Information geometry and the quantum effective action

(a talk on the Legendre transform with pictures)

Peter Millington

peter.millington@manchester.ac.uk
UKRI Future Leaders Fellow and Senior Research Fellow, University of Manchester Visit supported by a Royal Society International Exchange

Tuesday, $20^{\text {th }}$ February, 2024
IDP, Université de Tours

Based on work with

Elizabeth Alexander (formerly University of Nottingham), Björn Garbrecht (Technische Universität München), Yannick Kluth (University of Manchester), Jordan Nursey (formerly University of Nottingham), Paul M. Saffin (University of Nottingham), esp.:

- Garbrecht, PM, 1509.07847
- PM, Saffin, 1905.09674
- Alexander, PM, Nursey, Saffin 1907.06503
- PM, Saffin, 2107.12914
- PM, Saffin, 2206.08865
- Kluth, PM, Saffin, 2311.17199

Aim

A reasonably pedagogical exposition of how Pete thinks about the quantum effective action, covering:

- The definition of the quantum effective action(s) and the role(s) played by external sources.
- Demystifying the convexity of the quantum effective action (and a side remark on the Maxwell construction).
- An alternative way to think about the functional renormalization group.
- The connection between the quantum effective action and information geometry through Hessian structures.

Note that I am not talking about effective actions in the sense of the operator product expansion.

Introduction

What we want: A systematic way of dealing with non-perturbative phenomena in quantum field theory.

What we got: The quantum effective action (in various forms).
[R. Jackiw '74; J. M. Cornwall, R. Jackiw \& E. Tomboulis '74; H. Verschelde \& M. Coppens '92; M. E. Carrington '04; A. Pilaftsis \& D. Teresi '13; J. Ellis, N. E. Mavromatos \& D. P. Skliros '16]

What it's good for: Non-equilibrium phenomena
[J. S. Schwinger '61; G. Baym \& L. P. Kadanoff '61; L. V. Keldysh '64;
R. D. Jordan '86; E. Calzetta \& B. L. Hu '88; J. P. Blaizot \& E. lancu '02; J. Berges '04; PM \& A. Pilaftsis '13]
Symmetry breaking
[S. R. Coleman \& E. J. Weinberg '73; J. Alexandre '12; J. Alexandre \& A. Tsapalis '12]

Instantons/Solitons/Vacuum decay
[B. Garbrecht \& PM '15; A. D. Plascencia \& C. Tamarit '16]
Functional renormalisation group
[C. Wetterich '91 \& '93; T. R. Morris '94; U. Ellwanger '94; M. Reuter '98; J. Berges, N. Tetradis \& C. Wetterich '02; J. Pawlowski '07; H. Gies '12; O. J. Rosten '12]

The Legendre transform

- A function f that is strictly convex or concave on an interval $I \in \mathbb{R}$ has a second-derivative of definite sign.
- Its first derivative $f^{\prime}(x)$ is monotonic, single-valued and invertible on I.
- We can express f as the set of ordered pairs $\{(x, f(x)) \mid x \in I, f(x) \in \mathbb{R}\}$ or the envelope of its tangents.
- The Legendre transform maps $\{(x, f(x))\}$ to $\left\{\left(x^{*}, f^{*}\left(x^{*}\right)=-^{*} f\left(x^{*}\right)\right)\right\}$, specifying the gradients and intercepts of the tangents. ($* \equiv$ convex conjugate.)

The Legendre transform

[M. Deserno '12 (unpublished); PM '16 (unpublished)]

- Define $w(x) \equiv x^{*} x$.
- If $f(x)$ is convex (concave), $w(x)-f(x)$ will have a maximum (minimum):

$$
\begin{aligned}
f^{*}\left(x^{*}\right) & \equiv \begin{cases}\min _{x \in 1}\left\{f(x)-x^{*} x\right\}, & f(x) \text { convex } \\
\max _{x \in I}\left\{f(x)-x^{*} x\right\}, & f(x) \text { concave }\end{cases} \\
{ }^{*} f\left(x^{*}\right) & \equiv \begin{cases}\max _{x \in I}\left\{x^{*} x-f(x)\right\}, & f(x) \text { convex } \\
\min _{x \in 1}\left\{x^{*} x-f(x)\right\}, & f(x) \text { concave }\end{cases}
\end{aligned}
$$

The 2PI effective action

For illustration, let's work with a zero-dimensional Euclidean quantum field theory:
[PM \& P. M. Saffin '19]

$$
S(\Phi)=\frac{m^{2}}{2} \Phi^{2}+\frac{\lambda}{4!} \Phi^{4}
$$

and write down the partition function

$$
Z(J, K)=\mathcal{N} \int_{-\infty}^{+\infty} \mathrm{d} \Phi \exp \left[-\frac{1}{\hbar}\left(S(\Phi)-J \Phi-\frac{1}{2} K \Phi^{2}\right)\right]
$$

in the presence of external sources J and K.

