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Intro codes

Coding Theory, Redundancy and Decoding

▶ A correcting code C encodes a message of length k into a codeword of length n > k

m 7→ c ∈ C ⊂ Fn
q

▶ Some noise modifies the codeword

▶ Decoding: given an “erroneous codeword”, recover the message

codeword
decoding
ambient 
word

▶ Message should be close (Hamming distance)

▶ d is the minimum distance

▶ less than (d − 1)/2 errors =⇒ unique decoding
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Intro codes

combinatorics A good code has many codewords and a large minimum distance

algorithmics And an associated decoding algorithm

Difficult Tasks
▶ Difficult to build good codes

▶ Decoding is intractable
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Intro codes

Reed-Solomon codes

Definition
Given L = {x1, . . . , xn} ⊂ Fq, and k ≤ n
the Reed-Solomon codes RS[L, k] is the code

{(f (x1), . . . , f (xn))| deg f (X ) < k} ⊂ Fn
q

It has minimum distance d = n − k + 1 (Singleton bound: best distance achievable)

▶ k = 1 (constants) n
2 errors: majority vote

▶ k = 2 (lines) n−1
2 errors.

▶ d−1
2 = n−k

2 errors can be corrected with a unique solution

▶ f (X ) coincides in t = n+k
2 positions
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Intro codes

Lagrange interpolation with outliers

Problem
Given x1, . . . , xn, y = (y1, . . . , yn) ∈ Fn

q, k and t ≤ n, find

Lt
y = {f (X ) ∈ F[X ], deg f (X ) < k, |C (f (X ), y)| ≥ t}

▶ t = n: unique solution

▶ t ≥ n+k
2 : unique solution

▶ t = k :
(n
k

)
solutions

▶ t < k : problem is ill-founded

▶ k < t < n+k
2 : “list-decoding”
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Intro codes

Unique decoding: Berlekamp-Welch

Code: F, k ≤ n, x1, . . . , xn ∈ F, xi ̸= xj

Decoding Radius: t = n+k
2

“Received word”: y = (y1, . . . , yn) ∈ Fn

Bivariate Interpolation

Find A(X ,Y ) = A0(X ) + A1(X )Y such that

▶ A(xi , yi ) = 0, i = 1, . . . , n

▶ degA0(X ) < t

▶ degA1(X ) < t − (k − 1)

Root-Finding

return f (X ) = A1(X )/A0(X ) if

▶ f (X ) is a polynomial of degree < k

▶ C (f (X ), y) ≥ t
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Intro codes

A(X ,Y ) = A0(X ) + A1(X )Y is such that

▶ A(xi , yi ) = 0, i = 1, . . . , n

▶ degA0(X ) < t

▶ degA1(X ) < t − (k − 1)

Correctness
Let f (X ) with C (f (X ), y) ≥ t and deg f (X ) < k

1. degA0(X ) + A1(X )f (X ) < t

2. f (xi ) = yi =⇒ A(xi , f (xi )) = 0

3. C (f (X ), y) ≥ t =⇒ A(X , f (X )) has at least t roots =⇒ A(X , f (X )) = 0

Non triviality

1. linear system with n equations

2. number of unknowns t + t − (k − 1) = 2t + 1− k ≥ 2n+k
2 + 1− k = n + 1

3. =⇒ there exists a non zero A(X ,Y )
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List decoding

Sudan

▶ Look for
A(X ,Y ) = A0(X ) + A1(X )Y + · · ·+ Aℓ(X )Y ℓ

with wdeg1,k−1 A(X ,Y ) < t such that

A(xi , yi ) = 0, i = 1, . . . , n

▶ Finding A(X ,Y ) is solving a homogoneous linear system

▶ Solve for f (X ) solution to A(X , f (X )) = 0

The existence of a non zero A(X ,Y ) is ensured by

number of unknowns > number of equations

=⇒ t ≥
√
2n(k − 1), |L| ≤

√
2/R
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List decoding

Guruswami-Sudan

▶ Look for
A(X ,Y ) = A0(X ) + A1(X )Y + · · ·+ Aℓ(X )Y ℓ

with wdeg1,k−1 A(X ,Y ) < t such that

A(xi , yi ) = 0, i = 1, . . . , n

with multiplicity s
▶ Solve for f (X ) solution to A(X , f (X )) = 0

The existence of a non zero A(X ,Y ) is ensured by

number of unknowns > number of equations

=⇒ t ≥
√
n(k − 1)(1 + 1

s ) and |L| ≤
√
ns(s + 1)/k
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List decoding

“Capacity” of list decoding for general codes

With the notation τ = (n − t)/n, and ℓ the maximum list size

Existence result (ELias 1957)

There exists a family of (τ, ℓ) list-decodable codes over Fq of rate

R ≥ 1− Hq(τ)− 1/ℓ

with
Hq(τ) = −τ logq(τ)− (1− τ) logq(1− τ) + τ logq(q − 1)

