Symbolic integration on planar differential foliations

Thierry COMBOT
Université de Bourgogne, Dijon

March 26, 2024

Consider a solution $y(x)$ of a differential equation

$$
\begin{equation*}
\frac{d}{d x} y(x)=F(x, y(x)) \quad F \in \mathbb{K}(x, y) \tag{1}
\end{equation*}
$$

The field \mathbb{K} will be a finite extension of \mathbb{Q}.
We are interested in the symbolic integration of expressions of the form

$$
I(x)=\int G(x, y(x)) d x, \quad G \in \mathbb{K}(x, y)
$$

What do we mean by symbolic?

Definition

We say that I is elementary if it there exists a tower of field $K_{n} \supset K_{n-1} \supset \cdots \supset K_{0}=\mathbb{C}(x, y(x))$ with $I \in K_{n}$, and where $K_{i+1}=K_{i}\left(f_{i}\right)$ and f_{i} is either

- algebraic over K_{i}
- the exponential of an element of K_{i}
- the log of an element of K_{i}

Remark that $I(x)$ is not always elementary, as

$$
\int e^{x^{2}} d x=\operatorname{erf}(x)
$$

We want to consider a larger class of functions than elementary when $y(x)$ is transcendental.

Our framework allows to consider many kinds of integrals

$$
\int \frac{d x}{\ln x}, \int \frac{x d x}{e^{x}+1}, \int \frac{e^{x^{2}}}{\operatorname{erf}(x)} d x, \int x \sqrt{\ln x} d x, \int \frac{x \sqrt{x^{3}+1} d x}{\int \sqrt{x^{3}+1} d x}
$$

When $y(x)$ is not algebraic, the action Galois group sends $y(x)$ to any (non algebraic) solution of (1).

Thus we can replace $y(x)$ by $y(x, h)$, where h parametrizes a family of solutions.

The integral now has a parameter h

$$
I(x, h)=\int G(x, y(x, h)) d x
$$

How it behaves as a function of h ?

Definition

A m variables function f is called Liouvillian if it there exists a tower of field $K_{n} \supset K_{n-1} \supset \cdots \supset K_{0}=\mathbb{C}\left(x_{1}, \ldots, x_{m}\right)$ with $f \in K_{n}$, and where $K_{i+1}=K_{i}\left(f_{i}\right)$ and f_{i} is either

- algebraic over K_{i}
- the exponential of an element of K_{i}
- the integral of a closed 1-form with coefficients in K_{i}

The integral

$$
I(x, h)=\int \frac{d x}{\ln x+h}
$$

is obviously Liouvillian as a single variable function of x.
However, as a function of h, this expression is not enough to conclude, we need to rewrite it

$$
I(x, h)=e^{-h} \int \frac{e^{h} d x+e^{h} x d h}{\ln x+h}
$$

And what about

$$
I(x, h)=\int \frac{d x}{x+\ln x+h} ?
$$

Theorem

If $y(x, h)$ satisfies a differential equation $P(y)=0$ where
$P \in \mathcal{O}(h)\left[x, y, \partial_{h} y, \partial_{h}^{2} y, \ldots\right]$, then equation (1) admits a symbolic first integral in one of the 4 classes

- A rational first integral $\mathcal{F} \in \mathbb{C}(x, y)$
- A k-Darbouxian first integral, $\left(\partial_{y} \mathcal{F}\right)^{k}=R \in \mathbb{C}(x, y), k \in \mathbb{N}^{*}$
- A Liouvillian first integral, $\partial_{y y} \mathcal{F} / \partial_{y} \mathcal{F}=R \in \mathbb{C}(x, y)$
- A Ricatti first integral, $\mathcal{F}=\mathcal{F}_{1} / \mathcal{F}_{2}$ where $\mathcal{F}_{1}, \mathcal{F}_{2}$ are a $\mathbb{C}(x)$ basis of solutions of a differential equation of the form $\partial_{y y} \mathcal{F} / \mathcal{F}=R \in \mathbb{C}(x, y)$.