The Schwinger function

$$
W(J, K) \equiv-\hbar \ln Z(J, K)
$$

is concave.

Its gradients with respect to $-J$ and $-K / 2$ are $\langle\Phi\rangle_{J, K}$ and $\left\langle\Phi^{2}\right\rangle_{J, K}$, respectively, i.e., the one- and two-point correlation functions.

The 2PI effective action
$W(J, K) \equiv-\hbar \ln Z(J, K)$ for $m^{2}=-1$ and $\lambda=6$, i.e. non-convex classical potential:

[PM \& P. M. Saffin '19]
Introduce a function

$$
\Gamma_{J, K}(\phi, \Delta) \equiv W(J, K)+J \phi+\frac{1}{2} K\left[\phi^{2}+\hbar \Delta\right]
$$

ϕ and Δ determine the value of the maximum of this function and its position in the (J, K) plane.
Δ is the connected two-point correlation function.

The 2PI effective action

$\Gamma_{J, K}(0,2)$

$\Gamma_{J, K}(0,1)$

$\Gamma_{J, K(1,2)}$

$\Gamma_{J, K(1,1)}$

$\Gamma_{J, K}(2,2)$

$\Gamma_{J, K}(2,1)$
[PM \& P. M. Saffin '19]

The 2PI effective action

The (double) Legendre transform

$$
\Gamma(\phi, \Delta)=\max _{J, K} \Gamma_{J, K}(\phi, \Delta)
$$

corresponds to the value of these maxima as a function of ϕ and Δ.

The locations of the maxima correspond to extremal sources \mathcal{J} and \mathcal{K}, defined by

$$
\left.\frac{\partial \Gamma_{J, K}(\phi, \Delta)}{\partial J}\right|_{J=\mathcal{J}, K=\mathcal{K}}=\left.0 \quad \frac{\partial \Gamma_{J, K}(\phi, \Delta)}{\partial K}\right|_{J=\mathcal{J}, K=\mathcal{K}}=0
$$

The extremisation yields

$$
\Gamma(\phi, \Delta)=W(\mathcal{J}, \mathcal{K})+\mathcal{J} \phi+\frac{1}{2} \mathcal{K}\left[\phi^{2}+\hbar \Delta\right]
$$

with

$$
\phi=\left.\hbar \frac{\partial}{\partial J} \ln Z(J, K)\right|_{J=\mathcal{J}, K=\mathcal{K}} \quad \hbar \Delta=\left.2 \hbar \frac{\partial}{\partial K} \ln Z(J, K)\right|_{J=\mathcal{J}, K=\mathcal{K}}-\phi^{2}
$$

The 2PI effective action

Importantly, since the location of the maxima of $\Gamma_{J, K}(\phi, \Delta)$ depend on ϕ and Δ

$$
\mathcal{J} \equiv \mathcal{J}(\phi, \Delta) \quad \mathcal{K} \equiv \mathcal{K}(\phi, \Delta)
$$

[PM \& P. M. Saffin '19]
In corollary,

$$
\phi \equiv \phi(\mathcal{J}, \mathcal{K}) \quad \Delta \equiv \Delta(\mathcal{J}, \mathcal{K})
$$

and they are related to the tangents to the Schwinger function.

The 2PI effective action

The extremal sources \mathcal{J} and \mathcal{K} are related to the tangents to $\Gamma(\phi, \Delta)$:

$$
\frac{\partial \Gamma(\phi, \Delta)}{\partial \phi}=\mathcal{J}(\phi, \Delta)+\mathcal{K}(\phi, \Delta) \phi \quad \frac{\partial \Gamma(\phi, \Delta)}{\partial \Delta}=\frac{\hbar}{2} \mathcal{K}(\phi, \Delta)
$$

The right-hand sides are source terms, and the gradients of $\Gamma(\phi, \Delta)$ are the equations of motion for the oneand two-point functions ϕ and Δ.

Since these are correct to all orders in \hbar, we are justified in calling $\Gamma(\phi, \Delta)$ a quantum effective action.

