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Consider a solution y(x) of a differential equation

d

dx
y(x) = F (x , y(x)) F ∈ K(x , y) (1)

The field K will be a finite extension of Q.

We are interested in the symbolic integration of expressions of the
form

I (x) =

∫
G (x , y(x))dx , G ∈ K(x , y)

What do we mean by symbolic?
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Definition

We say that I is elementary if it there exists a tower of field
Kn ⊃ Kn−1 ⊃ · · · ⊃ K0 = C(x , y(x)) with I ∈ Kn, and where
Ki+1 = Ki (fi ) and fi is either

algebraic over Ki

the exponential of an element of Ki

the log of an element of Ki

Remark that I (x) is not always elementary, as∫
ex

2
dx = erf(x)
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We want to consider a larger class of functions than elementary
when y(x) is transcendental.

Our framework allows to consider many kinds of integrals∫
dx

ln x
,

∫
xdx

ex + 1
,

∫
ex

2

erf(x)
dx ,

∫
x
√
ln xdx ,

∫
x
√
x3 + 1dx∫ √
x3 + 1dx

When y(x) is not algebraic, the action Galois group sends y(x) to
any (non algebraic) solution of (1).

Thus we can replace y(x) by y(x , h), where h parametrizes a family
of solutions.
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The integral now has a parameter h

I (x , h) =

∫
G (x , y(x , h))dx

How it behaves as a function of h?

Definition

A m variables function f is called Liouvillian if it there exists a
tower of field Kn ⊃ Kn−1 ⊃ · · · ⊃ K0 = C(x1, . . . , xm) with f ∈ Kn,
and where Ki+1 = Ki (fi ) and fi is either

algebraic over Ki

the exponential of an element of Ki

the integral of a closed 1-form with coefficients in Ki
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The integral

I (x , h) =

∫
dx

ln x + h

is obviously Liouvillian as a single variable function of x .

However, as a function of h, this expression is not enough to con-
clude, we need to rewrite it

I (x , h) = e−h

∫
ehdx + ehxdh

ln x + h

And what about

I (x , h) =

∫
dx

x + ln x + h
?
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Theorem

If y(x , h) satisfies a differential equation P(y) = 0 where
P ∈ O(h)[x , y , ∂hy , ∂

2
hy , . . . ], then equation (1) admits a symbolic

first integral in one of the 4 classes

A rational first integral F ∈ C(x , y)
A k-Darbouxian first integral, (∂yF)k = R ∈ C(x , y), k ∈ N∗

A Liouvillian first integral, ∂yyF/∂yF = R ∈ C(x , y)
A Ricatti first integral, F = F1/F2 where F1,F2 are a C(x)
basis of solutions of a differential equation of the form
∂yyF/F = R ∈ C(x , y).
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Theorem

If I (x , h) satisfies a non constant differential equation in O(h)[x , y ,
∂hy , ∂

2
hy , . . . , I , ∂hI , ∂

2
h I , . . . ] and y(x , h) is not algebraic in x , then

up to reparametrization in h, it satisfies a differential equation of

the form LI = (∂hy)
ord(L)H where H ∈ C(x , y) and

L ∈ C[∂k
h ]∂

j
h, j ∈ {0, . . . , k − 1} when equation (1) has a

k-Darbouxian first integral.

L = ∂j
h, j ∈ N when equation (1) has a Liouvillian first

integral.

L = ∂j
h, j ∈ {0, 1} when equation (1) has a Ricatti first

integral or y differentially transcendental.

We call such differential relation a telescoper.
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Idea of proof: Assume we have a relation

P

(
x , y(x , h),

∫
G (x , y(x , h))dx ,

∫
∂hG (x , y(x , h))dx , . . .

)
= 0

The Galois group of the integrals over the differential field

L = O(h)(x , y(x , h), ∂hy(x , h), . . . ).

of these integrals is either identity or additive.

It acts as translations(∫
G (x , y(x , h))dx ,

∫
∂hG (x , y(x , h))dx ,

∫
∂2
hG (x , y(x , h))dx , . . .

)
→(∫

G (x , y(x , h))dx ,

∫
∂hG (x , y(x , h))dx ,

∫
∂2
hG (x , y(x , h))dx , . . .

)
+v

If all the possible translations vectors v satisfy a linear relation, then
I (x , h) satisfies a linear differential equation.

