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Introduction

Algebraic analysis is a mathematical theory which studies linear
systems of PDEs using module theory, homological algebra...

It was developed by Malgrange, Bernstein, Kashiwara... in the 70's.

It nowadays plays a fundamental role in modern mathematics
(algebraic geometry, representation theory, singularity theory...).

Question: What does algebraic analysis yield if we consider rings of
integro-differential operators instead of rings of differential operators?

y(t)+t2y(t)+t/Oty(T)dT—t/otry(T)dT+(t—1)y(0):0
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Integro-differential operators
k = a field of characteristic 0.
Let us consider the following k-endomorphisms of k[¢]:

t:k[t] — Kk[f] 0:Kk[f] — Kk[t] [:k[t] — k[t]
p > tp, p — P, p — [ p(r)dr.

The fundamental theorem of calculus can be written as
dol =1,
where 1 denotes the identity endomorphism.

We can also see that:
t
Ypekld, (1-100)(p)=p- [ pr)dr=plt)
to

Fix to € k and consider the following endomorphism of k|[t]:

e=1—100: k[t] — K[t]
p — p(to)
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Definitions of A;(k) and I; (k)

Definition

A1 (k) is the sub-k-algebra of endy(k[t]) generated by t and 0.

Definition

I; (k) is the sub-k-algebra of endy(k[t]) generated by t, 9, | and e.

Identities of I;(k): (o is ommited)

ol=1
l10=1—¢
Op=po+p

Ipd=—-10p+p—e(p)e
Ipl=1(p)I—11(p)

e®=e 0e=0, ep=-e(p)e=p(t)e

: 1st fundamental thm
: 2nd fundamental thm
: Leibniz rule

. integration by parts

: double integration

: relations with the evaluation
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A consequence of these identities is that every operator of I; (k) can
be written in a canonical way (normal form).

Any operator of I; (k) can uniquely be written as

dzzm:a, 8’+Zb t)lcj(t+ka t) e d*,
i=0 =l

—_——— \W_./
€ A (k) E(e)

where a;, bj, ¢j, fi € k[t], m,p,q € N and (e) is the only two-sided
ideal of I (k) generated by e, i.e., (e) = I;(k) eI (k).
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I;(k) is not a noetherian ring

Theorem
I; (k) is neither a left nor right noetherian ring.

For N € N, let us introduce

Nk
t
Ty = E e ok (Taylor operators for ty = 0)
k=0

-

For instance, To = e, T1 = e + te d. Notice that
e(e+ted)=e*+eted=e’+0=e => 1 ToCI; Ty.
More generally:

Thn=TnTn+1 = L Ty €I Tygr, In Ty # I Taga.
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Coherence definition

Finitely presented module
Let R be a ring and M a left R-module finitely generated by
g1,---,8p- Then, we have the following surjective homomorphism:
TR — M
eg=(0...1...00 — g, i=1...,p.

M is said to be left finitely presented if the left R-module
kem—{(Al,...,A) e RYP | m(\) ZA g,O}

is finitely generated. This is equivalent to the existence of a matrix
S € R9%*P such that kerm = img(-S), i.e., we have the following
exact sequence:

Rlxq

Coherent module
A left R-module M is coherent if all of its finitely generated left
R-modules are left finitely presented.

SRR T oM 0.
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[; (k) is coherent

Coherence characterization
Let R be a ring. The following assertions are equivalent:

@ R is a left coherent ring.

® i) Forall aeR, anng(.a) ={r € R|ra=0}is a finitely
generated left ideal.

ii) For all pairs of ideals Z and J finitely generated, the left ideal
I N J is finitely generated.

Theorem (Bavula 2013)

I, (k) is a coherent ring, i.e., left coherent and right coherent.

END GOAL: Give an effective proof of this theorem.

= Effective development of an integro-differential elimination theory
VRe, 7P 3Qel;"™: kery,(.R) = imy (.Q)
Rn=¢( = Q¢=QRn=0 (elimination of n)
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® The first point of the characterization of the coherence property
is effective (Quadrat-Regensburger 20, Cluzeau, P., Quadrat 23).

® The extension of the matrix case of the first point makes
effective the second point of the characterization, i.e., ZNJ
finitely generated where Z and J are finitely generated, in the
case where 7 and J are both included in (e).

® For the intersection Z N 7, where Z or J is included in (e), we
use the concept of semisimple modules (namely, direct sums of
simple modules, e.g., k[t]™).
A submodule of a semisimple module is semisimple

Indeed, if Z C (e), then Z semisimple and ZN J C T is also
semisimple.
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Link intersection and annihilator

I:<U1,..

n
erﬂj@xzza;ui

Supy and J = (v, ..

m n m
=ijvj<:>Za,-u,-—ijvj:0
j=1 i=1 j=1

an)

an

an

s Vi)

uy Vi
—(by ... by | :]=0
up Vm
uy
up |
by = ba) | 7] =0
Vi
——
R
—by c— bm) S ker]h (R)
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ZNJ where Z, J C (e)

Theorem
Let R € ()P and R =Y",_, Ri(t)ed*, where R, € k[t]9P. Let
m = maxye[o,n deg(Rk), and

Re ... R, /Iqa
q
C = c kq(m+2)><p(n+1)’ Jm+1 _ .
m+1 m+1 -
R((J i e Rl(1 ) Iq 8m+1

Let D € Kk[t]"™*9(m+2) be a full row rank matrices satisfying
kerk[t](.C) = 1mk[t](D)

) T
and let us define (u1 . u,) =D Jpy1 € 1779, where
uy,...,u, belong to 1,*%9. Then, we have:

kerr, (.R) = imp, (.D Jpi1) = Z I u;.
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Computation of Z N J where
Z,J C(e)

Algorithm 1 Compute generators of ZN J where Z, 7 C (e)

Require: pi,...,pp, generators of Z, q1,. .., qn, generators of J

eSet R=(p1 ... Py G1 -~ Qny) "

e Compute the matrix C corresponding to R.

e Compute D such that kery(.C) = imyy(.D).

e Compute u = (u1, ..., u)T = D Jpy1, where u; = (uj1 u;2).
return {u11p, ..., Un 1P}
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Consider Z C (e) generated by a1, ...aq4 € (e).