Why "2PI"?

The 2PI effective action: convexity

By definition of the Legendre transform, $\Gamma(\phi, \Delta)$ should be convex.
But for the non-convex classical potential with $m^{2}=-2$ and $\lambda=6$, we find

This doesn't look convex; panic!?

The 2PI effective action: convexity

Convenient to work with the variables $\phi^{\prime} \equiv \phi$ and $\Delta^{\prime} \equiv \phi^{2}+\hbar \Delta$ and the rescaled sources $\mathcal{J}^{\prime} \equiv \mathcal{J}$ and $\mathcal{K}^{\prime} \equiv \mathcal{K} / 2:$
[PM \& P. M. Saffin '19]

$$
\begin{gathered}
\Gamma(\phi, \Delta)=W(\mathcal{J}, \mathcal{K})+\mathcal{J}^{\prime} \phi^{\prime}+\mathcal{K}^{\prime} \Delta^{\prime} \\
\frac{\partial \Gamma(\phi, \Delta)}{\partial \phi^{\prime}}=\mathcal{J}^{\prime} \quad \frac{\partial \Gamma(\phi, \Delta)}{\partial \Delta^{\prime}}=\mathcal{K}^{\prime} \\
\phi^{\prime}=-\frac{\partial W(\mathcal{J}, \mathcal{K})}{\partial \mathcal{J}^{\prime}} \quad \Delta^{\prime}=-\frac{\partial W(\mathcal{J}, \mathcal{K})}{\partial \mathcal{K}^{\prime}}
\end{gathered}
$$

We consider the product
[cf. the 1PI case in J. Alexandre \& A. Tsapalis '12]

$$
-\operatorname{Hess}(\Gamma)\left(\phi^{\prime}, \Delta^{\prime}\right) \cdot \operatorname{Hess}(W)\left(\mathcal{J}^{\prime}, \mathcal{K}^{\prime}\right)=\mathbb{I}
$$

$-\operatorname{Hess}(W)\left(\mathcal{J}^{\prime}, \mathcal{K}^{\prime}\right)$ is a covariance matrix, i.e., positive definite.

Thus, $\operatorname{Hess}(\Gamma)\left(\phi^{\prime}, \Delta^{\prime}\right)$ is positive definite, and $\Gamma(\phi, \Delta)$ is therefore convex, but with respect to ϕ and Δ^{\prime}.

The 2PI effective action: convexity

Plotting $\Gamma(\phi, \Delta)$ as a function of ϕ and $\Delta^{\prime}=\phi^{2}+\hbar \Delta$, we see that it is convex:

[PM \& P. M. Saffin '19]
Note that this is for a non-convex classical potential, with $m^{2}=-2$ and $\lambda=6$.

The 2PI effective action: single saddle point
Stationarity/saddle-point condition:

$$
\left.\frac{\partial S(\Phi)}{\partial \Phi}\right|_{\Phi=\varphi}-\mathcal{J}(\phi, \Delta)-\mathcal{K}(\phi, \Delta) \varphi=0
$$

Define the two-point function

$$
\mathcal{G}=\left[G^{-1}(\varphi)-\mathcal{K}(\phi, \Delta)\right]^{-1} \quad G^{-1}(\varphi)=\left.\frac{\partial^{2} S(\Phi)}{\partial \Phi^{2}}\right|_{\Phi=\varphi}=m^{2}+\frac{\lambda}{2} \varphi^{2}
$$

and expand $\Phi=\varphi+\sqrt{\hbar} \hat{\Phi}$ to obtain

$$
\begin{gathered}
\Gamma(\phi, \Delta)=S(\varphi)+\hbar \Gamma_{1}(\varphi, \mathcal{G})+\hbar^{2} \Gamma_{2}(\varphi, \mathcal{G})+\hbar^{2} \Gamma_{1 \mathrm{PR}}(\varphi, \mathcal{G})+\mathcal{J}(\phi-\varphi)+\frac{1}{2} \mathcal{K}\left(\phi^{2}-\varphi^{2}+\hbar \Delta-\hbar \mathcal{G}\right) \\
\Gamma_{1}(\varphi, \mathcal{G})=\frac{1}{2}\left[\ln \left(\mathcal{G}^{-1} G(0)\right)+\mathcal{G}^{-1} \mathcal{G}-1\right] \quad \Gamma_{2}(\varphi, \mathcal{G})=\frac{1}{8} \lambda \mathcal{G}^{2}-\frac{1}{12} \lambda^{2} \varphi^{2} \mathcal{G}^{3} \quad \Gamma_{1 \mathrm{PR}}(\varphi, \mathcal{G})=-\frac{1}{8} \lambda^{2} \varphi^{2} \mathcal{G}^{3}
\end{gathered}
$$

