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E-functions
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A definition

Definition

A power series F (x) =
∑∞

n=0
an
n! x

n ∈ Q[[x ]], is an E-function if
(i) F is solution of a linear differential equation with

coefficients in Q(x).
(ii) ∃ C > 0 such that ∀σ ∈ Gal(Q/Q),n ≥ 0, |σ(an)| ≤ Cn+1.
(iii) ∃D > 0,dn ∈ NN, with 1 ≤ dn ≤ Dn+1, such that dnam are

algebraic integers for all m ≤ n.

Example

exp(x), cos(x)...
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Basic properties

Proposition
• E-functions form a ring.
• Derivative of an E-function is an E-function.
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(weak version of) Siegel-Shidlovsky theorem

Theorem
Let F be a E-function and assume that F is transcendental
over Q(x). Then, for any 0 6= α ∈ Q that is not a singularity of
the differential equation, F (α) /∈ Q.

Example

For all 0 6= α ∈ Q, exp(α) /∈ Q.
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Hypergeometric series

Definition

pFq

[
a1, . . . ,ap
b1, . . . ,bq

; x

]
:=

∞∑
n=0

(a1)n · · · (ap)n

(1)n(b1)n · · · (bq)n
xn

where (a)n := a(a + 1) · · · (a + n − 1) for n ≥ 1, (a)0 := 1, and
aj ∈ C, bj ∈ C \ Z≤0.
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Siegel’s question

Is it possible to write any E-function as a polynomial with
coefficients in Q of E-functions of the form

pFq[a1, . . . ,ap;b1, . . . ,bq; γxq−p+1],

with
• q ≥ p ≥ 0,
• aj ∈ Q, bj ∈ Q \ Z≤0

• γ ∈ Q?

Positive answer would contradicts a generalization to exponential periods of Grothendieck’s Period Conjecture
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Siegel’s question

Is it possible to write any E-function as a polynomial with
coefficients in Q of E-functions of the form

pFq[a1, . . . ,ap;b1, . . . ,bq; γxq−p+1],

with
• q ≥ p ≥ 0,
• aj ∈ Q, bj ∈ Q \ Z≤0

• γ ∈ Q?

Negative answer by Fresan-Jossen.
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G-functions
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A definition

Definition

A power series F (x) =
∑∞

n=0 anxn ∈ Q[[x ]], is an G-function if
(i) F is solution of a linear differential equation with

coefficients in Q(x).
(ii) ∃ C > 0 such that ∀σ ∈ Gal(Q/Q),n ≥ 0, |σ(an)| ≤ Cn+1.
(iii) ∃D > 0,dn ∈ NN, with 1 ≤ dn ≤ Dn+1, such that dnam are

algebraic integers for all m ≤ n.

Example

pFp−1

[
a1, . . . ,ap

b1, . . . ,bp−1
; x

]
.
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Basic properties

Proposition
• G-functions form a ring
• Derivative of an G-function is an G-function.
• algebraic function analytic at 0 are G-functions.
• G-functions have a positive radius of convergence.
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Fichler-Rivoal’s question

Is it possible to write any G-function as a polynomial with
coefficients in Q of functions of the form

µ(x) · pFp−1[a1, . . . ,ap;b1, . . . ,bp−1;λ(x)],

with
• p ≥ 1,
• aj ∈ Q, bj ∈ Q \ Z≤0,
• λ, µ ∈ Q[[x ]] algebraic over Q(x), and λ(0) = 0?
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Slight extension of Fischler-Rivoal’s question

Is it possible to write any G-function as a polynomial with
coefficients in C(x) of solutions of functions of the form

pFp−1[a1, . . . ,ap;b1, . . . ,bp−1;λ(x)],

with
• p ≥ 1,
• aj ∈ C, bj ∈ C \ Z≤0

• λ ∈ C(x)?
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Main result (toward a negative answer)

Theorem (D-Rivoal)
Let M ∈ N∗. There exists a G-function which is not an element
of the field of rational functions with coefficients in C(x) of
functions of the form

pFp−1[a1, . . . ,ap;b1, . . . ,bp−1;λ(x)],

with
• p ≥ 1,
• aj ∈ C, bj ∈ C \ Z≤0

• λ ∈ C(x) with coprime numerators and denominators of
degree less than M.
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Differential Galois theory
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Picard-Vessiot extension

Let ∂xY = AY , with A ∈ Matn(C(x)).

Definition
A Picard-Vessiot extension is a field extension K |C(x) such that

(i) ∃U ∈ GLn(K ), s.t. ∂xU = AU.
(ii) K = C(x)(U).
(iii) K ∂x = {α ∈ K |∂xα = 0} = C(x)∂x = C.

Proposition
Existence and uniqueness of the Picard-Vessiot extension.
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Differential Galois group

Let ∂xY = AY , with A ∈ Matn(C(x)) be a differential system.