Using ℓ = O(1ε ), and q = exp(O(1/ε)) gives

R ≥ 1− τ − ε

Same result for linear codes (Mosheiff, Resch, Ron-Zewi, Silas,Wootters 2019)
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List decoding

Case of Reed-Solomon codes
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▶ Decoding of Reed-Solomon is NP-hard (Guruswami-Vardy 2004)
▶ Existence of Reed-Solomon codes with better list decoding radius

(Goldberg-Shangguan-Tamo 2021, Ferber-Kwan-Sauermann 2020, Wooters 2014)
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“Derivatives codes”

Derivative codes (Guruswami-Wang 2011)
For m ≤ k ≤ nm, the derivative code DRSm[n, k] has “codewords” given by

f (x1) . . . f (xn)

f (1)(x1) . . . f (1)(xn)
...

...

f (m−1)(x1) . . . f (m−1)(xn)


where f (X ) is a polynomial of degree less than k

Beware!
▶ “messages” have alphabet Fq

▶ “codewords” have alphaet Fm
q

▶ The rate is R = (k − 1)/(nm)

▶ the code
C ⊂

(
Fm
q

)n
is Fq-linear
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“Derivatives codes”

Hermite interpolation with errors

Problem
Given x1, . . . , xn, k and t ≤ n,

x1 . . . xn

y =


y01 . . . y0n
y11 . . . y1n
...

...
ym−1,1 . . . ym−1,n


find

Lt
y = {f (X ) ∈ F[X ], deg f (X ) < k, |C (f (X ), y)| ≥ t}

where C (f (X ), y) is the set of agreeing columns
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“Linear-Algebraic” list decoding
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“Linear-Algebraic” list decoding

Linear-algebraic list decoding, first version

Given a received word y , find

A(X ,Y1, . . . ,Ym−1) = B(X ) + A0(X )Y0 + · · ·+ Am−1(X )Ym−1

such that

1. degB(X ) < t

2. degAi (X ) < t − (k − 1)

3. for i = 1, . . . , n
A(xi , y0,i , . . . , ym−1,i ) = 0

(Correctness) For any f ∈ L

A(X , f (X ), . . . , f (m−1)(X )) = 0
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“Linear-Algebraic” list decoding

Analysis

(Decoding radius) The “more unknowns than equations” analysis gives

t >
n

m + 1
+

m

m + 1
· (k − 1)

t

n
>

1

m + 1
+

m(k − 1)

n(m + 1)

∼ 1

m + 1
+mR

With τ = 1− t/n:
τ ∼ 1− ε− ε−1R

We aim at
τ ∼ 1− ε− R
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“Linear-Algebraic” list decoding

Linear-algebraic list decoding, improved version

Derivation
D(p(X )Yi ) = p′(X )Yi + p(X )Yi+1,

Given a received word y , find for an auxiliary s

A(X ,Y1, . . . ,Ys) = B(X ) + A0(X )Y0 + · · ·+ As−1(X )Ys−1

such that

1. degB(X ) < (m − s + 1)t

2. degAi (X ) < (m − s + 1)t − (k − 1)

3. for i = 1, . . . , n (
D(j)A

)
(xi , y0,i , . . . , ym−1,i ) = 0

for j = 0, . . . ,m − s
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“Linear-Algebraic” list decoding

Reaching capacity

(Decoding radius) The “more unknowns than equations” analysis gives

t >
n

s + 1
+

s

s + 1
· k − 1

m − s + 1

Optimisation

▶ s = Ω(ε−1)

▶ m = Ω(ε−2)
t

n
≥ R + ε
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“Linear-Algebraic” list decoding

Finite dimensional space

We are left with solving a linear differential equation with polynomial coefficients

B(X ) + A0(X )f (X ) + · · ·+ As−1(X )f (s−1)(X ) = 0 (∗)

▶ looking for polynomial solutions

▶ of given bounded degree k − 1

▶ which have t initial values in the received word y
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“Linear-Algebraic” list decoding

Case of a finite field

Proposition

If As−1(X ) ̸= 0, all solution to (∗) belong to an affine space of dimension ≤ s − 1

Exhaustive search when F = Fq is finite =⇒ list-size at most qs = q1/ε
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“Linear-Algebraic” list decoding

Problem (reformulated)

Given
x1 . . . xn

y =


y01 . . . y0n
y11 . . . y1n
...