But $\varphi \equiv \varphi(\phi, \Delta)$, and we can expand the right-hand side around $\varphi-\phi=\mathcal{O}(\hbar)$:

$$
\Gamma(\phi, \Delta)=S(\phi)+\hbar \Gamma_{1}(\phi, \Delta)+\hbar^{2} \Gamma_{2}(\phi, \Delta)
$$

The 2PI effective action: multiple saddle points and the Maxwell construction
More generally, we have a set of saddle points $\left\{\varphi_{i}\right\} \equiv\left\{\varphi_{i}\right\}(\phi, \Delta)$, where type and number depend on (ϕ, Δ).
For $m^{2}=-1$ and $\lambda=6$, we have 1 to 3 saddles, depending on (ϕ, Δ) :

[PM \& P. M. Saffin '19]
Don't mix up your ϕ 's and φ 's!
If the saddle points are "reasonably well separated"

$$
Z(\mathcal{J}, \mathcal{K}) \approx \sum_{i} Z_{i}(\mathcal{J}, \mathcal{K})
$$

The 2PI effective action: method of external sources [B. Garbrecht \& PM '16]

Folklore: The physical limit corresponds to vanishing external sources.
Reality: Setting $\mathcal{J}(\phi, \Delta)$ and $\mathcal{K}(\phi, \Delta)$ to zero constrains $\phi \equiv \phi(\mathcal{J}, \mathcal{K})$ and $\Delta \equiv \Delta(\mathcal{J}, \mathcal{K})$, yielding the CJT effective action with an important difference:
[J. M. Cornwall, R. Jackiw \& E. Tomboulis '74]
We can choose the sources $\mathcal{J}(\phi, \Delta)$ and $\mathcal{K}(\phi, \Delta)$, such that the saddle point of the partition function coincides with the quantum trajectory by demanding

$$
\left.\frac{\delta S[\Phi]}{\delta \Phi}\right|_{\Phi=\varphi}-\mathcal{J}(\phi, \Delta)-\mathcal{K}(\phi, \Delta) \varphi=\left.\frac{\delta \Gamma[\phi, \Delta]}{\delta \phi}\right|_{\phi=\varphi, \Delta=\mathcal{G}}=0
$$

This requires
[B. Garbrecht \& PM '16; PM \& P. M. Saffin '19]

$$
\mathcal{J}(\varphi, \mathcal{G})+\mathcal{K}(\varphi, \mathcal{G}) \varphi=0
$$

This is important when the quantum trajectory is non-perturbatively far away from the classical trajectory, e.g., as in tunnelling problems in radiatively generated potentials.
[E. J. Weinberg '93; B. Garbrecht \& PM '15 \& '16]

The 2PI effective action: method of external sources

But we can do more:
[B. Garbrecht \& PM '16]

- Setting \mathcal{J} to zero and choosing \mathcal{K} to be local yields the 2PPI effective action of Verschelde and Coppens. [H. Verschelde \& M. Coppens '92]
- Constraining the sources by, e.g., the Ward identities, yields results in the spirit of the symmetry-improved effective action of Pilaftsis and Teresi.
[A. Pilaftsis \& D. Teresi '13]
- Choosing \mathcal{K} to be the regulator of the renormalisation group evolution yields [E. Alexander, PM, J. Nursey \& P. M. Saffin '19]

The regulator-sourced 2PI effective action and exact flow equations
Starting from the 2PI effective action,
[E. Alexander, PM, J. Nursey \& P. M. Saffin '19]

$$
\begin{gathered}
\partial_{k} \Gamma^{2 \mathrm{PI}}[\phi, \Delta]=\frac{\delta \Gamma^{2 \mathrm{PI}}[\phi, \Delta]}{\delta \phi_{x}} \partial_{k} \phi_{x}+\frac{\delta \Gamma^{2 \mathrm{PI}}[\phi, \Delta]}{\delta \Delta_{x y}} \partial_{k} \Delta_{x y} \\
\partial_{k} \phi_{x}=-\partial_{k} \frac{\delta W[\mathcal{J}, \mathcal{K}]}{\delta \mathcal{J}_{x}}=0 \\
\partial_{k} \Gamma^{2 \mathrm{PI} \mathrm{I}}[\phi, \Delta]=\frac{\hbar}{2} \mathcal{K}_{x y}[\phi, \Delta] \partial_{k} \Delta_{x y}
\end{gathered}
$$

