Confluence for topological rewriting systems

Adya Musson-Leymarie

https://www.adyaml.com

FELIM - Functional Equations in Limoges

March 26th, 2024

I. INTRODUCTION

Rewriting theory

Describes sequences of **computations** through **oriented identities** a.k.a. **rewrite rules**

Rewriting theory

Describes sequences of **computations** through **oriented identities** *a.k.a.* **rewrite rules**

Instances

In computer science

- → Term rewriting
- \rightarrow β -reduction in λ -calculus

Rewriting theory

Describes sequences of **computations** through **oriented identities** *a.k.a.* **rewrite rules**

Instances

In computer science

- → Term rewriting
- \rightarrow β -reduction in λ -calculus

In computer algebra

- → Polynomial reduction
- → Involutive divisions

I. Introduction Rewriting theory

Rewriting theory

Describes sequences of **computations** through **oriented identities** *a.k.a.* **rewrite rules**

Instances

In computer science

- → Term rewriting
- \rightarrow β -reduction in λ -calculus

In computer algebra

- → Polynomial reduction
- → Involutive divisions

Abstraction

Abstract rewriting theory

Abstract properties common to all concrete rewriting systems: **termination**, **confluence**, **normal forms**

- \rightarrow A an underlying set
- ightarrow ightarrow a binary relation on A

We write $a \rightarrow b$ for $(a, b) \in \rightarrow$

- \rightarrow A an underlying set
- \rightarrow \rightarrow a binary relation on A

We write $a \rightarrow b$ for $(a, b) \in \rightarrow$

Transitive reflexive closure

We write $a \stackrel{*}{\rightarrow} b$ to express that $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_\ell = b$

- \rightarrow A an underlying set
- \rightarrow \rightarrow a binary relation on A

We write $a \rightarrow b$ for $(a, b) \in \rightarrow$

Confluence * a * b c * d * *

Transitive reflexive closure

We write $a \stackrel{*}{\rightarrow} b$ to express that $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_\ell = b$

- \rightarrow A an underlying set
- \rightarrow \rightarrow a binary relation on A

We write $a \rightarrow b$ for $(a, b) \in \rightarrow$

Transitive reflexive closure

We write $a \stackrel{*}{\rightarrow} b$ to express that $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_\ell = b$

Example

Multivariate division with respect to *R* is confluent iff *R* is a Gröbner basis

Confluence "at the limit"

In $\mathbb{K}[[x,y,z]]$ with the inverse deglex order such that z>y>x take

$$R = \{z - y, z - x, y - y^2, x - x^2\}.$$

Confluence "at the limit"

In $\mathbb{K}[[x,y,z]]$ with the inverse deglex order such that z>y>x take

$$R = \{z - y, z - x, y - y^2, x - x^2\}.$$

The two branches will never have a common element Hence the system is **not** confluent

However with the (x, y, z)-adic topology both branches converge to 0

Topological Abstract Rewriting System

- ightarrow (X, τ) a topological space ightarrow ightarrow a binary relation on X

Topological Abstract Rewriting System

- \rightarrow (X, τ) a topological space
- \rightarrow \rightarrow a binary relation on X

Topological rewriting relation

Write $x \longrightarrow y$ if for every neighbourhood U of y there exists $z \in U$ s.t. $x \stackrel{*}{\to} z$

Note how $x \stackrel{*}{\rightarrow} y$ implies $x \stackrel{*}{\longrightarrow} y$

Topological confluence

Topological confluence

Theorem. [Chenavier 2020]

Standard basis \Leftrightarrow topological confluence where standard bases are to formal power series as Gröbner bases are to polynomials

Topological confluence

Infinitary confluence

Theorem. [Chenavier 2020]

Standard basis \Leftrightarrow topological confluence where standard bases are to formal power series as Gröbner bases are to polynomials

Of interest in computer science: infinitary λ/Σ -terms

For every TARS we have: confluence \Longrightarrow topological confluence infinitary confluence \Longrightarrow topological confluence

For every TARS we have:

 ${\color{red}\mathsf{confluence}} \Longrightarrow {\color{blue}\mathsf{topological}} \ {\color{blue}\mathsf{confluence}}$

infinitary confluence ⇒ topological confluence

Discrete rewriting system

If $x \longrightarrow y$ implies $x \stackrel{*}{\to} y$, then we say that the TARS (X, τ, \to) has discrete rewriting.

