G functions and hypergeometric series

Thomas Dreyfus ${ }^{1}$, Tanguy Rivoal ${ }^{2}$
${ }^{1}$ Université Bourgogne, France
${ }^{2}$ Université Grenoble, France

E-functions

A definition

Definition

F is solution of a linear differential equation with coefficients in $\overline{\mathbb{Q}}(x)$.
(ii) $\exists C>0$ such that $\forall \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), n \geq 0,\left|\sigma\left(a_{n}\right)\right| \leq C^{n+1}$.
(iii) $\exists D>0, d_{n} \in \mathbb{N}^{\mathbb{N}}$, with $1 \leq d_{n} \leq D^{n+1}$, such that $d_{n} a_{m}$ are algebraic integers for all $m \leq n$.

Example

```
exp(x),\operatorname{cos}(x)...
```


Basic properties

Proposition

E-functions form a ring.

- Derivative of an E-function is an E-function.

(weak version of) Siegel-Shidlovsky theorem

Theorem

Let F be a E-function and assume that F is transcendental over $\overline{\mathbb{Q}}(x)$. Then, for any $0 \neq \alpha \in \overline{\mathbb{Q}}$ that is not a singularity of the differential equation, $F(\alpha) \notin \overline{\mathbb{Q}}$.

Example

For all $0 \neq \alpha \in \overline{\mathbb{Q}}, \exp (\alpha) \notin \overline{\mathbb{Q}}$.

Hypergeometric series

Definition

$$
{ }_{p} F_{q}\left[\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array}\right]:=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n}}{(1)_{n}\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n}} x^{n}
$$

where $(a)_{n}:=a(a+1) \cdots(a+n-1)$ for $n \geq 1,(a)_{0}:=1$, and $a_{j} \in \mathbb{C}, b_{j} \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$.

Is it possible to write any E-function as a polynomial with coefficients in $\overline{\mathbb{Q}}$ of E-functions of the form

$$
{ }_{p} F_{q}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; \gamma x^{q-p+1}\right]
$$

with

- $q \geq p \geq 0$,
- $a_{j} \in \mathbb{Q}, b_{j} \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$
- $\gamma \in \overline{\mathbb{Q}}$?

Positive answer would contradicts a generalization to exponential periods of Grothendieck's Period Conjecture

Is it possible to write any E-function as a polynomial with coefficients in $\overline{\mathbb{Q}}$ of E-functions of the form

$$
{ }_{p} F_{q}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; \gamma x^{q-p+1}\right]
$$

with

- $q \geq p \geq 0$,
- $a_{j} \in \mathbb{Q}, b_{j} \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$
- $\gamma \in \overline{\mathbb{Q}}$?

Negative answer by Fresan-Jossen.

G-functions

A definition

Definition

A power series $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in \overline{\mathbb{Q}}[[x]]$, is an G-function if F is solution of a linear differential equation with coefficients in $\overline{\mathbb{Q}}(x)$.
(ii) $\exists C>0$ such that $\forall \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), n \geq 0,\left|\sigma\left(a_{n}\right)\right| \leq C^{n+1}$. $\exists D>0, d_{n} \in \mathbb{N}^{\mathbb{N}}$, with $1 \leq d_{n} \leq D^{n+1}$, such that $d_{n} a_{m}$ are algebraic integers for all $m \leq n$.

Example

${ }_{p} F_{p-1}\left[\begin{array}{c}a_{1}, \ldots, a_{p} \\ b_{1}, \ldots, b_{p-1}\end{array}\right]$.

Basic properties

Proposition

- G-functions form a ring
- Derivative of an G-function is an G-function. algebraic function analytic at 0 are G-functions.
G-functions have a positive radius of convergence.

Is it possible to write any G-function as a polynomial with coefficients in $\overline{\mathbb{Q}}$ of functions of the form

$$
\mu(x) \cdot{ }_{p} F_{p-1}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{p-1} ; \lambda(x)\right],
$$

with

- $p \geq 1$,
- $a_{j} \in \mathbb{Q}, b_{j} \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$,
- $\lambda, \mu \in \overline{\mathbb{Q}}[[x]]$ algebraic over $\overline{\mathbb{Q}}(x)$, and $\lambda(0)=0$?

