ALGÈBRES DANS LES COMPLEXES DE CHAÎNES ET PROBLÈMES DE MODULES FORMELS

BRICE LE GRIGNOU

Si D est une petite catégorie, on note Pf(D) la catégorie des préfaisceaux de D. Si D c'est une petite ∞ -catégorie, on note $Pf_{\infty}(D)$ l' ∞ -catégorie des ∞ -préfaisceaux de D. Soit $\mathbb K$ un corps.

1. Présentation des algèbres sur une opérade

1.1. **Définition d'une catégorie présentable.** Soit α un cardinal régulier.

Définition 1. Soit C une catégorie et soit S un ensemble de morphismes de C entre objets α -petits. Un object Z de C est S-local si pour tout morphisme $f: X \to Z$ de S, l'application

$$hom(Y, Z) \rightarrow hom(X, Z)$$

est une bijection.

Définition 2 (Adamek Rosicky). Une catégorie C est α -présentable

- (1) elle est α -accessible et cocomplète;
- (2) il existe une petite catégorie D, et un ensemble S de morphismes de Psh(D) entre objets α -petits tels que C soit équivalente à la sous-catégorie pleine des préfaisceaux S-locaux;
- (3) Il existe une adjonction

$$\mathsf{Psh}(D) \xleftarrow{L} C$$

où D est une petite catégorie, L préserve les objects α -petits (de manière équivalente R préserves les colimites α -filtrées) et R est pleinement fidèle (de manière équivalente, la counité de la adjonctio $LR \rightarrow id$ est un isomorphisme).

Si C est équivalente à la sous-catégorie pleine des préfaisceaux S-locaux sur D sachant que D et S sont petits, alors l'adjoint à gauche (càd le réflecteur) peut être construit par l'argument du petit objet.

Supposons que l'on cherche à décrire une présentation d'une catégorie C (qui est nécessairement présentable). On va souvent utiliser une sous-catégorie pleine $D\subseteq C$ qui est petite ; de plus, on dispose d'un ensemble (petit) X de diagrammes $g_j:I_j\to D$ ($j\in J$) de D tels que D contienne leur colimites. Soit E la catégorie pleine de Pf(D) des préfaisceaux F qui "préservent les limites correspondantes" c'est-à-dire qui sont S-locaux, S étant l'ensemble des morphismes

$$\{colim_i y(g_i(i)) \rightarrow y(colim_i g_i(i)) | j \in J\}$$

ou, autrement dit tels que le morphisme

$$F(colim_ig_i(i)) \rightarrow lim_iF(g_i(i))$$

est un isomorphisme pour tout $j \in J$. Dès lors, le foncteur adjoint à droite $C \to Pf(D)$ se factorise par E. Le foncteur résultant est également adjoint à droite (son adjoint à gauche est la restriction de l'adjoint à gauche $Pf(D) \to C$).

Date: 27 février 2024.

1.2. **Théories algébriques et monades.** Les théories algébriques fournissent de nombreux exemples de catégories présentables.

Définition 3. Soit D une catégorie petite stable par coproduit finis. On note $\operatorname{Pf}_{\Sigma}(D)$ la sous-catégorie pleine réflexive de $\operatorname{Pf}(D)$ formée par les foncteurs

$$F: D^{op} \rightarrow Ens$$

qui préservent les produits finis. Ce sont les éléments S-locaux, où S est l'ensemble des applications

$$\{\emptyset \to y(\emptyset)\} \cup \{y(d) \sqcup y(d') \to y(d \sqcup d') | d, d' \in D\}.$$

Exemple 1. Soit $Cart_{\mathbb{K}}$ la sous-catégorie pleine des \mathbb{K} -espaces vectoriels formés des espaces-vectoriels de la forme $V = \mathbb{R}^n$. Alors la catégorie des espaces vectoriels est canoniquement équivalente à $\mathsf{Pf}_{\Sigma}(Cart_{\mathbb{K}})$.

Proposition 1. Soit F in $\operatorname{Pf}_{\Sigma}(D)$. Alors la catégorie $D \downarrow F$ est tamisée (sifted). Dès lors, F est une colimite dans D d'un diagramme tamisé.

