Confluence for topological rewriting systems

Adya Musson-Leymarie
https://www.adyaml.com

FELIM - Functional Equations in Limoges

March 26th, 2024

I. INTRODUCTION

```
    Rewriting theory
Describes sequences of computations through oriented identities
a.k.a. rewrite rules
```


Rewriting theory
 Describes sequences of computations through oriented identities a.k.a. rewrite rules

In computer science
\rightarrow Term rewriting
$\rightarrow \beta$-reduction in λ-calculus
Instances

Rewriting theory
 Describes sequences of computations through oriented identities a.k.a. rewrite rules

In computer science
\rightarrow Term rewriting
$\rightarrow \beta$-reduction in λ-calculus

Instances

In computer algebra
\rightarrow Polynomial reduction
\rightarrow Involutive divisions

Rewriting theory

Describes sequences of computations through oriented identities a.k.a. rewrite rules

Abstract Rewriting System

$\rightarrow A$ an underlying set
$\rightarrow \rightarrow$ a binary relation on A
We write $a \rightarrow b$ for $(a, b) \in \rightarrow$

Abstract Rewriting System

$\rightarrow A$ an underlying set
$\rightarrow \rightarrow$ a binary relation on A
We write $a \rightarrow b$ for $(a, b) \in \rightarrow$

Transitive reflexive closure

We write $a \xrightarrow{*} b$ to express that $a=a_{0} \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{\ell}=b$

Abstract Rewriting System

$\rightarrow A$ an underlying set
$\rightarrow \rightarrow$ a binary relation on A
We write $a \rightarrow b$ for $(a, b) \in \rightarrow$

Transitive reflexive closure

We write $a \xrightarrow{*} b$ to express that $a=a_{0} \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{\ell}=b$

Abstract Rewriting System

$\rightarrow A$ an underlying set
$\rightarrow \rightarrow$ a binary relation on A
We write $a \rightarrow b$ for $(a, b) \in \rightarrow$

Transitive reflexive closure

We write $a \xrightarrow{*} b$ to express that $a=a_{0} \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{\ell}=b$

Example

Multivariate division with respect to R is confluent iff R is a Gröbner basis

Confluence "at the limit"

$\ln \mathbb{K}[[x, y, z]]$ with the inverse deglex order such that $z>y>x$ take

$$
R=\left\{\mathrm{z}-y, \quad \mathrm{z}-x, \quad \mathrm{y}-y^{2}, \quad \mathrm{x}-x^{2}\right\}
$$

Confluence "at the limit"

In $\mathbb{K}[[x, y, z]]$ with the inverse deglex order such that $z>y>x$ take

$$
R=\left\{\mathrm{z}-y, \quad \mathrm{z}-x, \quad \mathrm{y}-y^{2}, \quad \mathrm{x}-x^{2}\right\}
$$

The two branches will never have a common element Hence the system is not confluent

However with the (x, y, z)-adic topology both branches converge to 0

Topological Abstract Rewriting System

$\rightarrow(X, \tau)$ a topological space
$\rightarrow \rightarrow$ a binary relation on X

Topological Abstract Rewriting System
$\rightarrow(X, \tau)$ a topological space
$\rightarrow \rightarrow$ a binary relation on X

Topological rewriting relation

Write $x \oplus y$ if for every neighbourhood U of y there exists $z \in U$ s.t. $x \xrightarrow{*} z$

Note how $x \xrightarrow{*} y$ implies $x \rightarrow y$

Topological confluence

Topological confluence

Theorem. [Chenavier 2020]
Standard basis \Leftrightarrow topological confluence where standard bases are to formal power series as Gröbner bases are to polynomials

Topological confluence

Theorem. [Chenavier 2020]
Standard basis \Leftrightarrow topological confluence where standard bases are to formal power series as Gröbner bases are to polynomials

Infinitary confluence

Of interest in computer science: infinitary λ / Σ-terms

Strength of confluences

For every TARS we have:
confluence \Longrightarrow topological confluence infinitary confluence \Longrightarrow topological confluence

Strength of confluences

For every TARS we have:
confluence \Longrightarrow topological confluence infinitary confluence \Longrightarrow topological confluence

Discrete rewriting system

If $x \rightarrow(\odot y$ implies $x \xrightarrow{*} y$, then we say that the $\operatorname{TARS}(X, \tau, \rightarrow)$ has discrete rewriting.