...
ym−1,1 . . . ym−1,n


and

B(X ) + A0(X )f (X ) + · · ·+ As−1(X )f (s−1)(X ) = 0 (∗)

Find all solutions f (X ) which coincide with y in a at least t positions

Issue
f (X ) may be such that As−1(xi ) = 0 for i ∈ C (f (X ), y)
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Our contribution

Case s = m

degAs−1(X ) < (m − s + 1)t − (k − 1) = t − (k − 1) < t

Proposition

If As−1(X ) ̸= 0, for any f (X ) ∈ L, there exists i ∈ [n] such that

i ∈ C (f (X ), y) and As−1(xi ) ̸= 0

Proof. Suppose there is an f (X ) ∈ L such that this is not true.

i ∈ C (f (X ), y) =⇒ (X − xi )|As−1(X )∏
i∈C(f (X ),y)

(X − xi ) | As−1(X )

But |C (f (X ), y)| ≥ t
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Our contribution

List size

Over any field, when s = m

▶ Any f (X ) ∈ L has a correct index i such that As−1(xi ) ̸= 0

▶ Any f (X ) can be found from its Taylor series at this position

=⇒ |L| ≤ n

More generally for s ̸= m

When As−1(X ) has less than t zeros in {x1, . . . , xn}
▶ any f (X ) ∈ L has a correct index i such that As−1(xi ) ̸= 0

=⇒ |L| ≤ n
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Our contribution

Case s = 2, m general
First order linear equation

B(X ) + A0(X )f (X ) + A1(X )f ′(X ) = 0

w.l.o.g gcd(A1(X ),A0(X )) = 1

Let
Z (X ) =

∏
i∈I

(X − xi )

▶ If degZ (X ) < t
Any f (X ) ∈ L is determined by Taylor expansion at some point xi =⇒ |L| ≤ n

▶ If degZ (X ) ≥ k , then
B(X ) + A0(X )f (X ) = mod Z (X )

which uniquely determines f (X ) =⇒ |L| ≤ 1

▶ t ≤ degZ (X ) < k ?
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Our contribution

First order approximation of f (X )

For xi such that Z (xi ) = 0

B(xi ) + A0(xi )f (xi ) = 0

B(xi ) + A0(xi )y0i = 0

thus
A0(xi )(y0i − f (xi )) = 0

and f (xi ) = y0i since A0(X ) is coprime to Z (X ).

=⇒ f (X ) is known modulo Z (X )

Write
f (X ) = f0(X ) + f1(X )Z (X )

with f1(X ) to be determined
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Our contribution

If Z (xi ) ̸= 0
from f (X ) = f0(X ) + f1(X )Z (X )

f1(xi ) =
f (xi )− f0(xi )

Z (xi )
,

If Z (xi ) = 0
from f ′(X ) = f ′0(X ) + f ′1(X )Z (X ) + f1(X )Z ′(X )

f1(xi ) =
f ′(xi )− f ′0(xi )

Z ′(xi )

We do not know f (xi ) neither f
′(xi ), only yi0 and yi1

Set the first row of y (1) as

y
(1)
0i =

y0i − f0(xi )

Z (xi )

y
(1)
0i =

y1i − f ′0(xi )

Z ′(xi )
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Our contribution
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Our contribution
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Our contribution
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Our contribution

Other rows of y (1): iterative procedure
Suppose f (u)(xi ) known for u < j
Leibniz’ rule on f (X ) = f0(X ) + f1(X )Z (X )

f (j)(xi ) = f
(j)
0 (xi ) + f

(j)
1 (xi )Z (xi ) +

j−1∑
u=0

(
j

u

)
f
(u)
1 (xi )Z

(j−u)(xi )

For i ̸∈ I , replacing with received symbols

y
(1)
ji = yji − f

(j)
0 (xi )−

∑j−1
u=0

( j
v

)
y
(1)
u,i Z

(j−u)(xi )

Z (xi )

For i ∈ I , the derivative at order j + 1

f (j+1)(xi ) = f
(j+1)
0 (xi ) + f

(j+1)
1 (xi )Z (xi ) + f

(j)
1 (xi )Z

′(xi ) + . . .

y
(1)
ji =

yj+1,i − f
(j+1)
0 (xi )− . . .

Z ′(xi )

→ Iterative computation of the rows of y (1)
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Our contribution

New instance of the problem

A new received word y (1) and a new code DRS(m−1)[n, k − t]

A correct position of f (X ) w.r.t y is correct for f1(X ) w.r.t y (1)

The new t1 for m − 1 and deg f1(X ) < k − 1− t is

t1 =
n

3
+

2

3
· k − 1− t

m − 1− s + 1
=

n

3
+

2

3

k − 1− t

m − 2

Then a miracle!

t1 − t =
2

3
· k − 1− t(m − 1)

(m − 2)(m − 1)
≤ 0

→ recursive algorithm with decreasing m
→ until m = 2 (= s = 2)
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Our contribution

Conclusion

▶ Hermite interpolation at order m with errors reduces to solving a differential equation

▶ The differential equation has order s, with auxiliary s

▶ Initial condition are “given”

▶ Linear list size for s = 2 and s = m

▶ No clue about the truth for other value of s
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