the form $e p(\partial)$ where $p \in \mathbb{k}[\partial]$.

Camille PINTO

Semisimple strucuture

Notations and definitions

• $A = \begin{pmatrix} a_1 & \dots & a_q \end{pmatrix} = \sum_{k=0}^n A_k(t) e \partial^k$ where $A_k \in \mathbb{k}[t]^{q \times 1}$ • $m = \max_{k \in [0,n]} \deg(A_k)$

•
$$C = \begin{pmatrix} A_0 & \dots & A_n \\ \vdots & & \vdots \\ A_0^{(m+1)} & \dots & A_n^{(m+1)} \end{pmatrix} = \begin{pmatrix} A_0 & \dots & A_n \\ \vdots & & \vdots \\ A_0^{(m)} & \dots & A_n^{(m)} \\ 0 & \dots & 0 \end{pmatrix} = \begin{pmatrix} C' \\ 0 \end{pmatrix}$$

•
$$D = (D_0 \quad \dots \quad D_{m+1})$$
, where $D_i \in \Bbbk[t]^{r imes q}$, is such as

$$\ker_{\Bbbk[t]}(.C) = \operatorname{im}_{\Bbbk[t]}(.D).$$

Note that
$$D = \begin{pmatrix} D' & 0 \\ 0 & l_q \end{pmatrix}$$
, where $D' \in \mathbb{k}[t]^{(r-q) \times q(m+1)}$
• $B = D J_{m+1} = \begin{pmatrix} \sum_{k=0}^{m} D'_i \partial^i \\ \partial^{m+1} l_q \end{pmatrix} = \begin{pmatrix} B' \\ \partial^{m+1} l_q \end{pmatrix}$

• $\mathcal{M} = \operatorname{coker}_{\mathbb{I}_1}(.B) = \mathbb{I}_1^{1 \times q} / (\mathbb{I}_1^{1 \times r} B)$

Then, $\ker_{\mathbb{I}_1}(.A) = \operatorname{im}_{\mathbb{I}_1}(.B)$ and $\mathcal{M} \cong \operatorname{im}_{\mathbb{I}_1}(.A) = \sum_{i=1}^q \mathbb{I}_1 \underbrace{a_i}_{i=1}, \underbrace{a_i}_{i=1} \underbrace{a_i}_{i=1}$

Semisimple structure

Camille PINTO

 $\{y_i = \pi(e_i)\}_{1 \le i \le q}$ generates \mathcal{M} . $y = (y_1 \ldots y_q)^T$ satisfy the left \mathbb{I}_1 -linear relations B y = 0. In particular, we have:

$$\partial^{m+1}y = 0 \Leftrightarrow I^{m+1}\partial^{m+1}y = 0 \Leftrightarrow y = T_m y.$$

Moreover, we have:

$$y = T_m y = \sum_{k=0}^m \frac{t^k}{k!} \underbrace{e \,\partial^k y}_{z_k} = \sum_{k=0}^m \frac{t^k}{k!} z_k.$$

Then, the z_k 's generate \mathcal{M} and $\mathbb{I}_1 z_k = \mathbb{I}_1 e \partial^k y = \mathbb{k}[t] z_k$ yields

$$\mathcal{M} = \sum_{k=0}^{m} \mathbb{I}_1 z_k = \sum_{k=0}^{m} \mathbb{k}[t] z_k.$$

Semisimple Structure

effective integrodifferential elimination theory

Towards an

Camille PINTO

What are the relations between the z_k 's?

 $z = (z_0^T \dots z_m^T)^T$ • e z = z

.

