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Fractured /faulted poro-mechanical models: applications

o CO2 sequestration
o Fault/fracture
reactivation

@ Leakage
@ Induced seismicity

o Other applications
o Geothermal systems
o Radioactive waste
geological repositories
o Hj storage
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Typical meshes in geosciences

Corner Point Geometries (CPG)

o Not adapted to Finite Element Methods (FEM) typically used in Mechanics

@ Need for discretizations of contact mechanics adapted to polyhedral meshes
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1. Contact-Mechanical model

2. Discretization on polyhedral meshes

3. Numerical validation

o Contact-mechanics
o Poromechanics

Roland Masson P*-bubble VEM method 4/38



Static contact mechanical problem

@ The matrix and fracture pressures py, and pr are fixed

@ lIsotropic linear poroelastic model in the matrix domain Q\ T"

~div( T(u.pm) =,
T(u, pm)= (u)—bpml,

(u)=2u (u)+Adivu L.

=

Mixed-dimensional geometry and unknowns
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Fracture mechanical model on the fracture network I

Jumps : [u] =u* —u”, [u]lp =[u] - n*, [ulr =[u] - [u] n*,

Surface Tractions: T* = ! (u, pm)*n® + psn*

Law of Action and Reaction:

T"+T =0

ldo

Non penetration conditions:
Ty <0, [uln<0, [ulaTh=0

Coulomb friction conditions: @
T <-F Ty,

T () [ull- - F T (w [[u]l<| =0 -
u) - [u u) [[[u " Tn
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Mixed variational inequality

Lagrange multiplier: 1 =-T"
Dual cone of admissible Lagrange multipliers: given A = (1,, A7)

Cr(An) = {[t e (HY2()? : up >0, |tr| < FAn  (in a weak sense)}.

Mixed variational inequality: u € Hé(Q\l_“)d, A € Cr(Ay) such that
[ (@: @ =bpmdive) s lvlr + [ pr [vla= | £ov,
Q r Q

(u=2,[udr <0,

for all v e HX(Q\D)9, p € Cr(dn).
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Polyhedral nodal discretization of the displacement field u

o Virtual Element Method (VEM) [Beirao Da Veiga et al 2013]
o Fully discrete approach (nodal MFD, CDO, DDR)

o local reconstruction operators from the space of discrete unknowns onto polynomial
spaces.

Nodal displacement unknowns:
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Extension to contact-mechanics: mixed formulation

@ Mixed formulation with nodal Lagrange multipliers [Wriggers et al 2016]

@ Mixed formulation with face-wise constant Lagrange multipliers A = =T+

o deal with fracture networks including intersections
o face-wise contact conditions
o preserve the contact dissipative properties

Mp = {dp € L2(D)Y : Ap(x) = Ay Vo € F,V x € T}

For 1p € Mg, we define the discrete dual cone of admissible Lagrange multipliers:

Co(opn)={tp=(upntps) €EMp : upa20, [up | < Flpn}
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Stabilization of the Lagrange multiplier

A stabilization is required to avoid spurious Lagrange multiplier modes
@ Enrichment of the displacement space

o Pl-bubble FEM [Renard et al 2003]
o In this work: polytopal bubble stabilisation

& ® uxs nodal

A uyg, bubble

Vector space of discrete displacement unknowns:

: d d
Up = {VD = ((V(Ks)wsems’serv, VKo )ore Rt KeM) tvgs €RT, vy €R }
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Interpolation operator

Ip: CoQ\T)Y - Up u(x)
Ipu)gs = U|K(Xs), u(x,)
n*e (Ipw)
1 u(xs’)
IpWko = 7 J (yYKou - 1157 (1pu)). s s

o yK7 is the trace operator on o from the K side

o T1X7 s the face linear reconstruction operator depending only on the nodal degrees
of freedom
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Reconstruction operators

Cell gradient and function reconstruction operators:
o VK Up — (PO(K))9xd

o K :Up — (PL(K))?