Now choose $\mathcal{K}_{x y}[\phi, \Delta]=\mathcal{R}_{k, x y}$ to be the inverse Fourier transform of the regulator:

$$
\partial_{k} \Gamma^{2 \mathrm{PI}}[\phi, \Delta]=\frac{\hbar}{2} \operatorname{Tr}\left(\mathcal{R}_{k} * \partial_{k} \Delta\right)
$$

$$
\partial_{k} \Gamma^{2 \mathrm{PI}}\left[\phi, \Delta_{k}\right]=+\frac{\hbar}{2} \mathrm{~S} \operatorname{Tr}\left(\mathcal{R}_{k} \partial_{k} \Delta_{k}\right) \quad \text { versus } \quad \partial_{k} \Gamma_{\mathrm{av}}^{1 \mathrm{PI}}\left[\phi, \mathcal{R}_{k}\right] \quad=-\frac{\hbar}{2} \operatorname{STr}\left(\Delta_{k} \partial_{k} \mathcal{R}_{k}\right)
$$

Right-hand expression is the Wetterich-Morris-Ellwanger equation.
[C. Wetterich '91 \& '93; T. R. Morris '94; U. Ellwanger '94; M. Reuter '98]

Closure and vertex functions [PM \& P. M. Saffin '21 \& '22; cf. A. N. Vasil'ev \& A. K. Kazanskii '73]
It follows from the convexity of the 2PI effective action that
[J. M. Cornwall, R. Jackiw \& E. Tomboulis '74 (footnote); cf. J. Berges, S. Borsányi, U. Reinosa \& J. Serreau '05]

$$
\Delta^{-1}=\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \phi^{2}}-\frac{2}{\hbar} \frac{\delta \Gamma^{2 \mathrm{PI}}}{\delta \Delta}-\left(\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \phi \delta \Delta}\right)\left(\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \Delta^{2}}\right)^{-1}\left(\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \Delta \delta \phi}\right)
$$

1PI effective action: n-point vertex functions are easily extracted by functional differentiation with respect to the one-point function:

$$
\Gamma^{(n>2)}[\phi]=\frac{\delta^{n} \Gamma^{1 \mathrm{PI}}}{\delta \phi^{n}}=-\Delta^{-n}\left\{\Delta \frac{\delta}{\delta \phi}\right\}^{n-2} \Delta
$$

2PI effective action: the situation is more complicated. Starting from the connected function

$$
\left\langle\phi^{n}\right\rangle_{\mathrm{C}}=\left(\hbar \frac{\delta}{\delta \mathcal{J}}\right)^{n-2}\left(-\hbar \frac{\delta^{2} W}{\delta \mathcal{J}^{2}}\right)=\left(\hbar \frac{\delta}{\delta \mathcal{J}}\right)^{n-2}(\hbar \Delta)
$$

the chain rule for derivatives w.r.t. $\mathcal{J}=\mathcal{J}[\phi, \Delta]$ gives

$$
\Gamma^{(n>2)}[\phi, \Delta]=-\Delta^{-n}\left\{\Delta\left[\frac{\delta}{\delta \phi}-\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \phi \delta \Delta}\left(\frac{\delta^{2} \Gamma^{2 \mathrm{PI}}}{\delta \Delta^{2}}\right)^{-1} \frac{\delta}{\delta \Delta}\right]\right\}^{n-2} \Delta
$$

Hessian manifolds (stolen from information geometry) [Y. Kluth, PM \& P. M. Saffin '23]
Given a functional $\bar{\Gamma}$ that depends on sources $\mathcal{Q}_{A}=\left(J_{a}, K_{\alpha}^{\prime}\right)$, we can define a metric

$$
g^{A B}=\bar{D}^{A} \bar{D}^{B} \bar{\Gamma}=\frac{\delta^{2} \bar{\Gamma}}{\delta \mathcal{Q}_{A} \delta \mathcal{Q}_{B}}
$$

where \bar{D} is the affine connection on the configuration space.
Define a dual connection D whose affine coordinate frame is given by

$$
\mathcal{P}^{A}=\frac{\delta \bar{\Gamma}}{\delta \mathcal{Q}_{A}}
$$

where $\mathcal{P}^{A}=\left(\phi^{a}, \Delta^{\prime \alpha}\right)$ are the variables conjugate to the sources, i.e., the correlation functions.
The dual potential is related to the original functional $\bar{\Gamma}$ by the Legendre transform

$$
\Gamma[\mathcal{P}]=-\bar{\Gamma}+\mathcal{Q}_{A} \mathcal{P}^{A}
$$

and the inverse metric is

$$
\begin{equation*}
g_{A B}=\frac{\delta^{2} \Gamma}{\delta \mathcal{P}^{A} \delta \mathcal{P}^{B}} \tag{1}
\end{equation*}
$$