Soit D une petite catégorie stable par coproduits finis. Notons $C = Pf_{\Sigma}(D)$, i l'inclusion de C dans Pf(D) et p son adjoint à gauche.

$$Pf(D) \xrightarrow{p} Pf_{\Sigma}(D) = C.$$

Considérons une adjonction monadique

$$C \stackrel{T_M}{\longleftarrow} A$$

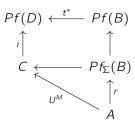
telle que U^M est conservatif et préserves les colimites tamisée (càd, R préserves les coégalisateurs réfléxifs et les colimites filtrées).

Lemme 1. Pour toute monade sur une catégorie cocomplète, qui préserve les colimites tamisée, alors la catégorie des algèbres est cocomplète et le foncteur d'oubli préserves les colimites tamisées.

Soit B la sous-catégorie pleines de A formée par les images par T_M des objets de D

$$Ob(B) = \{T_M(d)|d \in D\}$$

On obtient un carré commutatif de catégories et de foncteurs adjoints à gauche



Théorème 1. L'adjonction $I \dashv r$ reliant $Pf_{\Sigma}(D)$ et A est une équivalence.

Démonstration. D'une part le foncteur $r:A\to \operatorname{Pf}_\Sigma(D)$ est conservatif. D'autre part, soit F un élément de $Pf_\Sigma(B)\subset Pf(B)$. Montrons que l'unité $F\to rl(F)$ est un isomorphisme. Comme le foncteur $Pf_\Sigma(B)\to C$ est conservatif (car t^* est conservatif) et que ce foncteur est la restriction à $Pf_\Sigma(B)$ de $p\circ t^*$, il suffit de montrer que le morphisme

$$pt^*(F) \rightarrow pt^*rI(F) \simeq U^MI(F)$$

est un isomorphisme. C'est la conséquence du fait que

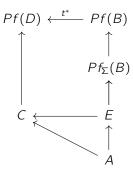
- (1) pour tout objet b de B vu comme un objet de $Pf_{\Sigma}(B)$, le morphisme $b \to rI(b)$ est une isomorphisme;
- (2) F peut s'écrire comme une colimite dans Pf(B) d'un diagramme tamisé à valeur dans B

$$G: I \rightarrow B \hookrightarrow Pf(B)$$

et les deux foncteurs pt^* et U^MI préservent les colimites tamisées.

Exemple 2. Si P est une opérade dans les espaces vectoriels alors la catégorie des P-algèbres est canoniquement équivalent à $Pf_{\Sigma}(Cart_P)$ où $Cart_P$ est la sous-catégorie pleine des P-algèbres formée par celle de la forme $P(\mathbb{K}^n)$.

1.3. **Deux généralisations.** Reprenons le diagramme de la section précédente. Supposons que l'on ait un diagramme de catégories et de foncteurs adjoints à droite



οù

- (1) D est une petite catégorie, C est une sous-catégorie pleine réflexive de Pf(D) (stable par colimites filtrées)
- (2) le foncteur $U^M: A \to C$ est conservatif et préserve les limites tamisées (alors U^M est monadique et C est cocomplète);
- (3) B est une sous-catégorie pleine de A, petite et stable par coproduits finis
- (4) le foncteur t^* provient d'un foncteur $t: D \to B$;
- (5) E est une sous-catégorie pleine réflexive de $Pf_{\Sigma}(B)$.

Théorème 2. Le foncteur $r: A \to E$ est une équivalence si et seulement si le foncteur $E \to C$ est conservatif (par exemple si le foncteur $t: D \to B$ est surjectif sur les objets).

Par ailleurs, tout ce que l'on a énoncé peut être transposé dans le monde des ∞ -catégories en faisant appel au travail de fondation effectué par Lurie, Riehl et Verity, . . .