Slight extension of Fischler-Rivoal's question

Is it possible to write any G-function as a polynomial with coefficients in $\overline{\mathbb{C}}(x)$ of solutions of functions of the form

$$
{ }_{p} F_{p-1}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{p-1} ; \lambda(x)\right]
$$

with

- $p \geq 1$,
- $a_{j} \in \mathbb{C}, b_{j} \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$
- $\lambda \in \overline{\mathbb{C}}(x)$?

Main result (toward a negative answer)

Theorem (D-Rivoal)

Let $M \in \mathbb{N}^{*}$. There exists a G-function which is not an element of the field of rational functions with coefficients in $\overline{\mathbb{C}(x)}$ of functions of the form

$$
{ }_{p} F_{p-1}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{p-1} ; \lambda(x)\right],
$$

with

- $p \geq 1$,
- $a_{j} \in \mathbb{C}, b_{j} \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$
- $\lambda \in \mathbb{C}(x)$ with coprime numerators and denominators of degree less than M.

Differential Galois theory

$$
\text { Let } \partial_{X} Y=A Y \text {, with } A \in \operatorname{Mat}_{n}(\mathbb{C}(x))
$$

Definition

A Picard-Vessiot extension is a field extension $K \mid \mathbb{C}(x)$ such that
(i) $\exists U \in \mathrm{GL}_{n}(K)$, s.t. $\partial_{x} U=A U$.
$K=\mathbb{C}(x)(U)$.
(iii) $K^{\partial_{x}}=\left\{\alpha \in K \mid \partial_{x} \alpha=0\right\}=\mathbb{C}(x)^{\partial_{x}}=\mathbb{C}$.

Proposition

Existence and uniqueness of the Picard-Vessiot extension.

Differential Galois group

Let $\partial_{X} Y=A Y$, with $A \in \operatorname{Mat}_{n}(\mathbb{C}(x))$ be a differential system.
Definition
The differential Galois group is

$$
\operatorname{Gal}(K \mid \mathbb{C}(x))=\left\{\sigma \in \operatorname{Aut}(K \mid \mathbb{C}(x)) \mid \sigma \circ \partial_{x}=\partial_{x} \circ \sigma\right\}
$$

Algebraic group structure

Theorem

$$
\begin{array}{rll}
\operatorname{Gal}(K \mid \mathbb{C}(x)) & \rightarrow \mathrm{GL}_{n}(\mathbb{C}) \\
\sigma & \mapsto & U^{-1} \sigma(U) .
\end{array}
$$

The latter representation identifies $\operatorname{Gal}(K \mid \mathbb{C}(x))$ with a linear algebraic subgroup $G \subset \mathrm{GL}_{n}(\mathbb{C})$.

Galois correspondence

$$
\text { Let } G=\operatorname{Gal}(K \mid \mathbb{C}(x)) \subset \operatorname{GL}_{n}(\mathbb{C}) \text {. }
$$

Theorem

Let \mathcal{G} be the set of algebraic subgroups of \mathcal{G} and let \mathcal{F} be the set of differential subfields of K containing $\mathbb{C}(x)$. Then, the following holds.
1 The map $H \mapsto K^{H}$ defines a bijection between \mathcal{G} and \mathcal{F}. Its inverse is given by $F \mapsto \operatorname{Gal}(K \mid F)$.
2 Let $H \in \mathcal{G}$. Then, H is a normal subgroup of G if and only if $F:=K^{H}$ is stable under the action of G.

Proposition

Let f, f_{1}, \ldots, f_{k} be solutions of a linear differential equations with coefficients in $\mathbb{C}(x)$ whose differential Galois group we denote by $G_{f}, G_{f_{i}}$ and with Picard-Vessiot extension $K_{f}, K_{f_{i}}$ containing f, f_{i}. Assume that $f \in \mathbb{C}(x)\left(f_{1}, \ldots, f_{k}\right) \backslash \mathbb{C}(x)$.
If G_{f} is non commutative and has no normal algebraic subgroups other than itself and the trivial group, then $\exists i$ such that $K_{f} \subset K_{f_{i}}$.