Fracture face mean displacement jump:
o Js:Up - PO()d

Global piecewise reconstruction operators:
° ( p(up))lk = 3(VFup +V¥up)
o divp =tr( p), p=2u p+addivp [
o (Mpup)lk =MKup

° ([uplo)lo =lunles
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Discrete mixed variational formulation

Find (up,1p) € U} x Cp(1p.n), such that:
JQ oup): p(Vp)+Sy a0 (up,vp) - J b pm divpvyp

+LPf[[VD]]D,n+L/ID'[[VD]]D |K|J J Hpvo,

L(M) -1p) [uplp <0,

for all (vp, ip) € U x Cp(1p n).

The variational inequality can be reformulated by local to each fracture face equations:

/lrr,n = [/I(J',n +ﬂ(r,n[[u@"0',n]R+

Ao = [/lo-,‘r +ﬁn’,‘r[[UZ)]]o‘,T]F/l
X if x| < a,

with [x]p+ = max{0,x} and [X]a =1 , X iherwise Bon>0, Bpr>0.
|| ’
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Jump reconstruction operator on a face o: | |~

Face mean value reconstruction:

VKo = Z wg Vs
seV,

with the face center of mass X, = Z w? xs.
seV,

Face average displacement jump operator:

[los:Uyp —>P0(0')d

[volle = VKo = Vio + VKo
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Discrete reconstruction operators in K: VK

The gradient reconstruction operator:

VK Up — (PO(K))9*d

1 1 _
VKszm D |U-|VKU'®nKO'+W D lolke ® N

oeFt oeFK

- +
o1 € 7:F,K correction with the bubble unknown

Figure: Nodal and bubble unknowns in a cell K
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Discrete reconstruction operators in K: IIX

Linear function reconstruction operator:

nX:uy - (PHK))?

HKVZ)(X) = VKVD (X - ;K) +VK,

with
= K
VK = Z Ws Vs
seVk
and the cell center of mass Xk = Z wfxs.

seVk
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Stabilisation term (dofi-dofi approach)

Su,a,p is the scaled stabilisation bilinear form defined by:

Suan(up,vp) = > h?Quk + 1K) Sk (up,vp),
KeM

with

Sk(up,vp) = Y (uges = TTKup (xs)) - (vges ~TTH VD (X)) + " ke Vi,
SE(VK O'GﬁvK

such that

Sk(Ipa,vp) = Sk(up,Ipq) =0
for all g € PL(K).
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Error estimate for Tresca friction

Let (u, 1) be the exact solution and assume that u € H2(M) and 1 € H1 ().
Then the discrete solution (ug, Ap) satisfies the following error estimate:

IV2up = Vull oo + 120 = Al < ho (ks gy + 1l m))-

The proof is mainly based on the discrete inf-sup condition:

Ap -[volo
pdo Ivolo IApll-r  YAp € Mo,

vpel?, lvolli, o
1/2
: . K 2
with [vpll,o = | D (IV¥vo I k) + Sk (vD,vp))
KeM

and the discrete Korn inequality:

Vol p < Il o)L g7+ D, Sk(p.vp)  Wwp € UG,
KeM
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Manufactured solution for a frictionless contact mechanical model

Frictionless contact mechanical model:

—div (u) =f on Q\T'
(u)=2u (u)+Adivul on Q\T'
TH+T- =0 onT’
Tn <0, [u]n<0, [u]ln Th=0 onT
T,.=0 onT.

Analytical solution:

g(x.y)p(2) g(x,y) = —sin( %X) cos( 5¥)
ple) ifzzo0,
x“p(z) _2
p(z) ==z
he)p* (2) b = con( ZX
u(x,y,z) = ( th(x) (P+((Z)+)_, )/ ) ifz<0, x <0, with 00 = cos(55%)
- [E h(&d (o (2) o
p(z) =2
h(x)p~ (2) - 4
th(><) (=) ifz<0, x 20, p(2) =22
= Jo h(&)dé (p™ (2))
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Figure: Error and convergence rates obtained with the VEM P!-bubble method: Tetrahedral
mesh (a), cartesian mesh (b), polytopal mesh (c).
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Single crack under compression

o g
¢ ux=0, n: Uy=0
[[a]l<(x) | = 4(1E_ Y (T siny (cosy — Fsing))/€2 — (€2 — 72),
An(7) = Fsin’ y, 0O<t<20
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Single crack under compression
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Coupling with a mixed-dimensional single phase Darcy flow