Strength of confluences

For every TARS we have:
confluence \Longrightarrow topological confluence infinitary confluence \Longrightarrow topological confluence

Discrete rewriting system

If $x \rightarrow(\odot y$ implies $x \xrightarrow{*} y$, then we say that the $\operatorname{TARS}(X, \tau, \rightarrow)$ has discrete rewriting.

In such a case, confluence, topological confluence and infinitary confluence are trivially equivalent.

Strength of confluences

For every TARS we have:
confluence \Longrightarrow topological confluence
infinitary confluence \Longrightarrow topological confluence

Discrete rewriting system

If $x \rightarrow y$ implies $x \xrightarrow{*} y$, then we say that the $\operatorname{TARS}(X, \tau, \rightarrow)$ has discrete rewriting.

In such a case, confluence, topological confluence and infinitary confluence are trivially equivalent.

For instance, if τ is the discrete topology, then (X, τ, \rightarrow) has discrete rewriting.

Counter-example of topological conflucence \Rightarrow confluence
Consider again, in $\mathbb{K}[[x, y, z]]$

$$
R=\left\{z-y, \quad z-x, \quad y-y^{2}, \quad x-x^{2}\right\}
$$

Counter-example of topological conflucence \Rightarrow confluence
Consider again, in $\mathbb{K}[[x, y, z]]$

$$
R=\left\{z-y, \quad z-x, \quad y-y^{2}, \quad x-x^{2}\right\}
$$

R is a standard basis because
$\rightarrow \mathrm{LM}(R)=\{\mathbf{x}, \mathrm{y}, \mathrm{z}\}$ and
\rightarrow if $f \in I(R)$ then f has no constant coefficient

Counter-example of topological conflucence \Rightarrow confluence
Consider again, in $\mathbb{K}[[x, y, z]]$

$$
R=\left\{z-y, \quad z-x, \quad y-y^{2}, \quad x-x^{2}\right\}
$$

R is a standard basis because
$\rightarrow \mathrm{LM}(R)=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and
\rightarrow if $f \in I(R)$ then f has no constant coefficient
Thus the system is topologically confluent

However we saw previously that it is not confluent

Line with two origins

$$
X:=(\mathbb{R} \times\{ \pm 1\}) / \sim
$$

where $(x, 1) \sim(x,-1)$ if $x \neq 0$

$$
\forall n \in \mathbb{N}, \quad\left(\frac{1}{2^{n}}, 1\right) \rightarrow\left(\frac{1}{2^{n+1}}, 1\right)
$$

Line with two origins

$$
X:=(\mathbb{R} \times\{ \pm 1\}) / \sim
$$

where $(x, 1) \sim(x,-1)$ if $x \neq 0$

$$
\forall n \in \mathbb{N}, \quad\left(\frac{1}{2^{n}}, 1\right) \rightarrow\left(\frac{1}{2^{n+1}}, 1\right)
$$

$$
(1,1)=(1,-1)
$$

$$
\left(\frac{1}{2}, 1\right)=\left(\frac{1}{2},-1\right)
$$

$(0,1)$

Line with two origins

$$
X:=(\mathbb{R} \times\{ \pm 1\}) / \sim
$$

where $(x, 1) \sim(x,-1)$ if $x \neq 0$

$$
\forall n \in \mathbb{N}, \quad\left(\frac{1}{2^{n}}, 1\right) \rightarrow\left(\frac{1}{2^{n+1}}, 1\right)
$$

$$
(1,1)=(1,-1)
$$

$$
\left(\frac{1}{2}, 1\right)=\left(\frac{1}{2},-1\right)
$$

$(0,1)$
\neq
$(0,-1)$

Cyclic relation

$$
X:=[0,2] \subset \mathbb{R}
$$

$$
\frac{1}{2^{n+1}} \longleftarrow \frac{1}{2^{n}} \quad 2-\frac{1}{2^{n}} \longleftarrow 2-\frac{1}{2^{n+1}}
$$