Theorem

If I (x, h) satisfies a non constant differential equation in $\mathcal{O}(h)[x, y$, $\left.\partial_{h} y, \partial_{h}^{2} y, \ldots, I, \partial_{h} I, \partial_{h}^{2} I, \ldots\right]$ and $y(x, h)$ is not algebraic in x, then up to reparametrization in h, it satisfies a differential equation of the form $L I=\left(\partial_{h y} y\right)^{\operatorname{Ord}(L)} H$ where $H \in \mathbb{C}(x, y)$ and

- $L \in \mathbb{C}\left[\partial_{h}^{k}\right] \partial_{h}^{j}, j \in\{0, \ldots, k-1\}$ when equation (1) has a k-Darbouxian first integral.
- $L=\partial_{h}^{j}, j \in \mathbb{N}$ when equation (1) has a Liouvillian first integral.
- $L=\partial_{h}^{j}, j \in\{0,1\}$ when equation (1) has a Ricatti first integral or y differentially transcendental.

We call such differential relation a telescoper.

Idea of proof: Assume we have a relation

$$
P\left(x, y(x, h), \int G(x, y(x, h)) d x, \int \partial_{h} G(x, y(x, h)) d x, \ldots\right)=0
$$

The Galois group of the integrals over the differential field

$$
\mathbb{L}=\mathcal{O}(h)\left(x, y(x, h), \partial_{h} y(x, h), \ldots\right)
$$

of these integrals is either identity or additive.
It acts as translations
$\left(\int G(x, y(x, h)) d x, \int \partial_{h} G(x, y(x, h)) d x, \int \partial_{h}^{2} G(x, y(x, h)) d x, \ldots\right) \rightarrow$
$\left(\int G(x, y(x, h)) d x, \int \partial_{h} G(x, y(x, h)) d x, \int \partial_{h}^{2} G(x, y(x, h)) d x, \ldots\right)+v$
If all the possible translations vectors v satisfy a linear relation, then $I(x, h)$ satisfies a linear differential equation.

Else P is constant in the integrals, the relation is trivial!

If there exists a symbolic first integral, we can write up to reparametrization

$$
\mathcal{F}(x, y(x, h))=h
$$

The differential Galois group acts as

- $\mathcal{F} \rightarrow \xi \mathcal{F}+\beta, \xi^{k}=1$ in the k-Darbouxian case
- $\mathcal{F} \rightarrow \alpha \mathcal{F}+\beta$ in the Liouvillian case
- $\mathcal{F} \rightarrow \frac{\alpha \mathcal{F}+\beta}{\gamma \mathcal{F}+\delta}$ in the Ricatti case
- $\mathcal{F} \rightarrow \phi(\mathcal{F})$ in the differentially transcendental case
\Rightarrow This restricts the coefficients to be constants and of a specific form!

If L exists, then I satisfies the PDE system

$$
L I=\left(\partial_{h} y\right)^{\operatorname{ord}(L)} H, \quad \partial_{x} I=G
$$

which has finite dimensional space of solutions.
Noting $I(x, h)=J(x, y(x, h))$, we have

- For $L=1, J$ is rational
- For $L=\partial_{h}$, we can write

$$
J(x, y)=\int(G(x, y)-H(x, y) F(x, y)) d x+H(x, y) d y
$$

and thus J is elementary

- In other cases, a k-Darbouxian first integral \mathcal{F} should exist, and we note $U=\partial_{y} \mathcal{F}$, called the integrating factor.

Remarking that $\partial_{h} y=U^{-1}, J$ is then solution of the holonomic system

$$
D_{x} J=G, \sum_{i=0}^{\text {ord }} a_{i} D_{h}^{i} J=U^{- \text {ord }} H \text { where } D_{x}=\partial_{x}+F \partial_{y}, D_{h}=U^{-1} \partial_{y}
$$

Solutions of the homogeneous part are of the form

$$
\mathcal{F}^{k} e^{\alpha \mathcal{F}}, \alpha \in \mathbb{C}, k \in \mathbb{N}
$$

\Rightarrow By variation of constants

$$
J(x, y)=\sum_{\lambda \in S} \sum_{r=0}^{v_{\lambda}} e^{\lambda \mathcal{F}} \mathcal{F}^{r} \int e^{-\lambda \mathcal{F}} \sum_{i=1}^{m_{\lambda}} \sum_{j \in \mathbb{Z}} \mathcal{F}^{i} U^{j} \omega_{\lambda, i, j, r}
$$

This is not always elementary, but always Liouvillian as a two variables function.