GOAL : Find generators of Z of the form pure evaluation,
namely, evalutions of the form e p(9) where p € k[0].
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Semisimple strucuture

Notations and definitions
[ ] A = (31
® m = maxye|o,n] deg(Ax)

An
A
0

g

T Ao
e C= : : = .
A Al AL
0
® D= (Dy Dpmyi1), where D; € k[t]"*9, is such as

kerk[t] ( C) = imk[t] (D)

!/
Note that D = (% ;)) where D’ € k[t](r—a)xa(m+1)
q
> ko Dj ' B’
*B=DJn1= < gm+1 Iq = om+1 /q

* M = cokery, (.B) =19 /(Hllxr B)
Then, kery, (.A) = imy, (.B) and M = imy, (.A)

— q

i=1

Hl a;.

aq) = ZZ:O Ak(t) e 8% where A € k[t]qXI

C/
0

)
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Semisimple structure

L B XA Ty (A) >0

H H T% P p(m(A))=AA

.B
I[11><r 1xq

—Z> 179 —s M = cokery, (.B) —0

{yi = m(ei) }1<i<q generates M.
y=(y1 ... yq)" satisfy the left I;-linear relations By = 0.
In particular, we have:
OMly =0 & IOy =0 & y=T,y.
Moreover, we have:
m ek
R Y RIS ot
4

Then, the z;'s generate M and Iy zx = I; e 0¥ y = k[t] z yields

M=) "Tiz.=> klt]z.
k=0 k=0
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.
® Since0=B'y =58 ZTZO%Z;( S o ( )Zk
set Pi= (B/(1) B/(t) ... B(&)) eklgroxam,

~ = ()eI1 q(m+1

= SR Dl = B (4) =Dy + DL G+ + D,
I th Ly,
m—1
eP=(D,...D,)|° " ol | — o
D’ :
0 Iy

U invertible
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erk[t]( ) = erk[t]( ) = erk[t]( )
=y imk[t](C’.) = imk[t](Ufl C/)

® We have
I —tly ... 2%
(s Ao A
—t
U_l C/ = 0 lq (m—1)! Iq — C/(O)
: I : A A
0 ... . I
* keryig(P.) = imy((C'(0).) = imyp(Q'.), where Q' € ka(m+1)xs

is a full column rank matrix and s = ranky(C’(0)).

D has a right inverse = D’ has a right inverse = P has a right
inverse = cokery(.P) is a free k[t]-module of rank s.

P has a right inverse = Q' has a left inverse T e ks*a(m+1),

Set w=Tz=TelJ,y. The entries w; of the vector w are
pure evaluations and Z = "7 k[t] ¢(w;) = K[e]*** (T e J, A).
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Semisimple structure

Theorem

IT=Tya1+...11a;C (e) and let A= (ay ... ag)". Then, T is a
semisimple k[t]-module that can be generated by a finite set of pure
evaluations.

Ao ... A
o (= : :

Al Alm
[ ]

s = rankg(C(0)).

Q' € klalm+1)xs and B € ;"9 such as imy(Q’.) = imy(C’(0).)
and kery, (.A) = imy, (.B).

y = (n(e1) ... m(eq))T, where m: 1;**9 — M = cokery, (.B)
e z=(ey edy ... edmy)T,

o T e ksxa(m+1) 5 Jeft inverse of @,

ew=Tze€ /\/lS

7= Zk[t] Yw)) A =Kk[t]'** (T e Jm A).
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Algorithm 2 Compute pure evaluation generators of a finitely gener-
ated evaluation ideal Z as a k[t]-module

Require: ai, ..., a, generators of Z
eSet A= (a1 ... a;)" and compute the matrix C’ .
e Compute a full column rank matrix Q" whose columns define a
basis of imy(C’(0).).
e Compute a left inverse T of Q.
e Computeg=(g1 ... &) ' =T(e ed ... edmMTA
return {gi,...,8}.
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_(te+ed+(t+1)ed? 1 t+1 2
A_( te+ted+2ted? | et t ed.
Az
t 1 t+1
, |t ot 2t (b th
Cc' = 10 1 andU—(O 12>
1 1 2
0 1 1
1 0 0O ,
Q=U"C=1|; ¢ 1 = (1 @& @)andQ =(@& @)
1 1 2
{0010 . [ed _ _[(e+ed?
T_(l 0 0 0) W—TZ—(e) g—WA—( 0 )

Then, we have
T=Te(1+0%) =k[t]e(1+0?)
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Perspectives

We have also effectively proved that a finitely generated left
ideal of (e) is principal.

The semisimple structure of the ideals of (e) gives another
effective proof of Z N 7 finitely generated, where Z and 7 are
two finitely generated left ideals in (e).

The semisimple structure of the ideals of (e) gives a theoretical
proof of Z N J finitely generated, where Z and J are finitely
generated ideals and one of them is in (e).

We are now working on an algorithmic proof of this point.

The last step for an algorithmic proof of the coherence of I; is
the case of ZN J, where Z and 7 are finitely generated ideals,
T ¢ (e)and J ¢ (e).