For every TARS we have: confluence ⇒ topological confluence infinitary confluence ⇒ topological confluence

Discrete rewriting system

If $x \longrightarrow y$ implies $x \stackrel{*}{\to} y$, then we say that the TARS (X, τ, \to) has discrete rewriting.

In such a case, confluence, topological confluence and infinitary confluence are trivially equivalent.

For every TARS we have: confluence ⇒ topological confluence infinitary confluence ⇒ topological confluence

Discrete rewriting system

If $x \longrightarrow y$ implies $x \stackrel{*}{\to} y$, then we say that the TARS (X, τ, \to) has discrete rewriting.

In such a case, confluence, topological confluence and infinitary confluence are trivially equivalent.

For instance, if τ is the discrete topology, then (X, τ, \rightarrow) has discrete rewriting.

Counter-example of topological confluence ⇒ **confluence**

Consider again, in $\mathbb{K}[[x, y, z]]$

$$R = \{z - y, z - x, y - y^2, x - x^2\}.$$

Counter-example of topological confluence ⇒ **confluence**

Consider again, in $\mathbb{K}[[x, y, z]]$

$$R = \{z - y, z - x, y - y^2, x - x^2\}.$$

R is a **standard basis** because

- \rightarrow LM $(R) = \{x, y, z\}$ and
- \rightarrow if $f \in I(R)$ then f has no constant coefficient

Counter-example of topological confluence ⇒ **confluence**

Consider again, in $\mathbb{K}[[x, y, z]]$

$$R = \{z - y, z - x, y - y^2, x - x^2\}.$$

R is a **standard basis** because

- \rightarrow LM $(R) = \{x, y, z\}$ and
- \rightarrow if $f \in I(R)$ then f has no constant coefficient

Thus the system is topologically confluent

However we saw previously that it is not confluent

$$\begin{split} \mathcal{X} &:= \left(\mathbb{R} \times \left\{\pm 1\right\}\right)/\sim \\ \text{where } (x,1) \sim (x,-1) \text{ if } x \neq 0 \\ \forall n \in \mathbb{N}, \quad \left(\frac{1}{2^n},1\right) \rightarrow \left(\frac{1}{2^{n+1}},1\right) \end{split}$$

$$X:=\left(\mathbb{R}\times\{\pm1\}\right)/\sim$$
 where $(x,1)\sim(x,-1)$ if $x\neq0$
$$\forall n\in\mathbb{N},\quad \left(\frac{1}{2^n},1\right)\to\left(\frac{1}{2^{n+1}},1\right)$$

$$(1,1)=(1,-1)$$

$$\downarrow$$

$$\left(\frac{1}{2},1\right)=\left(\frac{1}{2},-1\right)$$

$$\downarrow$$

$$\left(\frac{1}{4},1\right)=\left(\frac{1}{4},-1\right)$$

$$(0,1)$$
 \neq
$$(0,-1)$$

$$X:=\left(\mathbb{R}\times\{\pm1\}\right)/\sim$$
 where $(x,1)\sim(x,-1)$ if $x\neq0$
$$\forall n\in\mathbb{N},\quad \left(\frac{1}{2^n},1\right)\to\left(\frac{1}{2^{n+1}},1\right)$$