Proposition

If $\int G(x, y(x)) d x$ is elementary, then $I(x, h)$ admits a telescoper.
If $\int G(x, y(x)) d x$ is elementary, then so is $I(x, h)$ for any h

$$
I(x, h)=F_{0}(x, y(x, h))+\sum_{i=1}^{\ell} \lambda_{i}(x, y(x, h)) \ln F_{i}(x, y(x, h)) .
$$

Differentiating, we see that λ_{i} should be functions of h only. Thus applying a suitable operator $L \in \mathcal{O}(h)\left[\partial_{h}\right]$, we can ensure that

$$
L I \in \mathcal{O}(h)\left[x, y(x, h), \partial_{h} y(x, h), \ldots\right] .
$$

By the previous theorem, up to reparametrization, $I(x, h)$ admits a telescoper.

Example

$$
\int \frac{x^{3} \ln x+x^{3}+x^{2} \ln x+x^{2}+x \ln x+x+\ln x}{x \ln x(1+\ln x)} d x
$$

Noting $y=\ln x$, we have

$$
\begin{gathered}
y^{\prime}=\frac{1}{x}=F(x, y) \\
\partial_{x} I=\frac{x^{3} y+x^{3}+x^{2} y+x^{2}+x y+x+y}{x y(1+y)}
\end{gathered}
$$

A 1-Darbouxian first integral exists,

$$
\mathcal{F}(x, y)=y-\ln x
$$

A telescoper is found

$$
L=\partial_{h}^{4}+6 \partial_{h}^{3}+11 \partial_{h}^{2}+6 \partial_{h}
$$

with certificate

$$
\begin{gathered}
-8 y^{-4}(1+y)^{-4}\left(16 x^{3} y^{6}+16 x^{3} y^{5}+24 x^{2} y^{6}-29 y^{8}-48 x^{3} y^{4}+\right. \\
32 x^{2} y^{5}+48 x y^{6}-164 y^{7}-32 x^{3} y^{3}-64 x^{2} y^{4}+112 x y^{5}-230 y^{6}+ \\
112 x^{3} y^{2}-96 x^{2} y^{3}+16 x y^{4}-180 y^{5}+144 x^{3} y+56 x^{2} y^{2}-96 x y^{3} \\
\left.-37 y^{4}+48 x^{3}+128 x^{2} y+16 x y^{2}+48 x^{2}+112 x y+48 x\right)
\end{gathered}
$$

Integration of the ∂-finite PDE system gives

$$
-x^{3} e^{-3 y} E i(-3 y)-x^{2} e^{-2 y} E i(-2 y)-x e^{-y} E i(-y)+\ln (1+y)
$$

The result is defined up to a linear combination of

$$
1, e^{\ln x-y}, e^{2(\ln x-y)}, e^{3(\ln x-y)}
$$

These are first integrals of (1), and thus functions of h.
For any closed loop γ_{h} on the complex Riemann surface $\ln x-y=h$, we have

$$
L \int_{\gamma_{h}} \frac{x^{3} y+x^{3}+x^{2} y+x^{2}+x y+x+y}{x y(1+y)}=0
$$

The integrand is defined on an infinite genus Riemann surface, but the monodromy maps the infinite dimensional homotopy group to a finite dimensional vector space.

In the case of Liouvillian, Riccati or no first integrals, we look for

$$
Q(x, y(x)) \partial_{h}^{\ell} I(x, h)=U^{-\ell} P(x, y(x))
$$

In the k-Darbouxian case, we look for
$\sum_{i=0}^{\lfloor\ell / k\rfloor} Q(x, y(x, h)) a_{i} \partial_{h}^{k i+(\iota \bmod k)} I(x, h)=U^{-(\ell \bmod k)} P(x, y(x, h))$
However, the unknowns P, Q, a_{i} appear non linearly!