Else P is constant in the integrals, the relation is trivial!
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If there exists a symbolic first integral, we can write up to reparametriza-
tion

F(x , y(x , h)) = h

The differential Galois group acts as

F → ξF + β, ξk = 1 in the k-Darbouxian case

F → αF + β in the Liouvillian case

F → αF+β
γF+δ in the Ricatti case

F → ϕ(F) in the differentially transcendental case

⇒ This restricts the coefficients to be constants and of a specific
form!
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If L exists, then I satisfies the PDE system

LI = (∂hy)
ord(L)H, ∂x I = G

which has finite dimensional space of solutions.

Noting I (x , h) = J(x , y(x , h)), we have

For L = 1, J is rational

For L = ∂h, we can write

J(x , y) =

∫
(G (x , y)− H(x , y)F (x , y))dx + H(x , y)dy

and thus J is elementary

In other cases, a k-Darbouxian first integral F should exist,
and we note U = ∂yF , called the integrating factor.
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Remarking that ∂hy = U−1, J is then solution of the holonomic
system

DxJ = G ,

ord∑
i=0

aiD
i
hJ = U−ordH where Dx = ∂x+F∂y , Dh = U−1∂y

Solutions of the homogeneous part are of the form

FkeαF , α ∈ C, k ∈ N

⇒ By variation of constants

J(x , y) =
∑
λ∈S

vλ∑
r=0

eλFF r

∫
e−λF

mλ∑
i=1

∑
j∈Z

F iU jωλ,i ,j ,r

This is not always elementary, but always Liouvillian as a two vari-
ables function.
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Proposition

If
∫
G (x , y(x))dx is elementary, then I (x , h) admits a telescoper.

If
∫
G (x , y(x))dx is elementary, then so is I (x , h) for any h

I (x , h) = F0(x , y(x , h)) +
ℓ∑

i=1

λi (x , y(x , h)) lnFi (x , y(x , h)).

Differentiating, we see that λi should be functions of h only. Thus
applying a suitable operator L ∈ O(h)[∂h], we can ensure that

LI ∈ O(h)[x , y(x , h), ∂hy(x , h), . . . ].

By the previous theorem, up to reparametrization, I (x , h) admits a
telescoper.
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Example∫
x3 ln x + x3 + x2 ln x + x2 + x ln x + x + ln x

x ln x(1 + ln x)
dx

Noting y = ln x , we have

y ′ =
1

x
= F (x , y)

∂x I =
x3y + x3 + x2y + x2 + xy + x + y

xy(1 + y)

A 1-Darbouxian first integral exists,

F(x , y) = y − ln x
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A telescoper is found

L = ∂4
h + 6∂3

h + 11∂2
h + 6∂h

with certificate

−8y−4(1 + y)−4(16x3y6 + 16x3y5 + 24x2y6 − 29y8 − 48x3y4+

32x2y5 + 48xy6 − 164y7 − 32x3y3 − 64x2y4 + 112xy5 − 230y6+

112x3y2 − 96x2y3 + 16xy4 − 180y5 + 144x3y + 56x2y2 − 96xy3

−37y4 + 48x3 + 128x2y + 16xy2 + 48x2 + 112xy + 48x)

Integration of the ∂-finite PDE system gives

−x3e−3yEi(−3y)− x2e−2yEi(−2y)− xe−yEi(−y) + ln(1 + y)

15/35 Thierry COMBOT Symbolic integration on planar differential foliations



Symbolic integration
Computation of telescopers

Specific foliations
Examples

The result is defined up to a linear combination of

1, e ln x−y , e2(ln x−y), e3(ln x−y)

These are first integrals of (1), and thus functions of h.

For any closed loop γh on the complex Riemann surface ln x−y = h,
we have

L

∫
γh

x3y + x3 + x2y + x2 + xy + x + y

xy(1 + y)
= 0

The integrand is defined on an infinite genus Riemann surface, but
the monodromy maps the infinite dimensional homotopy group to a
finite dimensional vector space.
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In the case of Liouvillian, Riccati or no first integrals, we look for

Q(x , y(x))∂ℓ
hI (x , h) = U−ℓP(x , y(x))

In the k-Darbouxian case, we look for

⌊ℓ/k⌋∑
i=0

Q(x , y(x , h))ai∂
ki+(l mod k)
h I (x , h) = U−(ℓ mod k)P(x , y(x , h))

However, the unknowns P,Q, ai appear non linearly!