$$(1,1)=(1,-1)$$

$$\downarrow$$

$$\left(\frac{1}{2},1\right)=\left(\frac{1}{2},-1\right)$$

$$\downarrow$$

$$\left(\frac{1}{4},1\right)=\left(\frac{1}{4},-1\right)$$

$$\not\in$$
 $(0,1)$

Cyclic relation

$$X := [0,2] \subset \mathbb{R}$$

$$\frac{1}{2^{n+1}} \xrightarrow{1} \frac{1}{2^n} \qquad 2 - \frac{1}{2^n} \xrightarrow{2} 2 - \frac{1}{2^{n+1}}$$

$$X := (\mathbb{R} \times \{\pm 1\}) / \sim$$
where $(x,1) \sim (x,-1)$ if $x \neq 0$

$$\forall n \in \mathbb{N}, \quad \left(\frac{1}{2^n},1\right) \rightarrow \left(\frac{1}{2^{n+1}},1\right)$$

$$(1,1) = (1,-1)$$

$$\downarrow$$

$$\left(\frac{1}{2},1\right) = \left(\frac{1}{2},-1\right)$$

$$\downarrow$$

$$\left(\frac{1}{4},1\right) = \left(\frac{1}{4},-1\right)$$

$$(0,1) \neq (0,-1)$$

Cyclic relation

$$X := [0,2] \subset \mathbb{R}$$

$$\frac{1}{2^{n+1}} \stackrel{1}{\smile} \frac{1}{2^n} \qquad 2 - \frac{1}{2^n} \stackrel{1}{\smile} 2 - \frac{1}{2^{n+1}}$$

Third counter-example

$$X := (\mathbb{N} \cup \{\infty\}) \times (\mathbb{N} \cup \{\infty\})$$

where $\left(\mathbb{N}\cup\{\infty\}\right)$ is endowed with the order topology

Third counter-example

$$X := (\mathbb{N} \cup {\infty}) \times (\mathbb{N} \cup {\infty})$$

where $(\mathbb{N} \cup \{\infty\})$ is endowed with the order topology

$$orall n, m \in \mathbb{N}, \quad (n,m) o (n+1,m) \quad ext{and} \quad (n,m) o (n,m+1)$$

Note how $(n, m) \stackrel{*}{\rightarrow} (n', m')$ iff $n \leq n'$ and $m \leq m'$

Third counter-example

$$X := (\mathbb{N} \cup \{\infty\}) \times (\mathbb{N} \cup \{\infty\})$$

where $(\mathbb{N} \cup \{\infty\})$ is endowed with the order topology

$$\forall n, m \in \mathbb{N}, \quad (n, m) \to (n + 1, m) \quad \text{and} \quad (n, m) \to (n, m + 1)$$

Note how $(n, m) \stackrel{*}{\rightarrow} (n', m')$ iff $n \leq n'$ and $m \leq m'$

I. Introduction Our result

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order that is compatible with the degree.

The rewriting system induced by *R* and < is topologically confluent if and only if it is infinitary confluent.

II. EQUIVALENCE OF CONFLUENCES

Valuation

$$\operatorname{val}\left(xy^2z^2+z^3+y\right)=1$$

$$\operatorname{val}\left(x^2yz+xy^2z\right)=4$$

Valuation

$$val(xy^2z^2 + z^3 + y) = 1$$
$$val(x^2yz + xy^2z) = 4$$

Metric

$$f,g \in \mathbb{K}[[x_1,\cdots,x_n]]$$

$$\delta(f,g) := \frac{1}{2^{\mathsf{val}(f-g)}}$$

Valuation

$$val(xy^2z^2 + z^3 + y) = 1$$
$$val(x^2yz + xy^2z) = 4$$

Metric

$$f,g \in \mathbb{K}[[x_1,\cdots,x_n]]$$

 $\delta(f,g) := \frac{1}{2^{\mathsf{val}(f-g)}}$

Example of a convergent sequence

In $\mathbb{K}[[x,y,z]]$ the sequence (f_n) of powers of a variable (say x) converges: $\lim_{n\to\infty}f_n=0$ because val $(x^n-0)\underset{n\to\infty}{\longrightarrow}\infty$