Definition

A k-pseudo telescoper is of the form with $Q_{i}, P \in \mathbb{C}[x, y]$,
$\sum_{i=0}^{\lfloor I / k\rfloor} Q_{i}(x, y(x, h)) \partial_{h}^{k i+(I \bmod k)} I(x, h)=U^{-(I \bmod k)} P(x, y(x, h))$

Proposition

Assume equation (1) admits a k-Darbouxian first integral but not rational first integral. If a non trivial k-pseudo telescoper exists, then a true telescoper exists. The algorithm ReduceTelescoper always terminate and compute such telescoper. It runs in $\tilde{O}\left(\right.$ Nord $\left.^{\omega+3}\right)$.

ReduceTelescoper

(1) Note L_{1} the initial telescoper. Assign $i=1$. While $\operatorname{rank}_{\mathbb{K}(x, y)}\left(\left(L_{j}\right)_{j=1 \ldots i}\right)=i$ do

$$
L_{i+1}:=\partial_{x} L_{i}, i:=i+1
$$

(2) Build a row echelon form of the matrix L, and note $\left(Q_{r}, \ldots, Q_{0}, P\right)$ its shortest non zero line. Return

$$
\sum_{i=0}^{r} \frac{Q_{i}}{Q_{r}} \partial_{h}^{k i+(\prime \bmod k)} I(x, h)=U^{-(। \bmod k)} \frac{P}{Q_{r}}
$$

How to check if a telescoper is correct? We differentiate it in x

$$
\sum_{i=0}^{\lfloor I / k\rfloor} a_{i} D_{h}^{k i+(I \bmod k)} G=U^{-(I \bmod k)}\left(D_{x} H+H U^{-1} D_{x} U\right)
$$

This a an equality of rational functions which can thus be checked.
Integrating it in x, we recover the telescoper up to a function of h

$$
\sum_{i=0}^{\lfloor I / k\rfloor} a_{i} \partial_{h}^{k i+(I \bmod k)} I(x, h)=U^{-(I \bmod k)} H(x, y(x, h))+f(h)
$$

The integrating constant $f(h)$ can be removed by subtracting to $I(x, h)$ a function $g(h)$ solution of the equation

$$
\sum_{i=0}^{\lfloor I / k\rfloor} a_{i} \partial_{h}^{k i+(I \bmod k)} g(h)=f(h)
$$

FindTelescoper

(1) Note $M=\frac{1}{2}(N+1)(N+2)(\lceil$ ord $/ k\rceil+2)$.
(2) Compute at order M the list $L G$ of $\left(\partial_{h}^{j} G(x, y(x, h))_{j=0 \ldots \text { ord }}\right.$.
(3) Compute J the list of list of

$$
y(x)^{i} \int_{0}^{x}\left(L G_{j}(x, y(x))\right)_{\mid \partial_{h} y=U^{-1}} d x, j=0 \ldots \text { ord, }, i=0 \ldots N
$$

(4) For ℓ from 0 to ord do
(1) If U does not exist and $\ell \leq 1$, look for a telescoper of the form $Q(x, y(x, h)) \partial_{h}^{\ell} I(x, h)=\partial_{h} y P(x, y(x, h))$.
(2) If U is not algebraic, look for a telescoper of the form $Q(x, y(x, h)) \partial_{h}^{\ell} I(x, h)=U^{-\ell} P(x, y(x, h))$
(3) Else look for a k pseudo telescoper with valuation ℓ in ∂_{h} vanishing on the series at order M.
(9) If a non trivial solution found, note it T.
© $T=$ ReduceTelescoper (T, G, F, U). If T is correct return T else return FAIL.
(5) Return "None".