Exemple 3. Notons $Ch^{\leq 0}$ la catégorie de modèles des complexes de chaînes en degré positifs. Elle est équivalent à la catégorie de modèles des espaces vectoriels simpliciaux. Dès lors

$$Ch^{\geq 0}[qis^{-1}] \simeq sVect[W^{-1}] \simeq sPf_{\Sigma}(Cart_{\mathbb{K}})[W^{-1}] \simeq Pf_{\infty,\Sigma}(Cart_{\mathbb{K}}).$$

La dernière équivalence est prouvé dans Higher Topos Theory. Dès lors, si P est une opérade dans $Ch^{\leq 0}$ qui est cofibrante,

$$Alg(P)[qis^{-1}] \simeq Pf_{\infty,\Sigma}(Cart_P).$$

En effet, le foncteur

$$Alg(P)[qis^{-1}] \rightarrow Ch^{\geq 0}[qis^{-1}]$$

préserve les ∞-colimites tamisée (Harpaz, Nuiten, Prasma).

1.4. **Le cas stable.** Considérons une adjonction composée entre ∞-catégories

$$Pf_{\infty}(D) \longleftrightarrow E \longleftrightarrow C$$

οù

- (1) D est une sous- ∞ -catégorie de C qui est petite et ne contient que des objets ω -petits;
- (2) E est une sous-catégorie pleine réflexive de $Pf_{\infty}(D)$ qui est stable et stable par ∞ -colimites filtrées
- (3) *C* est stable et cocomplète.

Théorème 3. Le foncteur $L: E \to C$ est pleinement fidèle. Dès lors, c'est une équivalence si et seulement son adjoint R est conservatif.

Démonstration. Le foncteur R préserves les limites, donc en particulier les limites finies. Comme E et C sont stables, R préserve les colimites finies. Comme il préserve les colimites filtrées, il préserve toutes les colimites. Donc RL préserve les colimites. Dès lors l'ensemble des éléments X de E tels que $X \to RL(X)$ est une équivalence contient tous les éléments de D et est stable par colimites. C'est donc l'ensemble de tous les objets de E

Exemple 4. Soit $Loop_{K,n}$ la sous- $-\infty$ -catégorie pleine de $Ch_K[qis^{-1}]$ formée par les complexes de chaînes 0 et S^m pour $m \le n$. Soit $Pf_{\infty,stab}(Loop_{K,n})$ la sous-catégorie pleine (et réflexive) de $Pf_{\infty}(Loop_{K,n})$ formée par les foncteurs F tels que

- (1) $F(0) \simeq *$;
- (2) le morphism $F(S^m) = F(\Sigma \Omega S^m) \to \Omega F(\Omega S^m)$ est une équivalence pour tout $m \le n$.

Alors le foncteur adjoint à droite

$$Ch_{K}[qis^{-1}] \rightarrow Pf_{\infty,stab}(Loop_{K,n})$$

est une équivalence.

1.5. **Présentation des algèbres sur une opérade.** Soit P une opérade "cofibrante" dans les complexes de chaînes. La catégorie $Alg(P)[qis^{-1}]$ est cocomplète et le foncteur d'oubli

$$Alg(P)[qis^{-1}] \rightarrow Ch_K[qis^{-1}]$$

préserve les limites tamisées (Harpaz, Nuiten, Prasma).

Définition 4. Une P algèbre A est n-cellulaire s'il existe une suite finie de morphismes

$$A_0 \rightarrow A_1 \rightarrow \cdots \rightarrow A_n = A$$

tel que pour tout i < n il y a un ∞ -pushout

$$P(S^m) \longrightarrow A_i$$

$$\downarrow \qquad \qquad \downarrow$$

$$P(0) \longrightarrow A_{i+1}$$

avec $m \le n-1$. On note $Cell_{P,\le n}$ la sous- ∞ -catégorie pleine de $Alg(P)[qis^{-1}]$ formée par les algèbres n-cellulaires.

Définition 5. Une P algèbre A est n-cartésienne si elle est de la forme P(X) pour X un complexe parfait en degré $\leq n$. Autrement dit, c'est une somme finie d'éléments $P(S^m)$ pour des $m \leq n$. On note $Cart_{P,\leq n}$ la sous- ∞ -cartégorie pleine de $Alg(P)[gis^{-1}]$ formée par les algèbres n-cartesiennes.