Line with two origins

$$
X:=(\mathbb{R} \times\{ \pm 1\}) / \sim
$$

where $(x, 1) \sim(x,-1)$ if $x \neq 0$

$$
\forall n \in \mathbb{N}, \quad\left(\frac{1}{2^{n}}, 1\right) \rightarrow\left(\frac{1}{2^{n+1}}, 1\right)
$$

$$
(1,1)=(1,-1)
$$

$$
\left(\frac{1}{2}, 1\right)=\left(\frac{1}{2},-1\right)
$$

$(0,1)$
\neq
$(0,-1)$

Cyclic relation

$X:=[0,2] \subset \mathbb{R}$

$$
\frac{1}{2^{n+1}} \longleftarrow \frac{1}{2^{n}} \quad 2-\frac{1}{2^{n}} \longleftarrow 2-\frac{1}{2^{n+1}}
$$

Third counter-example

$$
X:=(\mathbb{N} \cup\{\infty\}) \times(\mathbb{N} \cup\{\infty\})
$$

where $(\mathbb{N} \cup\{\infty\})$ is endowed with the order topology

Third counter-example

$$
X:=(\mathbb{N} \cup\{\infty\}) \times(\mathbb{N} \cup\{\infty\})
$$

where $(\mathbb{N} \cup\{\infty\})$ is endowed with the order topology

$$
\forall n, m \in \mathbb{N}, \quad(n, m) \rightarrow(n+1, m) \quad \text { and } \quad(n, m) \rightarrow(n, m+1)
$$

Note how $(n, m) \xrightarrow{*}\left(n^{\prime}, m^{\prime}\right)$ iff $n \leq n^{\prime}$ and $m \leq m^{\prime}$

Third counter-example

$$
X:=(\mathbb{N} \cup\{\infty\}) \times(\mathbb{N} \cup\{\infty\})
$$

where $(\mathbb{N} \cup\{\infty\})$ is endowed with the order topology

$$
\forall n, m \in \mathbb{N}, \quad(n, m) \rightarrow(n+1, m) \quad \text { and } \quad(n, m) \rightarrow(n, m+1)
$$

Note how $(n, m) \xrightarrow{*}\left(n^{\prime}, m^{\prime}\right)$ iff $n \leq n^{\prime}$ and $m \leq m^{\prime}$

Theorem. [Chenavier, Cluzeau, ML, 2024]
Let R be a set of formal power series and $<$ be a local monomial order that is compatible with the degree.

The rewriting system induced by R and $<$ is topologically confluent if and only if it is infinitary confluent.

II. EQUIVALENCE OF CONFLUENCES

Metric

$$
\begin{aligned}
& f, g \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right] \\
& \delta(f, g):=\frac{1}{2^{\operatorname{val}(f-g)}}
\end{aligned}
$$

> Valuation
> $\operatorname{val}\left(x y^{2} z^{2}+z^{3}+y\right)=1$ $\operatorname{val}\left(x^{2} y z+x y^{2} z\right)=4$

Metric

$$
\begin{gathered}
f, g \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right] \\
\delta(f, g):=\frac{1}{2^{\operatorname{val}(f-g)}}
\end{gathered}
$$

Example of a convergent sequence

In $\mathbb{K}[[x, y, z]]$ the sequence $\left(f_{n}\right)$ of powers of a variable (say x) converges:
$\lim _{n \rightarrow \infty} f_{n}=0$ because val $\left(x^{n}-0\right) \underset{n \rightarrow \infty}{\longrightarrow} \infty$

> Valuation $\begin{array}{r}\text { val }\left(x y^{2} z^{2}+z^{3}+y\right)=1 \\ \text { val }\left(x^{2} y z+x y^{2} z\right)=4\end{array}$

Metric

$$
\begin{aligned}
& f, g \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right] \\
& \delta(f, g):=\frac{1}{2^{\operatorname{val}(f-g)}}
\end{aligned}
$$

Example of a convergent sequence

In $\mathbb{K}[[x, y, z]]$ the sequence $\left(f_{n}\right)$ of powers of a variable (say x) converges:
$\lim _{n \rightarrow \infty} f_{n}=0$ because val $\left(x^{n}-0\right) \underset{n \rightarrow \infty}{\longrightarrow} \infty$
Hence in the example of the introduction:

Monomial orders

\rightarrow Total order compatible with monomial multiplication

Monomial orders

\rightarrow Total order compatible with monomial multiplication
\rightarrow Global if 1 is minimal \rightarrow Gröbner bases
\rightarrow Local if 1 is maximal \rightarrow Standard bases

Monomial orders

\rightarrow Total order compatible with monomial multiplication
\rightarrow Global if 1 is minimal \rightarrow Gröbner bases
\rightarrow Local if 1 is maximal \rightarrow Standard bases
\rightarrow Compatible with the degree if the degree function on monomials is non-increasing (resp. non-decreasing) for a local (resp. global) order

Monomial orders

\rightarrow Total order compatible with monomial multiplication
\rightarrow Global if 1 is minimal \rightarrow Gröbner bases
\rightarrow Local if 1 is maximal \rightarrow Standard bases
\rightarrow Compatible with the degree if the degree function on monomials is non-increasing (resp. non-decreasing) for a local (resp. global) order
Consequence: if $<$ is a local order compatible with the degree then

$$
\operatorname{val}(f)=\operatorname{deg}(\mathrm{LM}(f))
$$

Ideals of formal power series are topologically closed
$\rightarrow \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$: local noetherian topological ring with respect to the (x_{1}, \cdots, x_{n})-adic topology. Therefore a Zariski ring [Samuel, Zariski, 1975]

Ideals of formal power series are topologically closed
$\rightarrow \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$: local noetherian topological ring with respect to the (x_{1}, \cdots, x_{n})-adic topology. Therefore a Zariski ring [Samuel, Zariski, 1975]
\rightarrow Constructive proof providing a cofactor representation of a formal power series in the topological closure of the ideal [Chenavier, Cluzeau, ML, 2024]

Proposition. For all $f, g \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$, if $f \circlearrowleft g$ then $f-g \in I$

Proposition. For all $f, g \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$, if $f \oplus g$ then $f-g \in I$

Proof. $f \bigoplus g$ implies the existence of a sequence $f_{k} \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ such that $f \xrightarrow{*} f_{k}$ and $\delta\left(f_{k}, g\right)<2^{-k}$ so that $\lim _{k \rightarrow \infty} f_{k}=g$

Proposition. For all $f, g \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$, if $f \oplus g$ then $f-g \in I$

Proof. $f \oplus g$ implies the existence of a sequence $f_{k} \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ such that $f \xrightarrow{*} f_{k}$ and $\delta\left(f_{k}, g\right)<2^{-k}$ so that $\lim _{k \rightarrow \infty} f_{k}=g$
By the same reasoning as polynomial reduction, $f \xrightarrow{*} f_{k}$ implies $f-f_{k} \in I$ thus at the limit we obtain $\lim _{k \rightarrow \infty}\left(f-f_{k}\right)=f-g \in \bar{I}$

Proposition. For all $f, g \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$, if $f \oplus g$ then $f-g \in I$

Proof. $f \oplus g$ implies the existence of a sequence $f_{k} \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ such that $f \xrightarrow{*} f_{k}$ and $\delta\left(f_{k}, g\right)<2^{-k}$ so that $\lim _{k \rightarrow \infty} f_{k}=g$
By the same reasoning as polynomial reduction, $f \xrightarrow{*} f_{k}$ implies $f-f_{k} \in I$ thus at the limit we obtain $\lim _{k \rightarrow \infty}\left(f-f_{k}\right)=f-g \in \bar{I}$

But I is topologically closed, hence $f-g \in I$

Theorem. [Chenavier, Cluzeau, ML, 2024]
Let R be a set of formal power series and $<$ be a local monomial order that is compatible with the degree.

The rewriting system induced by R and $<$ is topologically confluent if and only if it is infinitary confluent.

Theorem. [Chenavier, Cluzeau, ML, 2024]
Let R be a set of formal power series and $<$ be a local monomial order that is compatible with the degree.

The rewriting system induced by R and $<$ is topologically confluent if and only if it is infinitary confluent.