Proposition

If $\int G(x, y(x)) d x$ admits a telescoper of order ord and degree $\leq N$, then FindTelescoper returns either a correct telescoper, or FAIL. If FindTelescoper returns "None", then no telescoper of order \leq ord and certificate degree $\leq N$ and with structure according to given U exists.
If FindTelescoper returns FAIL, then $\left(x_{0}, y_{0}\right)$ belongs to a codimension 1 algebraic set.
The complexity is $\tilde{O}\left(N^{\omega+1} \operatorname{ord}{ }^{\omega-1}+N o r d^{\omega+3}\right)$.

Example 1: $y=\ln x, \partial_{x} y=\frac{1}{x}, U=1$

$$
\begin{gathered}
I_{1}=\int \frac{x^{2}}{(\ln x)^{2}} d x, \quad D_{h} I_{1}+3 I_{1}=\frac{4 x^{3}-y^{2}}{4 y^{2}}, \quad I_{1}=-\frac{x^{3}}{\ln x}+3 E i(3 \ln x) \\
I_{2}=\int \frac{x^{3}+(\ln x)^{3}+x^{2}}{(x+1) \ln x} d x, \quad D_{h}^{4} I_{2}+3 D_{h}^{3} I_{2}=\frac{16 y^{4}-162 x^{3}}{27 y^{4}} \\
I_{2}=2 \ln x L i_{2}(-x)-2 L i_{3}(-x)+E i(3 \ln x)+(\ln x)^{2} \ln (x+1) \\
I_{3}=\int \frac{2 x(\ln x)^{2}+(\ln x)^{3}+(\ln x)^{2}-x-\ln x}{x(x+\ln x)(\ln x)^{2}}, \\
D_{h} I_{3}=-\frac{\frac{4}{45} x y^{2}+\frac{4}{45} y^{3}-y^{2}+x+y}{y^{2}(y+x)}, \\
I_{3}=\ln x+(\ln x)^{-1}+\ln (x+\ln x)
\end{gathered}
$$

$$
\begin{gathered}
I_{4}=\int \frac{x^{2}+2 x \ln x+\ln x}{x(x+\ln x) \ln x} d x \\
D_{h}^{2} I_{4}+D_{h} I_{4}=\frac{14 x^{2} y^{2}+28 x y^{3}+14 y^{4}-225 x^{3}-450 x^{2} y+225 y^{3}-225 y^{2}}{225 y^{2}(y+x)^{2}}, \\
I_{4}=E i(\ln x)+\ln (x+\ln x) \\
\int \sum_{m=1}^{n} \frac{x^{m}}{\ln x+h} d x=\left(\sum_{m=1}^{n} e^{m(y-\ln x)} E i(m y)\right)_{\mid y-\ln x=h}
\end{gathered}
$$

Telescoper order m, degree $2 m$

n	1	2	3	4	5	6
time	$0 . \mathrm{s}$	0.13 s	0.8 s	12 s	96 s	583 s

$$
\int-\frac{e^{x} x^{2}}{2\left(e^{x}-1\right)} d x
$$

Considering the differential equation and first integral

$$
y^{\prime}=y, \quad \mathcal{F}(x, y)=x-\ln y
$$

Integral rewrites

$$
I(x, h)=\int_{x-\ln y=h}-\frac{y x^{2}}{2(y-1)} d x
$$

Telescoper found

$$
\partial_{h}^{3} I=\frac{x^{2} y^{2}+x^{2} y+2 x y^{2}-12 y^{3}-2 x y+38 y^{2}-40 y+14}{2(y-1)^{3}}
$$

Integration of the connection gives

$$
L i_{3}(y)-x L i_{2}(y)+\frac{1}{2} x^{2} L i_{1}(y)
$$

Proposition

An integral of $G \in \mathbb{C}(x, \ln x)$ admitting a telescoper can be written $\int G(x) d x=\sum_{p \in \mathbb{Z}^{*}, \lambda \in \mathbb{C}} a_{p, \lambda} E i(p \ln x+\lambda)+\sum_{p, r \in \mathbb{N}^{*}, \lambda \in \mathbb{C}^{*}} b_{p, \lambda}(\ln x)^{r} L i_{p}(\lambda x)+$

$$
\sum_{\lambda \in \mathbb{C}} \lambda \ln \left(K_{\lambda}(x, \ln x)\right)+H(x, \ln x)
$$

where K_{λ}, H are rational functions.