Hessian manifolds continued [Y. Kluth, PM \& P. M. Saffin '23]

Associating $\bar{\Gamma}=-W$ and $\Gamma=\Gamma^{2 \mathrm{PI}}$, the inverse relation for the Hessian metric

$$
g_{A B} g^{B C}=\delta_{A}^{C}
$$

is just the convexity condition of the 2PI effective action.
The n-point connected function is just

$$
\left\langle\phi^{a_{1}} \ldots \phi^{a_{n}}\right\rangle_{c}=\bar{D}^{a_{1}} \ldots \bar{D}^{a_{n}} W \quad \text { with } \quad \bar{D}^{a}=\frac{\delta}{\delta \mathcal{J}_{a}}
$$

The chain rule to map between derivatives w.r.t. to sources and n-point correlation functions is

$$
\bar{D}^{a}=g^{a B} D_{B}=\Delta^{a b}\left[\frac{\delta}{\delta \phi^{b}}-\frac{\delta^{2} \Gamma}{\delta \phi^{b} \delta \Delta}\left(\frac{\delta^{2} \Gamma}{\delta \Delta^{\delta} \delta \Delta^{\epsilon}}\right)^{-1} \frac{\delta}{\delta \Delta^{\epsilon}}\right]
$$

This is precisely the operator that we found before for extracting the vertex functions!

Back to the functional renormalization group [Y. Kluth, PM \& P. M. Saffin '23]

Suppose we take K_{α} to be a regulator of the functional renormalization group, and require the regulator to be constant along an RG trajectory specified by some RG time t then

$$
\frac{\mathrm{d} K_{\alpha}}{\mathrm{d} t}=\text { const } \quad \Rightarrow \quad g_{\alpha B}\left[\frac{\mathrm{~d} \mathcal{P}^{B}}{\mathrm{~d} t^{2}}+2 \Gamma_{C D}^{B} \frac{\mathrm{~d} \mathcal{P}^{C}}{\mathrm{~d} t} \frac{\mathrm{~d} \mathcal{P}^{D}}{\mathrm{~d} t}\right]=0
$$

Assuming that the square bracket vanishes, this is just the geodesic equation for the affine connection \bar{D}

$$
\frac{\mathrm{d} \mathcal{P}^{B}}{\mathrm{~d} t^{2}}+2 \Gamma_{C D}^{B} \frac{\mathrm{~d} \mathcal{P}^{C}}{\mathrm{~d} t} \frac{\mathrm{~d} \mathcal{P}^{D}}{\mathrm{~d} t}=0
$$

where $\Gamma_{C D}^{B}$ is the Levi-Civita Christoffel symbol.
We can now generate RG flows by solving the geodesic equation...

RG flows as geodesics [Y. Kluth, PM \& P. M. Saffin '23]
For example, for the zero-dimensional ϕ^{4} theory, we can evolve surfaces of constant RG time.

Concluding remarks

- It pays to be pedantic when it comes to the quantum effective action.
- We can exploit the sources to:
- Organise the loop expansion and its (partial) resummation.
- Improve symmetry properties.
- Map between different realisations of the effective action.
- Study the exact RG flow.
- We can obtain a geometric interpretation of the nPI quantum effective actions through Hessian structures:
- Understand the role of the affine connection in the extraction of n-point correlation/vertex functions.
- Recast RG flows in terms of geodesic flows on the configuration space.
- And more to come ...