Strategy: Given

Theorem. [Chenavier, Cluzeau, ML, 2024]
Let R be a set of formal power series and $<$ be a local monomial order that is compatible with the degree.

The rewriting system induced by R and $<$ is topologically confluent if and only if it is infinitary confluent.

Strategy: Given

Close the diagram
\rightarrow Fix R a non-empty set of non-zero formal power series
\rightarrow Fix $<$ a local monomial order compatible with the degree
\rightarrow Write \rightarrow the one-step rewriting relation induced by R and $<$
\rightarrow Fix R a non-empty set of non-zero formal power series
\rightarrow Fix $<$ a local monomial order compatible with the degree
\rightarrow Write \rightarrow the one-step rewriting relation induced by R and $<$ Assume that \rightarrow is topologically confluent i.e. R is a standard basis with respect to $<$ of the ideal $I:=I(R)$ generated by R
\rightarrow Fix R a non-empty set of non-zero formal power series
\rightarrow Fix $<$ a local monomial order compatible with the degree
\rightarrow Write \rightarrow the one-step rewriting relation induced by R and $<$ Assume that \rightarrow is topologically confluent i.e. R is a standard basis with respect to $<$ of the ideal $I:=I(R)$ generated by R

Let $f, g, h \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ such that:

Goal

Construct inductively two rewriting sequences starting from g and h respectively that will be proven to be Cauchy

It will turn out that the limits are then equal and hence give a common topological successor to g and h
\rightarrow By induction: $\exists g \xrightarrow{*} g_{k}$ and $\exists h \xrightarrow{*} h_{k}$

\rightarrow By induction:
$\exists g \xrightarrow{*} g_{k}$ and $\exists h \xrightarrow{*} h_{k}$
\rightarrow If $g_{k}=h_{k}$, then it's over!

\rightarrow By induction: $\exists g \xrightarrow{*} g_{k}$ and $\exists h \xrightarrow{*} h_{k}$
\rightarrow If $g_{k}=h_{k}$, then it's over!
\rightarrow From the previous proposition:

$$
g_{k}-h_{k} \in I
$$

\rightarrow By induction:
$\exists g \xrightarrow{*} g_{k}$ and $\exists h \xrightarrow{*} h_{k}$
\rightarrow If $g_{k}=h_{k}$, then it's over!
\rightarrow From the previous proposition:

$$
g_{k}-h_{k} \in I
$$

\rightarrow Rewrite LM $\left(g_{k}-h_{k}\right)$

Facts

\rightarrow the sequences $\left(g_{k}\right)_{k \in \mathbb{N}}$ and $\left(h_{k}\right)_{k \in \mathbb{N}}$ are Cauchy
\rightarrow their limits are equal

Facts

\rightarrow the sequences $\left(g_{k}\right)_{k \in \mathbb{N}}$ and $\left(h_{k}\right)_{k \in \mathbb{N}}$ are Cauchy
\rightarrow their limits are equal

So $\lim _{k \rightarrow \infty} g_{k}=\lim _{k \rightarrow \infty} h_{k}=: \ell$

Which shows that \rightarrow is infinitary confluent

III. CONCLUSION AND PERSPECTIVES

Conclusion and perspectives

Summary of presented notions and results:
\triangleright we introduced different confluence properties for topological rewriting systems
\triangleright we provided counter-examples for converse strength implications
\triangleright thanks to the topological closure of ideals of formal power series topological confluence equivalent to infinitary confluence

Further works:
\triangleright study abstract properties of topological rewriting systems (e.g. C-R property, Newman's Lemma, etc ...)
\triangleright show that the topological rewriting relation induces convergent rewriting chains in the context of formal power series
\triangleright applications to formal analysis of PDEs

Conclusion and perspectives

Summary of presented notions and results:
\triangleright we introduced different confluence properties for topological rewriting systems
\triangleright we provided counter-examples for converse strength implications
\triangleright thanks to the topological closure of ideals of formal power series topological confluence equivalent to infinitary confluence

Further works:
\triangleright study abstract properties of topological rewriting systems (e.g. C-R property, Newman's Lemma, etc ...)
\triangleright show that the topological rewriting relation induces convergent rewriting chains in the context of formal power series
\triangleright applications to formal analysis of PDEs