Valuation

$$val(xy^2z^2 + z^3 + y) = 1$$
$$val(x^2yz + xy^2z) = 4$$

Metric

$$f,g \in \mathbb{K}[[x_1,\cdots,x_n]]$$

$$\delta(f,g) := \frac{1}{2^{\mathsf{val}(f-g)}}$$

Example of a convergent sequence

In $\mathbb{K}[[x,y,z]]$ the sequence (f_n) of powers of a variable (say x) converges: $\lim_{n\to\infty}f_n=0$ because val $(x^n-0)\longrightarrow\infty$

Hence in the example of the introduction:

→ Total order compatible with monomial multiplication

- → Total order compatible with monomial multiplication
- \rightarrow Global if 1 is minimal \rightarrow Gröbner bases
- \rightarrow Local if 1 is maximal \rightarrow Standard bases

- → Total order compatible with monomial multiplication
- \rightarrow Global if 1 is minimal \rightarrow Gröbner bases
- \rightarrow Local if 1 is maximal \rightarrow Standard bases
- → Compatible with the degree if the degree function on monomials is non-increasing (resp. non-decreasing) for a local (resp. global) order

- → Total order compatible with monomial multiplication
- \rightarrow Global if 1 is minimal \rightarrow Gröbner bases
- → Local if 1 is maximal → Standard bases
- → Compatible with the degree if the degree function on monomials is non-increasing (resp. non-decreasing) for a local (resp. global) order

Consequence: if < is a local order compatible with the degree then

$$val(f) = deg(LM(f))$$

Ideals of formal power series are topologically closed

→ $\mathbb{K}[[x_1, \dots, x_n]]$: local noetherian topological ring with respect to the (x_1, \dots, x_n) -adic topology. Therefore a **Zariski ring** [Samuel, Zariski, 1975]

Ideals of formal power series are topologically closed

- → $\mathbb{K}[[x_1, \dots, x_n]]$: local noetherian topological ring with respect to the (x_1, \dots, x_n) -adic topology. Therefore a **Zariski ring** [Samuel, Zariski, 1975]
- → Constructive proof providing a **cofactor representation** of a formal power series in the topological closure of the ideal [Chenavier, Cluzeau, ML, 2024]

Proof. f oup g implies the existence of a sequence $f_k \in \mathbb{K}[[x_1, \cdots, x_n]]$ such that $f \overset{*}{\to} f_k$ and $\delta(f_k, g) < 2^{-k}$ so that $\lim_{k \to \infty} f_k = g$

Proof. f oup g implies the existence of a sequence $f_k \in \mathbb{K}[[x_1, \cdots, x_n]]$ such that $f \overset{*}{\to} f_k$ and $\delta(f_k, g) < 2^{-k}$ so that $\lim_{k \to \infty} f_k = g$

By the same reasoning as polynomial reduction, $f\stackrel{*}{\to} f_k$ implies $f-f_k\in I$ thus at the limit we obtain $\lim_{k\to\infty}(f-f_k)=f-g\in \bar I$

Proof. f og g implies the existence of a sequence $f_k \in \mathbb{K}[[x_1, \cdots, x_n]]$ such that $f \overset{*}{\to} f_k$ and $\delta(f_k, g) < 2^{-k}$ so that $\lim_{k \to \infty} f_k = g$

By the same reasoning as polynomial reduction, $f\stackrel{*}{\to} f_k$ implies $f-f_k\in I$ thus at the limit we obtain $\lim_{k\to\infty}(f-f_k)=f-g\in \bar I$

But I is topologically closed, hence $f - g \in I$

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if and only if it is infinitary confluent.

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order that is compatible with the degree.

The rewriting system induced by *R* and < is topologically confluent if and only if it is infinitary confluent.