IntegrateLn

(1) Note $G=P / Q$. Look for $R \in Q^{-1} \mathbb{C}[x, y]$ such that $G-\left(\partial_{x} R+\frac{1}{x} \partial_{y} R\right)$ has only simple poles outside $x=0$. If possible, note \tilde{G} the resulting fraction.
(2) Compute the residue in y along poles of \tilde{G} of the form $y=\lambda$. If in $\mathbb{C}[x, 1 / x]$, remove them from \tilde{G}.
(3) Compute the residue in x along poles of \tilde{G} of the form $x=\lambda, \lambda \neq 0$. If in $\mathbb{C}[y]$, remove them from \tilde{G}.
(9) Look for an integral of \tilde{G} of the form

$$
S(x, y)+\sum \lambda_{i} \ln Q_{i}(x, y)
$$

where $Q_{i} \mid Q$, and $S \in \mathbb{C}\left[x, \frac{1}{x}, y\right]$. If all previous steps succeeded, return the expression, else return "None".

Proposition

An integral of $G \in \mathbb{C}\left(x, x^{\alpha}\right), \alpha \notin \mathbb{Q}$ admitting a telescoper can be written

$$
\begin{aligned}
\int G(x) d x= & \sum_{(p, q, r) \in(\mathbb{Z} *)^{3}, \lambda \in \mathbb{C}} a_{p, q, r, \lambda} x^{r} \Phi\left(\lambda x^{p \alpha+q}, 1, \frac{r}{p \alpha+q}\right)+ \\
& \sum_{(p, q) \in\left(\mathbb{Z}^{2}\right) *, \lambda \in \mathbb{C}} b_{p, q} x^{p \alpha+q} \Phi(\lambda x, 1, p \alpha+q)+ \\
& \sum_{\lambda \in \mathbb{C}} \lambda \ln \left(K_{\lambda}\left(x, x^{\alpha}\right)\right)+H\left(x, x^{\alpha}\right)
\end{aligned}
$$

where K_{λ}, H are rational functions.
The extension x^{α} can be replaced by $h(x)^{\alpha}$ with h homography.

Is it possible to generalize these results?

Consider the Darbouxian first integral

$$
\mathcal{F}(x, y)=\ln \left(1+x^{2} y\right)+\sqrt{2} \ln \left(\frac{x^{2}+y \sqrt{2}}{x^{2}-y \sqrt{2}}\right)
$$

x is a Darboux polynomial, and \mathcal{F} is smooth along $x=0$.

$$
\begin{gathered}
\iota_{9}=\int_{\mathcal{F}(x, y)=h} \frac{y^{2} x\left(x^{2} y^{6}-4 y^{7}-4 x^{2} y^{4}+19 y^{5}+x^{2} y^{2}+2 y^{3}+2 x^{2}-8 y\right)}{\left(x^{4}+4 x^{2} y-2 y^{2}+4\right)\left(y^{2}+2\right)^{5}} d x= \\
\frac{10 x^{4} y^{8}+242 x^{4} y^{6}-81 x^{2} y^{7}+402 x^{4} y^{4}-162 x^{2} y^{5}+590 x^{4} y^{2}-81 y^{6}+376 x^{4}-324 y^{4}-324 y^{2}}{648\left(y^{2}+2\right)^{4} x^{4}}
\end{gathered}
$$

The integrand has no poles along $x=0$, but the integral has a pole of order 4 along $x=0$!

This simplification occurs because the integral is a series expansion of $1 / \mathcal{F}^{4}$ which is meromorphic along $x=0$.

Proposition

If equation (1) has no rational first integral, and for any algebraic solution Γ, there exists an order $k \in \mathbb{N}^{*}$ such that the normal variational equation of order k near Γ has an infinite Galois group, then there exists an algorithm to decide the existence of a telescoper.

New poles appearing in the telescoper can only be Darboux polynomials.

Their order increase is bounded by k.
If a non rational symbolic first integral exists which is meromorphic near a particular algebraic orbit, the order of the pole can increase arbitrary.
\Rightarrow We are not able to define a Hermite reduction near such poles!