Definition
The differential Galois group is

Gal(K |C(x)) = {σ ∈ Aut(K |C(x))|σ ◦ ∂x = ∂x ◦ σ}.
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Algebraic group structure

Theorem

Gal(K |C(x)) → GLn(C)
σ 7→ U−1σ(U).

The latter representation identifies Gal(K |C(x)) with a linear
algebraic subgroup G ⊂ GLn(C).
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Galois correspondence

Let G = Gal(K |C(x)) ⊂ GLn(C).

Theorem
Let G be the set of algebraic subgroups of G and let F be the
set of differential subfields of K containing C(x). Then, the
following holds.

1 The map H 7→ K H defines a bijection between G and F . Its
inverse is given by F 7→ Gal(K |F ).

2 Let H ∈ G. Then, H is a normal subgroup of G if and only if
F := K H is stable under the action of G.
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From several Picard-Vessiot extensions to only one

Proposition

Let f , f1, . . . , fk be solutions of a linear differential equations with
coefficients in C(x) whose differential Galois group we denote
by Gf ,Gfi and with Picard-Vessiot extension Kf ,Kfi containing
f , fi . Assume that f ∈ C(x)(f1, . . . , fk ) \ C(x).
If Gf is non commutative and has no normal algebraic
subgroups other than itself and the trivial group, then ∃i such
that Kf ⊂ Kfi .

Similar ideas in Fresan-Jossen proof
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Consequence in the problem

Theorem (D-Rivoal)
Let M ∈ N∗. There exists a G-function which is not an element
of the field of rational functions with coefficients in C(x) of
functions of the form pFp−1[a1, . . . ,ap;b1, . . . ,bp−1;λ(x)], with
p ≥ 1, aj ∈ C, bj ∈ C \ Z≤0, and λ ∈ C(x) with coprime
numerators and denominators of degree less than M.

• Assume that f belongs to that field and Gf is non
commutative and has no normal algebraic subgroups other
than itself and the trivial group.

• Then Kf ⊂ Kfi for fi = pFp−1[a1, . . . ,ap;b1, . . . ,bp−1;λ(x)].
• Then the singularities of f are inside the singularities of fi .
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Sketch of proof
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What we are looking for?

Let us find a G-function f such that
• Gf is non commutative and has no normal algebraic

subgroups other than itself and the trivial group.
• f has sufficiently many singularities.
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Definition of the G-function (1/3)

We start with the generating series of the sequence of Apéry’s
numbers:

α(x) :=
∞∑

n=0

 n∑
k=0

(
n
k

)2(
n + k

n

)2
 xn ∈ Z[[x ]].

It is a solution of the differential equation

x2(1− 34x + x2)y ′′′(x) + x(3− 153x + 6x2)y ′′(x)

+ (1− 112x + 7x2)y ′(x) + (x − 5)y(x) = 0. (1)

The Galois group is not connected, we need to modify α.
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Definition of the G-function (2/3)

Proposition

The G-function ξ(x) := x(x2 − 34x + 1)1/2α(x) has a Galois
group that is PSL2(C). Moreover, the points (

√
2− 1)4 and

(
√

2 + 1)4 are non-polar singularities of ξ.
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Definition of the G-function (3/3)

Proposition

Let ϕ ∈ C(x) \ C. The G-function ξ ◦ ϕ(x) has a Galois group
that is PSL2(C).
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Let M ∈ N∗. Choose a convenient ϕ to have ξ ◦ ϕ(x) with at
least 3M + 1 singularities.

Theorem (D-Rivoal)

The G-function ξ ◦ ϕ(x) is not an element of the field of rational
functions with coefficients in C(x) of functions of the form

pFp−1[a1, . . . ,ap;b1, . . . ,bp−1;λ(x)],

with p ≥ 1, aj ∈ C, bj ∈ C \ Z≤0, and λ ∈ C(x) with coprime
numerators and denominators of degree less than M.
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Sketch of proof

• Let M ∈ N∗. Choose a convenient ϕ to have ξ ◦ ϕ(x) with
at least 3M + 1 singularities.

• To the contrary assume that ξ ◦ ϕ(x) is rational functions
with coefficients in C(x) of functions of the form
pFp−1[a1, . . . ,ap;b1, . . . ,bp−1;λ(x)], with p ≥ 1, aj ∈ C,
bj ∈ C \ Z≤0, and λ ∈ C(x) with coprime numerators and
denominators of degree less than M.

• The differential Galois group is PSL2(C).
• Then, ξ ◦ ϕ ∈ Kfi for

fi = pFp−1[a1, . . . ,ap;b1, . . . ,bp−1;λ(x)].
• Then, ξ ◦ ϕ has at most 3M singularities. A contradiction.
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