• Since $0 = B' y = B' \sum_{k=0}^{m} \frac{t^k}{k!} z_k = \sum_{k=0}^{m} B' \left(\frac{t^k}{k!}\right) z_k$ Set $P := \begin{pmatrix} B'(1) & B'(t) & \dots & B' \left(\frac{t^m}{m!}\right) \end{pmatrix} \in \mathbb{k}[t]^{(r-q) \times q(m+1)}$, P z = 0

$$\mathcal{M} \cong \mathcal{M}' = \operatorname{coker}_{\mathbb{I}_{1}} \left(\cdot \begin{pmatrix} P \\ (1-e) I_{q(m+1)} \end{pmatrix} \right)$$

• $B' = \sum_{k=0}^{m} D'_{i} \partial^{i} \Rightarrow B' \left(\frac{t^{k}}{k!} \right) = D'_{0} \frac{t^{k}}{k!} + D'_{1} \frac{t^{(k-1)}}{(k-1)!} + \ldots + D'_{k}$
• $P = \underbrace{\left(D'_{0} \ldots D'_{m} \right)}_{D'} \underbrace{\begin{pmatrix} I_{q} & t I_{q} & \ldots & \frac{t^{m-1}}{(m-1)!} I_{q} \\ 0 & I_{q} & \ldots & \frac{t^{m-1}}{(m-1)!} I_{q} \\ \vdots & \ddots & \vdots \\ 0 & \ldots & I_{q} \end{pmatrix}}_{U \text{ invertible}} = D' U.$

Semisimple Structure

We have

$$\begin{split} & \ker_{\Bbbk[t]}(P.) = \ker_{\Bbbk[t]}(D' \ U.) = U^{-1} \ \ker_{\Bbbk[t]}(D'.) \\ &= U^{-1} \inf_{\Bbbk[t]}(C'.) = \inf_{\Bbbk[t]}(U^{-1} \ C'.). \end{split}$$

$$U^{-1} C' = \begin{pmatrix} I_q & -t I_q & \dots & \frac{(-t)^m}{m!} I_q \\ 0 & I_q & \dots & \frac{(-t)^{m-1}}{(m-1)!} I_q \\ \vdots & & I_q & \vdots \\ 0 & \dots & \dots & I_q \end{pmatrix} \begin{pmatrix} A_0 & \dots & A_n \\ \vdots & & \vdots \\ A_0^{(m)} & \dots & A_n^{(m)} \end{pmatrix} = C'(0)$$

- ker_{k[t]}(P.) = im_{k[t]}(C'(0).) = im_{k[t]}(Q'.), where Q' ∈ k^{q(m+1)×s} is a full column rank matrix and s = rank_k(C'(0)).
- D has a right inverse ⇒ D' has a right inverse ⇒ P has a right inverse ⇒ coker_{k[t]}(.P) is a free k[t]-module of rank s.
- P has a right inverse $\Rightarrow Q'$ has a left inverse $T \in \mathbb{k}^{s \times q(m+1)}$.
- Set $w = T z = T e J_m y$. The entries w_i of the vector w are pure evaluations and $\mathcal{I} = \sum_{i=1}^{s} \mathbb{k}[t] \psi(w_i) = \mathbb{k}[t]^{1 \times s} (T e J_m A)$.

Camille PINTO

Semisimple structure

∃ ► = √Q(~

 $\mathcal{I} = \mathbb{I}_1 a_1 + \ldots \mathbb{I}_1 a_q \subset \langle e \rangle$ and let $A = (a_1 \ldots a_q)^T$. Then, \mathcal{I} is a semisimple $\mathbb{k}[t]$ -module that can be generated by a finite set of pure evaluations.

•
$$C' = \begin{pmatrix} A_0 & \dots & A_n \\ \vdots & & \vdots \\ A_0^{(m)} & \dots & A_n^{(m)} \end{pmatrix}$$

• $s = \operatorname{rank}_{\Bbbk}(C(0)).$

Theorem

- $Q' \in \mathbb{k}^{(q(m+1)\times s}$ and $B \in \mathbb{I}_1^{r \times q}$ such as $\operatorname{im}_{\mathbb{k}}(Q'.) = \operatorname{im}_{\mathbb{k}}(C'(0).)$ and $\ker_{\mathbb{I}_1}(.A) = \operatorname{im}_{\mathbb{I}_1}(.B).$
- $y = (\pi(e_1) \ldots \pi(e_q))^T$, where $\pi : \mathbb{I}_1^{1 \times q} \longrightarrow \mathcal{M} = \operatorname{coker}_{\mathbb{I}_1}(.B)$