Example 2: $y=\left(\frac{x-\sqrt{2}}{x+\sqrt{2}}\right)^{\sqrt{2}}, \partial_{x} y=\frac{4 y}{x^{2}-2}, U=\frac{1}{y}$

$$
\begin{gathered}
I_{6}=\int \frac{\left(x^{2}+2\right)\left(\frac{x-\sqrt{2}}{x+\sqrt{2}}\right)^{\sqrt{2}}}{\left(x^{2}-2\right)^{2}\left(\left(\frac{x-\sqrt{2}}{x+\sqrt{2}}\right)^{\sqrt{2}}+1\right)} d x, \\
D_{h}^{2} I_{6}-\frac{1}{2} I_{6}=\frac{2 x^{2} y^{2}+5 x^{2} y+2 x y^{2}+2 x^{2}+2 x y-4 y^{2}-6 y-4}{4(y+1)^{2}\left(x^{2}-2\right)} \\
I_{6}=-\frac{\left(6 x^{5}+40 x^{3}+24 x\right) \sqrt{2}+x^{6}+30 x^{4}+60 x^{2}+8}{\left(32 x^{5}-128 x\right) \sqrt{2}+8 x^{6}+80 x^{4}-160 x^{2}-64} \Phi\left(-\left(\frac{x-\sqrt{2}}{x+\sqrt{2}}\right)^{\sqrt{2}}, 1,-\frac{\sqrt{2}}{2}\right) \\
-\frac{\left(2 x \sqrt{2}+x^{2}+2\right)\left(x^{2}-2\right)}{\left(32 x^{3}+64 x\right) \sqrt{2}+8 x^{4}+96 x^{2}+32} \Phi\left(-\left(\frac{x-\sqrt{2}}{x+\sqrt{2}}\right)^{\sqrt{2}}, 1, \frac{\sqrt{2}}{2}\right)-\frac{(x+2)(x-1)}{x^{2}-2}
\end{gathered}
$$

Example 3:

$$
\int \frac{-x A i(x)^{4}-4 A i(x)^{3} x A i^{\prime}(x)+\left(4 x^{3}+4 x+1\right) A i^{\prime}(x)^{2} A i(x)^{2}+4 A i(x) A i^{\prime}(x)^{3}-\left(4 x^{2}-4 x+6\right) A i^{\prime}(x)^{4}}{A i^{\prime}(x)\left(-x^{2} A i^{\prime}(x)+A i(x)-A i^{\prime}(x)\right)\left(A i(x)^{2}-2 A i^{\prime}(x)^{2}\right)} d x
$$

The function $y(x)=A i^{\prime}(x) / A i(x)$ satisfies the equation

$$
y^{\prime}=x y^{2}-1=F(x, y)
$$

Integral rewrites $I(x, h)=$
$\int_{\frac{A i(x)+y A i^{\prime}(x)}{B i(x)+y B_{i}^{\prime}(x)}=h}-\frac{4 x^{3} y^{2}-x y^{4}+4 x y^{3}+4 x y^{2}-4 x^{2}+y^{2}+4 x-4 y-6}{\left(x^{2}+y+1\right)\left(y^{2}-2\right)}$
Telescoper found

$$
\partial_{h} I=\left(\partial_{h} y\right) \frac{-4 x^{2}+y^{2}-4 y-6}{\left(x^{2}+y+1\right)\left(y^{2}-2\right)}
$$

Integration gives

$$
\ln \left(x^{2}+y+1\right)+\sqrt{2} \ln \left(\frac{y+\sqrt{2}}{y-\sqrt{2}}\right)
$$

Example 4:

$$
\int 2 \cos (2 \Pi(x,-1,2))+\frac{2 \sqrt{4 x^{4}-5 x^{2}+1}}{\left(4 x^{6}-x^{4}-4 x^{2}+1\right) \sin (2 \Pi(x,-1,2))} d x
$$