References I (in order of appearance)

R. Jackiw '74: https://inspirehep.net/literature/95439
J. M. Cornwall, R. Jackiw \& E. Tomboulis '74: https://inspirehep.net/literature/1295
H. Verschelde \& M. Coppens '92: https://inspirehep.net/literature/342538
M. E. Carrington '04: https://inspirehep.net/literature/642863
A. Pilaftsis \& D. Teresi '13: https://inspirehep.net/literature/1233385
J. Ellis, N. E. Mavromatos \& D. P. Skliros '16: https://inspirehep.net/literature/1408734
J. S. Schwinger '61: https://inspirehep.net/literature/9385
G. Baym \& L. P. Kadanoff '61: https://inspirehep.net/literature/46492
L. V. Keldysh '64: https://inspirehep.net/literature/3567
R. D. Jordan '86: https://inspirehep.net/literature/228851
E. Calzetta \& B. L. Hu '88: https://inspirehep.net/literature/235962
J. P. Blaizot \& E. lancu '02: https://inspirehep.net/literature/552014
J. Berges '04: https://inspirehep.net/literature/659724

PM \& A. Pilaftsis '13: https://inspirehep.net/literature/1202693
S. R. Coleman \& E. J. Weinberg '73: https://inspirehep.net/literature/81406
J. Alexandre '12: https://inspirehep.net/literature/1113766
J. Alexandre \& A. Tsapalis '12: https://inspirehep.net/literature/1198187
B. Garbrecht \& PM '16: https://inspirehep.net/literature/1394876
A. D. Plascencia \& C. Tamarit '16: https://inspirehep.net/literature/1400843
C. Wetterich '91: https://inspirehep.net/literature/284270

References II (in order of appearance)

C. Wetterich '93: https://inspirehep.net/literature/33814
T. R. Morris '94: https://inspirehep.net/literature/358382
U. Ellwanger '94: https://inspirehep.net/literature/35872
M. Reuter '98: https://inspirehep.net/literature/418310
J. Berges, N. Tetradis \& C. Wetterich '02: https://inspirehep.net/literature/527207
J. Pawlowski '07: https://inspirehep.net/literature/700965
H. Gies '12: https://inspirehep.net/literature/731416
O. J. Rosten '12: https://inspirehep.net/literature/848078
M. Deserno '12: https://www.andrew.cmu.edu/course/33-765/pdf/Legendre.pdf

PM \& P. M. Saffin '19: https://inspirehep.net/literature/1736514
E. J. Weinberg '93: https://inspirehep.net/literature/33690
B. Garbrecht \& PM '15: https://inspirehep.net/literature/1395262
E. Alexander, PM, J. Nursey \& P. M. Saffin '19: https://inspirehep.net/literature/1744092

PM \& P. M. Saffin '21: https://inspirehep.net/literature/1893652
PM \& P. M. Saffin '22: https://inspirehep.net/literature/2097849
A. N. Vasil'ev \& A. K. Kazanskii '73: https://inspirehep.net/literature/86611 \& https://inspirehep.net/literature/86603
J. Berges, S. Borsányi, U. Reinosa \& J. Serreau '05: https://inspirehep.net/literature/678968
Y. Kluth, PM \& P. M. Saffin '23: https://inspirehep.net/literature/2727910
R. J. Rivers '84: https://inspirehep.net/literature/13759

Backup: middle saddle

[PM \& P. M. Saffin '19]

[PM \& P. M. Saffin '19]
The values on the right-hand side are $\mathcal{J}+\mathcal{K} \Phi$, with $|\mathcal{K}|=1$.

The 2PI effective action: multiple saddle points and the Maxwell construction
Suppose there are two contributing saddle points, $\varphi_{ \pm}(\phi, \Delta)=\tilde{\varphi}_{ \pm}+\hbar \delta \varphi_{ \pm}(\phi, \Delta)$:
[PM \& P. M. Saffin '19]

$$
\begin{aligned}
\Gamma(\phi, \Delta) & =\frac{\left(\tilde{\varphi}_{+}-\phi\right) \tilde{\Gamma}_{-}+\left(\phi-\tilde{\varphi}_{-}\right) \tilde{\Gamma}_{+}}{\tilde{\varphi}_{+}-\tilde{\varphi}_{-}}-\frac{1}{2} \mathcal{K}\left(\tilde{\varphi}_{+}-\phi\right)\left(\phi-\tilde{\varphi}_{-}\right) \\
& -\hbar \ln \left[\left(\frac{\phi-\tilde{\varphi}_{-}}{\tilde{\varphi}_{+}-\phi}\right)^{\frac{\tilde{\varphi}_{+}-\phi}{\tilde{\varphi}_{+}-\tilde{\varphi}_{-}}}+\left(\frac{\tilde{\varphi}_{+}-\phi}{\phi-\tilde{\varphi}_{-}}\right)^{\frac{\phi-\tilde{\varphi}_{-}}{\tilde{\varphi}_{+}-\tilde{\varphi}_{-}}}\right]+\frac{\hbar}{2} \mathcal{K} \Delta
\end{aligned}
$$