Théorème 4. L'infini catégorie $Alg(P)[qis^{-1}]$ est canoniquement équivalente à la sous- ∞ -catégorie pleine de $Pf_{\infty}(Cell_{P, \le n})$ formée par les foncteurs F tels que

- (1) $F(\emptyset) \simeq *$;
- (2) l'image par F de tout pushout de la forme

$$P(S^m) \longrightarrow A_i$$

$$\downarrow \qquad \qquad \downarrow$$

$$P(0) \longrightarrow A_{i+1}$$

est un pullback.

Démonstration. Il suffit de montrer que le foncteur d'oubli de cette ∞-catégorie de foncteurs dans $Pf_{\infty}(Loop_{K,\leq n})$ est conservatif et son image incluse dans les foncteurs stables.

Théorème 5. L'infini catégorie $Alg(P)[qis^{-1}]$ est canoniquement équivalente à la sous- ∞ -catégorie pleine de $Pf_{\infty}(Cart_{P,\leq n})$ formée par les foncteurs F tels que

(1) F préserve les produites finis;

(2) l'image par F de tout pushout de la forme

$$P(X) \longrightarrow P(0)$$

$$\downarrow \qquad \qquad \downarrow$$

$$P(0) \longrightarrow \Sigma X$$

est un pullback.

2. Problèmes de modules formels

2.1. Définition d'un problème de module formel.

Définition 6. Une E_{∞} -algèbre A non-unitaire est artinienne s'il existe une suite $A_n \to \cdots \to A_1 \to A_0 = 0$ telle que pour tout i < n il existe un pullback

$$\begin{array}{ccc}
A_{i+1} & \longrightarrow & A_i \\
\downarrow & & \downarrow \\
0 & \longrightarrow & S^n
\end{array}$$

avec $n \ge 0$. On note Art la sous- ∞ -catégorie pleine de $Alg(E_\infty)[qis^{-1}]$ formée par les algèbres artiniennes

Définition 7. Un problème de modules formels est un ∞ -foncteur $F: Art \to \infty - groupoids$ tel que

- (1) $F(0) \simeq *$
- (2) F préserves les pullbacks de la forme

$$A' \longrightarrow A$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow S^n$$

où $n \ge 1$.

On note PMF la sous- ∞ -catégorie pleine de $Pf_{\infty}(Art^{op})$ formée par les problèmes de modules formels.

2.2. Des problèmes de modules formels aux algèbres de Lie. Supposons \mathbb{K} de caractéristique 0. Un modèle de E_{∞} est $\Omega(sLie^c)$ où sLie est l'opérade des algèbres de Lie décalées et $sLie^c$ est la coopérade duale (qui est conilpotente).

On a deux adjonctions de Quillen

$$Cog(E_{\infty}) \xrightarrow[(-)^{\circ}]{(-)^{\circ}} Alg(E_{\infty})^{op}$$

$$Cog(E_{\infty}) \xrightarrow{\widehat{\Omega}} \widehat{Alg}(sLie^c)$$

où $\widehat{Alg}(sLie^c)$ représente les dg-algèbres complètes sur la coopérade $sLie^c$, càd les algèbres dans les complexes de chaînes de la monade

$$X \mapsto X^{sLie^*} = \prod_n [sLie^*(n), X^{\otimes n}]^{\mathbb{S}_n}$$

qui vérifient une propriété de complétion en lien avec la filtration coradicale de la cooperade. Cette catégorie est munie de la structure de modèle induite par par les E_{∞} -cogèbres où les cofibrations et les équivalences faibles sont les morphismes f tels que respectivement $\widehat{B}(f)$ est une cofibration (càd un morphisme injectif degré par degré) et un quasi-isomorphisme. L'adjonction de Quillen $\widehat{\Omega} \dashv \widehat{B}$ est alors une équivalence de Quillen.

Les ∞ -adjonctions induites entre les localisations nous donnent deux équivalences

$$Art^{op} \simeq CoArt \simeq Cell \ \widehat{Alg}(sLie^c)[W^{-1}]$$

où les cogèbres coartiniennes sont définies de façon duale aux algèbres artiniennes et les $sLie^c$ -algèbres complétes cellulaires sont définies de manière similaire aux algèbres cellulaires sur une monade.