Definition

A k-pseudo telescoper is of the form with Qi ,P ∈ C[x , y ],

⌊l/k⌋∑
i=0

Qi (x , y(x , h))∂
ki+(l mod k)
h I (x , h) = U−(l mod k)P(x , y(x , h))
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Proposition

Assume equation (1) admits a k-Darbouxian first integral but not
rational first integral. If a non trivial k-pseudo telescoper exists,
then a true telescoper exists. The algorithm ReduceTelescoper
always terminate and compute such telescoper. It runs in
Õ(Nordω+3).

ReduceTelescoper
1 Note L1 the initial telescoper. Assign i = 1. While

rankK(x ,y)((Lj)j=1...i ) = i do

Li+1 := ∂xLi , i := i + 1

2 Build a row echelon form of the matrix L, and note
(Qr , . . . ,Q0,P) its shortest non zero line. Return

r∑
i=0

Qi

Qr
∂
ki+(l mod k)
h I (x , h) = U−(l mod k) P

Qr
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How to check if a telescoper is correct? We differentiate it in x

⌊l/k⌋∑
i=0

aiD
ki+(l mod k)
h G = U−(l mod k)(DxH + HU−1DxU)

This a an equality of rational functions which can thus be checked.

Integrating it in x , we recover the telescoper up to a function of h

⌊l/k⌋∑
i=0

ai∂
ki+(l mod k)
h I (x , h) = U−(l mod k)H(x , y(x , h)) + f (h)

The integrating constant f (h) can be removed by subtracting to
I (x , h) a function g(h) solution of the equation

⌊l/k⌋∑
i=0

ai∂
ki+(l mod k)
h g(h) = f (h).
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FindTelescoper

1 Note M = 1
2(N + 1)(N + 2)(⌈ord/k⌉+ 2).

2 Compute at order M the list LG of (∂j
hG (x , y(x , h))j=0...ord.

3 Compute J the list of list of
y(x)i

∫ x
0 (LGj(x , y(x)))|∂hy=U−1dx , j = 0 . . . ord, i = 0 . . .N

4 For ℓ from 0 to ord do
1 If U does not exist and ℓ ≤ 1, look for a telescoper of the form

Q(x , y(x , h))∂ℓ
hI (x , h) = ∂hyP(x , y(x , h)).

2 If U is not algebraic, look for a telescoper of the form
Q(x , y(x , h))∂ℓ

hI (x , h) = U−ℓP(x , y(x , h))
3 Else look for a k pseudo telescoper with valuation ℓ in ∂h

vanishing on the series at order M.
4 If a non trivial solution found, note it T .
5 T =ReduceTelescoper(T ,G ,F ,U). If T is correct return T

else return FAIL.

5 Return “None”.
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Proposition

If
∫
G (x , y(x))dx admits a telescoper of order ord and degree ≤ N,

then FindTelescoper returns either a correct telescoper, or FAIL.
If FindTelescoper returns “None”, then no telescoper of order ≤ ord
and certificate degree ≤ N and with structure according to given U
exists.
If FindTelescoper returns FAIL, then (x0, y0) belongs to a codimen-
sion 1 algebraic set.
The complexity is Õ(Nω+1ordω−1 + Nordω+3).
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Example 1: y = ln x , ∂xy = 1
x , U = 1

I1 =

∫
x2

(ln x)2
dx , DhI1+3I1 =

4x3 − y2

4y2
, I1 = − x3

ln x
+3Ei(3 ln x)

I2 =

∫
x3 + (ln x)3 + x2

(x + 1) ln x
dx , D4

h I2 + 3D3
h I2 =

16y4 − 162x3

27y4

I2 = 2 ln xLi2(−x)− 2Li3(−x) + Ei(3 ln x) + (ln x)2 ln(x + 1)

I3 =

∫
2x(ln x)2 + (ln x)3 + (ln x)2 − x − ln x

x(x + ln x)(ln x)2
,

DhI3 = −
4
45xy

2 + 4
45y

3 − y2 + x + y

y2(y + x)
,

I3 = ln x + (ln x)−1 + ln(x + ln x)
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I4 =

∫
x2 + 2x ln x + ln x

x(x + ln x) ln x
dx ,

D2
h I4+DhI4 =

14x2y2 + 28xy3 + 14y4 − 225x3 − 450x2y + 225y3 − 225y2

225y2(y + x)2
,

I4 = Ei(ln x) + ln(x + ln x)

∫ n∑
m=1

xm

ln x + h
dx =

(
n∑

m=1

em(y−ln x)Ei(my)

)
|y−ln x=h

Telescoper order m, degree 2m

n 1 2 3 4 5 6

time 0.s 0.13s 0.8s 12s 96s 583s
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∫
− exx2