Otdpm+divVy, = hy on (0, T) x Q\T,
Vo, = —K—,;"me on (0, T) x Q\T,

deds +dive Vi = [Vmln=he  on (0, T)xT,
V¢ = #Vrpf, on (0, T) xT, E
Vi, on® = Te(de)(y*pm —pr) on (0, T) xT,

with the following coupling laws

0tdm = bdiv (9u) + 7;0tpm  on (0, T) x Q\T,
d,c=d1‘§—|[u]]n on (0, T)xT,

Roland Masson P*-bubble VEM method 24 /38



Hybrid Finite Volume (HFV) disctretization for the Darcy flow model
[Brenner et al 2016]

Figure: Pressure unknowns for the HFV scheme with discontinuous pressure
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Discrete energy estimate

Any solution (pg),u"z),/l’b)) € X9 xUQ x Cp(A ) for =1, N of the fully
coupled scheme satisfies the following discrete energy estimates:

1 1
5”J 5( plup): Z)(UZ))+5;1,/1,Z)(UZ)9UD)+M|H'D,,,PD,,,|2)+fr FAp oll6fupl ozl

n-1
—V v} n C D v n |2 Anfl n qa \2
Dmpg) DmPop,, T | Z)fpz)f| + f’@([[pj)]]p)
r ac{+,—} r
< hmIl1 n heV n fl -Tpo7
= milp, Py, + fVDiPp, + K “Hporup.
Q r Kem K

Thanks to the dissipative property of the contact term:

L 2 [6%uplp > jr FaD [67uplp.l 2 0.
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2D DFM poromechanical test case

Anisotropic permeability tensor:
- 1
Km =10 15(ex®ex+ Eey®ey)
Fracture aperture in contact state:
arctan(aD; (x))

yarctan(at;) !

F=0.5 b=0.5 E=10 GPa,v =0.2

df (x) =107 ie{1,...,6}

No analytical solution available
= Compute reference solution on fine mesh

[Acknowledgement: E. Keilegavlen (Bergen)]
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Initial conditions

Initial pressures pg, = p? =10° Pa

Boundary conditions

Mechanics
Top boundary:

£[0.005m, —0.002m] 4t/ T
£[0.005 m, —0.002m]

ift<T/a

u(t,x) = .
( ) otherwise

Bottom boundary: u(t,x) =0
Left and right boundaries: T(t, x)n(x) =0

Flow
Left boundary: pm(t,x) = P?n =10° Pa

All other boundaries: impervious




Matrix over pressures

End of Stage 1 at t = I

E -
IE

End of Stage 2 at t =T

Pm
50e+2 1.0e+3 1.4e+03
- S—
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Contact state along the fractures

o -Tp==( (u)-n)-n—(1-b)pr and |T|<-F T,

_ T
End of Stage 1 at t = ¢

B

\

End of Stage 2 at t =T

- \
—
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3D DFM poromechanical test case

Initial conditions

Initial pressures p?,, = p? =10° Pa

Boundary conditions

Mechanics
Top boundary:

[0.005 m, 0.002m, —0.002m] 2t/T ift < T/2

t,x) =
u(t,x) {t [0.005m, 0.002 m, —0.002m] otherwise

Bottom boundary: u(t,x) =0

IO Lateral boundaries: ! (£,x)n(x) =0
Flow
Isotropic permeability tensor: Boundary y =0 and y = 1: pp(t,x) = pg, =10° Pa
Km =107 I (m?) All other boundaries: impervious

Fracture aperture in contact state:
-3
df(x) =107 m

F=0.5 b=0.5 E=10 GPa,v =0.2
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3D DFM poromechanical test case: contact state

t=T/2 t=T

Contact State

O
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Conclusions and perspectives

@ Extension to polyhedral meshes of the mixed P-bubble - PO formulation for contact
mechanics

@ Numerical validation in terms of convergence and robustness on academic test cases

Perspectives:

@ More challenging test cases on CPG meshes for CO2 injection in a faulted reservoir

Higher order polytopal method

Nitsche's formulation

o Extension to non-matching meshes
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Thank you for your attention.
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