•
$$z = (ey e \partial y \dots e \partial^m y)^T$$
,

• $T \in \mathbb{k}^{s \times q(m+1)}$ a left inverse of Q',

$$w = T z \in \mathcal{M}^{s},$$
$$\mathcal{I} = \sum_{i=1}^{s} \mathbb{k}[t] \pi^{-1}(w_{i}) A = \mathbb{k}[t]^{1 \times s} (T e J_{m} A).$$

Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

elimination theory Camille PINTO

Towards an effective integro-

differential

Algorithm 2 Compute pure evaluation generators of a finitely generated evaluation ideal ${\cal I}$ as a $\Bbbk[t]\text{-module}$

Require: a_1, \ldots, a_q generators of \mathcal{I}

• Set $A = (a_1 \ \dots \ a_q)^T$ and compute the matrix C'.

• Compute a full column rank matrix Q' whose columns define a basis of $\operatorname{im}_{\Bbbk}(C'(0))$.

- Compute a left inverse T of Q'.
- Compute $g = (g_1 \ldots g_s)^T = T (e e \partial \ldots e \partial^m)^T A$ return $\{g_1, \ldots, g_s\}.$

Camille PINTO

Consider
$$q = 2$$
; $m = 1$; $s = \operatorname{rank}_{\Bbbk}(C(0)) = 2$ and

$$A = \begin{pmatrix} t \ e + e \ \partial + (t+1) \ e \ \partial^2 \\ t \ e + t \ e \ \partial + 2 \ t \ e \ \partial^2 \end{pmatrix} = \underbrace{\begin{pmatrix} t \\ t \\ A_0 \end{pmatrix}}_{A_0} e + \underbrace{\begin{pmatrix} 1 \\ t \\ A_1 \end{pmatrix}}_{A_1} e \ \partial + \underbrace{\begin{pmatrix} t+1 \\ 2 \ t \\ A_2 \end{pmatrix}}_{A_2} e \ \partial^2.$$

$$C' = \begin{pmatrix} t & 1 & t+1 \\ t & t & 2t \\ 1 & 0 & 1 \\ t & t & -t \end{pmatrix} \text{ and } U = \begin{pmatrix} l_2 & t \ l_2 \\ 0 & l_2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 2 \end{pmatrix} \\ Q = U^{-1} C' = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix} = (Q_1 \quad Q_2 \quad Q_3) \text{ and } Q' = (Q_1 \quad Q_2) \\ = (0 \quad 0 \quad 1 \quad 0) = (e \cdot e \cdot \partial) = (e \cdot e \cdot \partial) = (e \cdot e \cdot \partial e$$

$$T = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad w = T z = \begin{pmatrix} e \\ e \end{pmatrix} \quad g = w A = \begin{pmatrix} e + e \\ 0 \end{pmatrix}.$$

Then, we have

$$\mathcal{I} = \mathbb{I}_1 e \left(1 + \partial^2 \right) = \mathbb{k}[t] e \left(1 + \partial^2 \right)$$

Example

Perspectives

- We have also effectively proved that a finitely generated left ideal of $\langle e \rangle$ is principal.
- The semisimple structure of the ideals of $\langle e \rangle$ gives another effective proof of $\mathcal{I} \cap \mathcal{J}$ finitely generated, where \mathcal{I} and \mathcal{J} are two finitely generated left ideals in $\langle e \rangle$.
- The semisimple structure of the ideals of ⟨e⟩ gives a theoretical proof of *I* ∩ *J* finitely generated, where *I* and *J* are finitely generated ideals and one of them is in ⟨e⟩.

We are now working on an algorithmic proof of this point.

• The last step for an algorithmic proof of the coherence of \mathbb{I}_1 is the case of $\mathcal{I} \cap \mathcal{J}$, where \mathcal{I} and \mathcal{J} are finitely generated ideals, $\mathcal{I} \notin \langle e \rangle$ and $\mathcal{J} \notin \langle e \rangle$.

Towards an effective integrodifferential elimination theory

Camille PINTO