In the limit $\mathcal{K} \rightarrow 0$, we recover the 1 PI result:
[J. Alexandre \& A. Tsapalis '12]

$$
\Gamma(\phi)=\frac{\left(\tilde{\varphi}_{+}-\phi\right) \tilde{\Gamma}_{-}+\left(\phi-\tilde{\varphi}_{-}\right) \tilde{\Gamma}_{+}}{\tilde{\varphi}_{+}-\tilde{\varphi}_{-}}-\hbar \ln \left[\left(\frac{\phi-\tilde{\varphi}_{-}}{\tilde{\varphi}_{+}-\phi}\right)^{\frac{\tilde{\varphi}_{+}-\phi}{\tilde{\varphi}_{+}-\tilde{\varphi}_{-}}}+\left(\frac{\tilde{\varphi}_{+}-\phi}{\phi-\tilde{\varphi}_{-}}\right)^{\frac{\phi-\tilde{\varphi}_{-}}{\bar{\varphi}_{+}-\tilde{\varphi}_{-}}}\right]
$$

giving the Maxwell construction in the limit $\hbar \rightarrow 0$:

$$
\Gamma(\phi)=\frac{\left(\tilde{\varphi}_{+}-\phi\right) \tilde{V}_{-}+\left(\phi-\tilde{\varphi}_{-}\right) \tilde{V}_{+}}{\tilde{\varphi}_{+}-\tilde{\varphi}_{-}}
$$

For how this works in higher dimensions, see [R. J. Rivers '84; PM \& P. M. Saffin '19].

The 2PI effective action: multiple saddle points and the Maxwell construction

- $\Gamma(\phi)$ is monotonic only for $\tilde{\varphi}_{-}<\phi<\tilde{\varphi}_{+}$.
- We hit branch points at $\phi=\tilde{\varphi}_{ \pm}$when we no longer have multiple saddles.
- For $\phi>\tilde{\varphi}_{+}$or $\phi<\tilde{\varphi}_{-}, \Gamma(\phi) \rightarrow V(\phi)$.

The values on the right-hand side are $\mathcal{J} \equiv \mathcal{J}[\phi]$, with $\mathcal{K}=0$.

Interlude: the 1PI average effective action

The average 1PI effective action is defined as
[C. Wetterich '91]

$$
\Gamma_{\mathrm{av}}^{1 \mathrm{Pl}}\left[\phi, \mathcal{R}_{k}\right]=W\left[\mathcal{J}, \mathcal{R}_{k}\right]+\mathcal{J}_{x} \phi_{x}+\frac{1}{2} \phi_{x} \mathcal{R}_{k, x y} \phi_{y} \quad \phi_{x}=-\frac{\delta W\left[\mathcal{J}, \mathcal{R}_{k}\right]}{\delta \mathcal{J}_{x}}
$$

where $\mathcal{R}_{k, x y}$ is the inverse FT of the regulator (eliminates fluctuations with $q^{2}<k^{2}$).
Requiring

$$
\partial_{k} \phi_{x}=-\partial_{k} \frac{\delta W\left[\mathcal{J}, \mathcal{R}_{k}\right]}{\delta \mathcal{J}_{x}} \stackrel{!}{=} 0
$$

implies $\mathcal{J}[\phi] \equiv \mathcal{J}_{k}[\phi]$ and

$$
\begin{gathered}
\partial_{k} W\left[\mathcal{J}_{k}, \mathcal{R}_{k}\right]=-\phi_{x} \partial_{k} \mathcal{J}_{k, x}-\frac{1}{2}\left(\hbar \Delta_{k, x y}+\phi_{x} \phi_{y}\right) \partial_{k} \mathcal{R}_{k, x y} \\
\Delta_{k, x y}=-\frac{\delta^{2} W\left[\mathcal{J}_{k}, \mathcal{R}_{k}\right]}{\delta \mathcal{J}_{k, x} \delta \mathcal{J}_{k, y}}
\end{gathered}
$$

The Wetterich-Morris-Ellwanger equation:
[C. Wetterich '93; T. R. Morris '94; U. Ellwanger '94]

$$
\partial_{k} \Gamma_{\mathrm{av}}^{1 \mathrm{PI}}\left[\phi, \mathcal{R}_{k}\right]=-\frac{\hbar}{2} \operatorname{Tr}\left(\Delta_{k} * \partial_{k} \mathcal{R}_{k}\right)
$$