2(ex − 1)
dx

Considering the differential equation and first integral

y ′ = y , F(x , y) = x − ln y

Integral rewrites

I (x , h) =

∫
x−ln y=h

− yx2

2(y − 1)
dx

Telescoper found

∂3
h I =

x2y2 + x2y + 2xy2 − 12y3 − 2xy + 38y2 − 40y + 14

2(y − 1)3

Integration of the connection gives

Li3(y)− xLi2(y) +
1

2
x2Li1(y)
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Proposition

An integral of G ∈ C(x , ln x) admitting a telescoper can be written∫
G (x)dx =

∑
p∈Z∗,λ∈C

ap,λEi(p ln x+λ)+
∑

p,r∈N∗,λ∈C∗

bp,r ,λ(ln x)
rLip(λx)+

∑
λ∈C

λ ln(Kλ(x , ln x)) + H(x , ln x)

where Kλ,H are rational functions.
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IntegrateLn

1 Note G = P/Q. Look for R ∈ Q−1C[x , y ] such that
G − (∂xR + 1

x ∂yR) has only simple poles outside x = 0. If

possible, note G̃ the resulting fraction.

2 Compute the residue in y along poles of G̃ of the form y = λ.
If in C[x , 1/x ], remove them from G̃ .

3 Compute the residue in x along poles of G̃ of the form
x = λ, λ ̸= 0. If in C[y ], remove them from G̃ .

4 Look for an integral of G̃ of the form

S(x , y) +
∑

λi lnQi (x , y)

where Qi | Q,and S ∈ C[x , 1x , y ]. If all previous steps
succeeded, return the expression, else return “None”.
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Proposition

An integral of G ∈ C(x , xα), α /∈ Q admitting a telescoper can be
written∫

G (x)dx =
∑

(p,q,r)∈(Z∗)3,λ∈C

ap,q,r ,λx
rΦ

(
λxpα+q, 1,

r

pα+ q

)
+

∑
(p,q)∈(Z2)∗,λ∈C

bp,q,λx
pα+qΦ (λx , 1, pα+ q)+

∑
λ∈C

λ ln(Kλ(x , x
α)) + H(x , xα)

where Kλ,H are rational functions.

The extension xα can be replaced by h(x)α with h homography.
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Is it possible to generalize these results?

Consider the Darbouxian first integral

F(x , y) = ln(1 + x2y) +
√
2 ln

(
x2 + y

√
2

x2 − y
√
2

)

x is a Darboux polynomial, and F is smooth along x = 0.

I9 =

∫
F(x,y)=h

y2x(x2y6 − 4y7 − 4x2y4 + 19y5 + x2y2 + 2y3 + 2x2 − 8y)

(x4 + 4x2y − 2y2 + 4)(y2 + 2)5
dx =

10x4y8 + 242x4y6 − 81x2y7 + 402x4y4 − 162x2y5 + 590x4y2 − 81y6 + 376x4 − 324y4 − 324y2

648(y2 + 2)4x4

The integrand has no poles along x = 0, but the integral has a pole
of order 4 along x = 0!

This simplification occurs because the integral is a series expansion
of 1/F4 which is meromorphic along x = 0.
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Proposition

If equation (1) has no rational first integral, and for any algebraic
solution Γ, there exists an order k ∈ N∗ such that the normal
variational equation of order k near Γ has an infinite Galois group,
then there exists an algorithm to decide the existence of a
telescoper.

New poles appearing in the telescoper can only be Darboux polyno-
mials.

Their order increase is bounded by k .

If a non rational symbolic first integral exists which is meromorphic
near a particular algebraic orbit, the order of the pole can increase
arbitrary.

⇒ We are not able to define a Hermite reduction near such poles!
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Example 2: y =
(
x−

√
2

x+
√
2

)√2
, ∂xy = 4y

x2−2
, U = 1

y

I6 =

∫ (x2 + 2)
(
x−

√
2

x+
√
2

)√2

(x2 − 2)2
((

x−
√
2

x+
√
2

)√2
+ 1

)dx ,

D2
h I6 − 1

2 I6 =
2x2y2 + 5x2y + 2xy2 + 2x2 + 2xy − 4y2 − 6y − 4

4(y + 1)2(x2 − 2)

I6 = −
(6x5 + 40x3 + 24x)

√
2 + x6 + 30x4 + 60x2 + 8

(32x5 − 128x)
√
2 + 8x6 + 80x4 − 160x2 − 64

Φ

−
(
x −

√
2

x +
√
2

)√
2

, 1,−
√
2

2



−
(2x

√
2 + x2 + 2)(x2 − 2)