Consequence in the problem

Theorem (D-Rivoal)

Let $M \in \mathbb{N}^{*}$. There exists a G-function which is not an element of the field of rational functions with coefficients in $\overline{\mathbb{C}(x)}$ of functions of the form ${ }_{p} F_{p-1}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{p-1} ; \lambda(x)\right]$, with $p \geq 1, a_{j} \in \mathbb{C}, b_{j} \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$, and $\lambda \in \mathbb{C}(x)$ with coprime numerators and denominators of degree less than M.

- Assume that f belongs to that field and G_{f} is non commutative and has no normal algebraic subgroups other than itself and the trivial group.
- Then $K_{f} \subset K_{f_{i}}$ for $f_{i}={ }_{p} F_{p-1}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{p-1} ; \lambda(x)\right]$.
- Then the singularities of f are inside the singularities of f_{i}.

Sketch of proof

What we are looking for?

Let us find a G-function f such that

- G_{f} is non commutative and has no normal algebraic subgroups other than itself and the trivial group.
- f has sufficiently many singularities.

Definition of the G-function (1/3)

We start with the generating series of the sequence of Apéry's numbers:

$$
\alpha(x):=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{n}^{2}\right) x^{n} \in \mathbb{Z}[[x]] .
$$

It is a solution of the differential equation

$$
\begin{align*}
& x^{2}\left(1-34 x+x^{2}\right) y^{\prime \prime \prime}(x)+x\left(3-153 x+6 x^{2}\right) y^{\prime \prime}(x) \\
&+\left(1-112 x+7 x^{2}\right) y^{\prime}(x)+(x-5) y(x)=0 . \tag{1}
\end{align*}
$$

The Galois group is not connected, we need to modify α.

Definition of the G-function (2/3)

Proposition

The G-function $\xi(x):=x\left(x^{2}-34 x+1\right)^{1 / 2} \alpha(x)$ has a Galois group that is $\operatorname{PSL}_{2}(\mathbb{C})$. Moreover, the points $(\sqrt{2}-1)^{4}$ and $(\sqrt{2}+1)^{4}$ are non-polar singularities of ξ.

Definition of the G-function (3/3)

Proposition
Let $\varphi \in \mathbb{C}(x) \backslash \mathbb{C}$. The G-function $\xi \circ \varphi(x)$ has a Galois group that is $\mathrm{PSL}_{2}(\mathbb{C})$.

Let $M \in \mathbb{N}^{*}$. Choose a convenient φ to have $\xi \circ \varphi(x)$ with at least $3 M+1$ singularities.

Theorem (D-Rivoal)
The G-function $\xi \circ \varphi(x)$ is not an element of the field of rational functions with coefficients in $\overline{\mathbb{C}(x)}$ of functions of the form

$$
{ }_{p} F_{p-1}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{p-1} ; \lambda(x)\right]
$$

with $p \geq 1, a_{j} \in \mathbb{C}, b_{j} \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$, and $\lambda \in \mathbb{C}(x)$ with coprime numerators and denominators of degree less than M.

Let $M \in \mathbb{N}^{*}$. Choose a convenient φ to have $\xi \circ \varphi(x)$ with at least $3 M+1$ singularities.
To the contrary assume that $\xi \circ \varphi(x)$ is rational functions with coefficients in $\overline{\mathbb{C}(x)}$ of functions of the form
${ }_{p} F_{p-1}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{p-1} ; \lambda(x)\right]$, with $p \geq 1, a_{j} \in \mathbb{C}$, $b_{j} \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$, and $\lambda \in \mathbb{C}(x)$ with coprime numerators and denominators of degree less than M.
The differential Galois group is $\mathrm{PSL}_{2}(\mathbb{C})$.
Then, $\xi \circ \varphi \in K_{f_{i}}$ for
$f_{i}={ }_{p} F_{p-1}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{p-1} ; \lambda(x)\right]$.
Then, $\xi \circ \varphi$ has at most $3 M$ singularities. A contradiction.