D'autre part, on a une adjonction de Quillen

$$Alg(sLie) \xrightarrow{\widehat{(-)}} \widehat{Alg}(sLie^c).$$

Au niveau des localisation l'adjoint à gauche se restreint en un foncteur

$$\widehat{(-)}$$
: Cell Alg(sLie)[qis⁻¹] \rightarrow Cell $\widehat{Alg}(Lie^*)[W^{-1}]$.

Cela induit un foncteur adjoint à droite

$$\widehat{(-)}^*: Pf_{\infty}(Cell \widehat{Alg}(Lie^*)[W^{-1}]) \rightarrow Pf_{\infty}(Cell Alg(sLie)[qis^{-1}]).$$

qui se restreint en un foncteur adjoint à droite

$$\widehat{(-)}^*: PMF \rightarrow Alg(sLie)[qis^{-1}].$$

Théorème 6. Ce foncteur est une équivalence.

Démonstration. Il suffit de remarquer que le foncteur $\widehat{(-)}$ entre algèbres cellulaires est une équivalence.

2.3. **Extension au cas (co)opéradique général.** Soit C une dg cooperade conilpotente (quasiplanaire si \mathbb{K} n'est pas de caractéristique zéro). Notons $P = \Omega C$. On peut généraliser la notion d'algèbres artiniennes en algèbres P-artiniennes et la notion de problèmes de modules formels en problèmes de modules formels dans les P-algèbres PMF_P . On a deux adjonctions de Quillen

$$Cog(P) \xrightarrow{(-)^*} Alg(P)^{op}$$

$$Cog(P) \xrightarrow{\widehat{\Omega}} \widehat{Alg}(C)$$

Les ∞-adjonctions induites entre les localisations donnent deux équivalences

$$Art_P \simeq CoArt_P \simeq Cell \ \widehat{Alg}(C)[W^{-1}]$$

D'autre part, on a une adjonction de Quillen

$$Alg(C^*) \xrightarrow{\widehat{(-)}} \widehat{Alg}(C).$$

Dans le cas de caractéristique positive et C quasi-planaire la catégorie des dg-algèbres sur l'opérade C^* a bien une structure transférée depuis les complexes de chaînes le l'infini foncteur adjoint à droite

$$Alg(C^*)[qis^{-1}] \rightarrow Ch[qis^{-1}]$$

est bien conservatif et préserve bien les colimites tamisées (Brantner, Campos, Nuiten). Cependant l'infini-catégorie $Alg(C^*)[qis^{-1}]$ n'est pas en général l'infini catégorie des algèbres sur une opérade (C^* n'est pas cofibrant). Au niveau des localisation l'adjoint à gauche se restreint en un foncteur

$$\widehat{(-)}: \mathit{Cell}\ \mathit{Alg}(C^*)[\mathit{qis}^{-1}] \to \mathit{Cell}\ \widehat{\mathit{Alg}}(C)[W^{-1}].$$

Cela induit un foncteur adjoint à droite

$$\widehat{(-)}^*: Pf_{\infty}(Cell \widehat{Alg}(C)[W^{-1}]) \rightarrow Pf_{\infty}(Cell Alg(C^*)[qis^{-1}]).$$

qui se restreint en un foncteur adjoint à droite

$$\widehat{(-)}^*: PMF_P \rightarrow Alg(C^*)[qis^{-1}].$$

Théorème 7. Ce foncteur est une équivalence si et seulement si le foncteur $\widehat{(-)}$ entre algèbres cellulaires est une équivalence.

Théorème 8. Dans le cas où C est 0 en arité zéro, ce foncteur est une équivalence si et seulement si le foncteur entre algèbres cartésiennes

$$\widehat{(-)}: Cart \ Alg(C^*)[qis^{-1}] \to Cart \ \widehat{Alg}(C)[W^{-1}].$$

est une équivalence. C'est si cas, si C est tempérée, càd pour tout $\kappa \geq 0$, il existe n_{κ} tel que pour tout $n \geq n_k$ et tout $k \geq \kappa$, $H_k(C(n)) = 0$.

Email address: bricelegrignou@gmail.com