This expression is rational in x and

$$
\begin{gathered}
y(x)=\frac{\tan (\Pi(x,-1,2))}{\sqrt{4 x^{4}-5 x^{2}+1}} \\
y^{\prime}=\frac{1+\left(4 x^{4}-5 x^{2}+1\right) y^{2}+\left(-8 x^{5}-3 x^{3}+5 x\right) y}{\left(4 x^{2}-1\right)\left(x^{4}-1\right)}
\end{gathered}
$$

This equation has a 2-Darbouxian first integral

$$
\mathcal{F}(x, y)=\Pi(x,-1,2))-\arctan \left(y \sqrt{4 x^{4}-5 x^{2}+1}\right)
$$

The integrating factor U is

$$
U=\frac{\sqrt{4 x^{4}-5 x^{2}+1}}{\left(4 x^{4}-5 x^{2}+1\right) y^{2}+1}
$$

The integral rewrites $I(x, h)=$

$$
\int_{\Pi(x,-1,2))-\arctan \left(y y \sqrt{4 x^{4}-5 x^{2}+1}\right)=h} \frac{\left(16 x^{8}-40 x^{6}+33 x^{4}-10 x^{2}+2\right) y^{4}+\cdots+\left(8 x^{6}-2 x^{4}-8 x^{2}+2\right) y+1}{\left(4 x^{4} y^{2}-5 y^{2} x^{2}+y^{2}+1\right) y\left(4 x^{4}-5 x^{2}+1\right)}
$$

The telescoper is

$$
\partial_{h}^{3} I+4 \partial_{h} I=\ldots
$$

Integration gives

$$
\begin{gathered}
e^{\left.2 i(\Pi(x,-1,2))-\arctan \left(y \sqrt{4 x^{4}-5 x^{2}+1}\right)\right)} \int e^{-2 i \Pi(x,-1,2))} d x+ \\
\left.e^{-2 i(\Pi(x,-1,2))-\arctan \left(y \sqrt{4 x^{4}-5 x^{2}+1}\right)}\right) \int e^{2 i \Pi(x,-1,2))} d x+ \\
\frac{1}{2} \ln \left(y^{2}\left(4 x^{4}-5 x^{2}+1\right)\right)
\end{gathered}
$$

Example 5: application to integration of a planar vector field

$$
\dot{x}=-\frac{x y\left(y^{2}-2\right)}{x y^{2}-2 x+4 y}, \quad \dot{y}=-\frac{y\left(y^{2}-2\right)^{2}}{4 x y^{2}-8 x+16 y}
$$

We wish to find (if possible) a Liouvillian expression of the solutions.

$$
\frac{\partial y}{\partial x}=\frac{\left(x y^{2}-2 x+4 y\right)\left(y^{2}-2\right)}{\left(4 x y^{2}-8 x+16 y\right) x}
$$

This equation admits a Darbouxian first integral

$$
\mathcal{F}(x, y)=\frac{1}{4} \ln (x)-\frac{\sqrt{2}}{2} \operatorname{arctanh}\left(y \frac{\sqrt{2}}{2}\right)
$$

with integrating factor

$$
U=\frac{1}{2\left(y^{2}-1\right)}
$$

To then perform the time integration, it is necessary to compute the integral

$$
\int_{\mathcal{F}(x, y)=h} \frac{x y^{2}-2 x+4 y}{x y\left(y^{2}-2\right)} d x
$$

A telescoper is found, giving an implicit expression for the solutions

$$
\begin{gathered}
\frac{1}{4} \ln (x)-\frac{\sqrt{2}}{2} \operatorname{arctanh}\left(y \frac{\sqrt{2}}{2}\right)=h \\
x e^{-2 \sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{2}}{2} y\right)} \int e^{2 \sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{2}}{2} y\right)} y^{-2} d y-\frac{25}{4} \ln x+ \\
\frac{21 \sqrt{2}}{2} \operatorname{arctanh}\left(\frac{\sqrt{2}}{2} y\right)+\frac{4 x y^{2}-25 y^{3}+16 y^{2}-8 x+50 y}{4 y\left(y^{2}-2\right)}=t+c
\end{gathered}
$$