Strategy: Given

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if and only if it is infinitary confluent.

Strategy: Given

Close the diagram

- \rightarrow Fix R a non-empty set of non-zero formal power series
- → Fix < a local monomial order compatible with the degree
- \rightarrow Write \rightarrow the one-step rewriting relation induced by R and <

- \rightarrow Fix R a non-empty set of non-zero formal power series
- → Fix < a local monomial order compatible with the degree
- \rightarrow Write \rightarrow the one-step rewriting relation induced by R and <

Assume that \rightarrow is topologically confluent *i.e.* R is a standard basis with respect to < of the ideal I := I(R) generated by R

- \rightarrow Fix R a non-empty set of non-zero formal power series
- → Fix < a local monomial order compatible with the degree
- \rightarrow Write \rightarrow the one-step rewriting relation induced by R and <

Assume that \rightarrow is topologically confluent *i.e.* R is a standard basis with respect to < of the ideal I := I(R) generated by R

Let $f, g, h \in \mathbb{K}[[x_1, \dots, x_n]]$ such that:

Goal

Construct inductively **two rewriting sequences** starting from g and h respectively that will be proven to be **Cauchy**

It will turn out that the limits are then equal and hence give a **common topological successor** to g and h

 \Rightarrow By induction: $\exists g \stackrel{*}{\to} g_k$ and $\exists h \stackrel{*}{\to} h_k$

- **→** By induction: $\exists g \stackrel{*}{\rightarrow} g_k$ and $\exists h \stackrel{*}{\rightarrow} h_k$
- \rightarrow If $g_k = h_k$, then it's over!

- **→** By induction: $\exists g \stackrel{*}{\rightarrow} g_k \text{ and } \exists h \stackrel{*}{\rightarrow} h_k$
- \rightarrow If $g_k = h_k$, then it's over!
- → From the previous proposition:

$$g_k - h_k \in I$$

- **→** By induction: $\exists g \stackrel{*}{\rightarrow} g_k \text{ and } \exists h \stackrel{*}{\rightarrow} h_k$
- \rightarrow If $g_k = h_k$, then it's over!
- → From the previous proposition:

$$g_k - h_k \in I$$

 \rightarrow Rewrite LM $(g_k - h_k)$

Facts

- ightharpoonup the sequences $(g_k)_{k\in\mathbb{N}}$ and $(h_k)_{k\in\mathbb{N}}$ are Cauchy
- → their limits are equal

Facts

- \rightarrow the sequences $(g_k)_{k\in\mathbb{N}}$ and $(h_k)_{k\in\mathbb{N}}$ are Cauchy
- → their limits are equal

So $\lim_{k\to\infty} g_k = \lim_{k\to\infty} h_k =: \ell$

Which shows that \rightarrow is infinitary confluent

III. CONCLUSION AND PERSPECTIVES

Conclusion and perspectives

Summary of presented notions and results:

- we introduced different confluence properties for topological rewriting systems
- thanks to the topological closure of ideals of formal power series topological confluence equivalent to infinitary confluence

Further works:

- ▶ study abstract properties of topological rewriting systems
 (e.g. C-R property, Newman's Lemma, etc . . .)
- > show that the topological rewriting relation induces convergent rewriting chains in the context of formal power series
- ▷ applications to formal analysis of PDEs

Conclusion and perspectives

Summary of presented notions and results:

- we introduced different confluence properties for topological rewriting systems
- ▷ we provided counter-examples for converse strength implications
- thanks to the topological closure of ideals of formal power series topological confluence equivalent to infinitary confluence

Further works:

- ▶ study abstract properties of topological rewriting systems
 (e.g. C-R property, Newman's Lemma, etc . . .)
- > show that the topological rewriting relation induces convergent rewriting chains in the context of formal power series
- > applications to formal analysis of PDEs

THANK YOU FOR LISTENING!