(32x3 + 64x)
√
2 + 8x4 + 96x2 + 32

Φ

−
(
x −

√
2

x +
√
2

)√
2

, 1,

√
2

2

−
(x + 2)(x − 1)

x2 − 2
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Example 3:∫ −xAi(x)4 − 4Ai(x)3xAi′(x) + (4x3 + 4x + 1)Ai′(x)2Ai(x)2 + 4Ai(x)Ai′(x)3 − (4x2 − 4x + 6)Ai′(x)4

Ai′(x)(−x2Ai′(x) + Ai(x) − Ai′(x))(Ai(x)2 − 2Ai′(x)2)
dx

The function y(x) = Ai ′(x)/Ai(x) satisfies the equation

y ′ = xy2 − 1 = F (x , y)

Integral rewrites I (x , h) =∫
Ai(x)+yAi′(x)
Bi(x)+yBi′(x)=h

−4x3y2 − xy4 + 4xy3 + 4xy2 − 4x2 + y2 + 4x − 4y − 6

(x2 + y + 1)(y2 − 2)

Telescoper found

∂hI = (∂hy)
−4x2 + y2 − 4y − 6

(x2 + y + 1)(y2 − 2)

Integration gives

ln(x2 + y + 1) +
√
2 ln

(
y +

√
2

y −
√
2

)
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Example 4:∫
2 cos(2Π(x ,−1, 2)) +

2
√
4x4 − 5x2 + 1

(4x6 − x4 − 4x2 + 1) sin(2Π(x ,−1, 2))
dx

This expression is rational in x and

y(x) =
tan(Π(x ,−1, 2))√
4x4 − 5x2 + 1

y ′ =
1 + (4x4 − 5x2 + 1)y2 + (−8x5 − 3x3 + 5x)y

(4x2 − 1)(x4 − 1)

This equation has a 2-Darbouxian first integral

F(x , y) = Π(x ,−1, 2))− arctan(y
√
4x4 − 5x2 + 1)

The integrating factor U is

U =

√
4x4 − 5x2 + 1

(4x4 − 5x2 + 1)y2 + 1

32/35 Thierry COMBOT Symbolic integration on planar differential foliations



Symbolic integration
Computation of telescopers

Specific foliations
Examples

The integral rewrites I (x , h) =∫
Π(x,−1,2))−arctan(y

√
4x4−5x2+1)=h

(16x8 − 40x6 + 33x4 − 10x2 + 2)y 4 + · · ·+ (8x6 − 2x4 − 8x2 + 2)y + 1

(x2 + 1)(4x4y 2 − 5y 2x2 + y 2 + 1)y(4x4 − 5x2 + 1)

The telescoper is
∂3
h I + 4∂hI = . . .

Integration gives

e2i(Π(x ,−1,2))−arctan(y
√
4x4−5x2+1))

∫
e−2iΠ(x ,−1,2))dx+

e−2i(Π(x ,−1,2))−arctan(y
√
4x4−5x2+1))

∫
e2iΠ(x ,−1,2))dx+

1

2
ln(y2(4x4 − 5x2 + 1))
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Example 5: application to integration of a planar vector field

ẋ = − xy(y2 − 2)

xy2 − 2x + 4y
, ẏ = − y(y2 − 2)2

4xy2 − 8x + 16y

We wish to find (if possible) a Liouvillian expression of the solutions.

∂y

∂x
=

(xy2 − 2x + 4y)(y2 − 2)

(4xy2 − 8x + 16y)x

This equation admits a Darbouxian first integral

F(x , y) = 1
4 ln(x)−

√
2
2 arctanh

(
y
√
2
2

)
with integrating factor

U =
1

2(y2 − 1)
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To then perform the time integration, it is necessary to compute the
integral ∫

F(x ,y)=h

xy2 − 2x + 4y

xy(y2 − 2)
dx

A telescoper is found, giving an implicit expression for the solutions

1
4 ln(x)−

√
2
2 arctanh

(
y
√
2
2

)
= h

xe
−2

√
2arctanh

(√
2
2 y

) ∫
e
2
√
2arctanh

(√
2
2 y

)
y−2dy − 25

4 ln x+

21
√
2

2 arctanh
(√

2
2 y
)
+

4xy2 − 25y3 + 16y2 − 8x + 50y

4y(y2 − 2)
= t + c

35/35 Thierry COMBOT Symbolic integration on planar differential foliations


	Symbolic integration
	Computation of telescopers
	Specific foliations
	Examples

