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Fractured/faulted poro-mechanical models: applications

CO2 sequestration
Fault/fracture
reactivation

Leakage
Induced seismicity

Other applications
Geothermal systems
Radioactive waste
geological repositories
H2 storage
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Typical meshes in geosciences

Corner Point Geometries (CPG)

Not adapted to Finite Element Methods (FEM) typically used in Mechanics

Need for discretizations of contact mechanics adapted to polyhedral meshes
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Outline

1. Contact-Mechanical model

2. Discretization on polyhedral meshes

3. Numerical validation
Contact-mechanics
Poromechanics
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Static contact mechanical problem

The matrix and fracture pressures pm and pf are fixed

Isotropic linear poroelastic model in the matrix domain Ω \ Γ


−div

(
σT (u, pm)

)
= f ,

σT (u, pm) = σ(u) − b pm I,

σ(u) = 2𝜇 ε(u) + 𝜆 divu I.

pm

u
pf

Ω

−

Γ

+

n−
n+

Mixed-dimensional geometry and unknowns
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Fracture mechanical model on the fracture network Γ

Jumps : ⟦u⟧ = u+ − u− , ⟦u⟧n = ⟦u⟧ · n+, ⟦u⟧𝜏 = ⟦u⟧ − ⟦u⟧nn+,

Surface Tractions: T± = σT (u, pm)±n± + pf n
±

Law of Action and Reaction:

T+ + T− = 0

Non penetration conditions:

T+
n ≤ 0, ⟦u⟧n ≤ 0, ⟦u⟧n T+

n = 0

Coulomb friction conditions:

|T+
𝜏 | ≤ −F T+

n ,

T+
𝜏 (u) · ⟦u⟧𝜏 − F T+

n (u) |⟦u⟧𝜏 | = 0
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Mixed variational inequality

Lagrange multiplier: 𝝀 = −T+

Dual cone of admissible Lagrange multipliers: given 𝝀 = (𝜆n, 𝝀𝝉)

Cf (𝜆n) =
{
𝝁 ∈ (H−1/2 (Γ))d : 𝜇n ≥ 0, |𝝁𝝉 | ≤ F𝜆n (in a weak sense)

}
.

Mixed variational inequality: u ∈ H1
0 (Ω\Γ)

d , 𝝀 ∈ Cf (𝜆n) such that∫
Ω

(
σ(u) : ε(v) − b pmdiv(v)

)
+ ⟨𝝀, ⟦v⟧⟩Γ +

∫
Γ

pf ⟦v⟧n =

∫
Ω

f · v,

⟨𝝁 − 𝝀, ⟦u⟧⟩Γ ≤ 0,

for all v ∈ H1
0 (Ω\Γ)

d , 𝝁 ∈ Cf (𝜆n).
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Polyhedral nodal discretization of the displacement field u

Virtual Element Method (VEM) [Beirao Da Veiga et al 2013]

Fully discrete approach (nodal MFD, CDO, DDR)
local reconstruction operators from the space of discrete unknowns onto polynomial
spaces.

Nodal displacement unknowns:

VEM

u

Γ
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Extension to contact-mechanics: mixed formulation

Mixed formulation with nodal Lagrange multipliers [Wriggers et al 2016]

Mixed formulation with face-wise constant Lagrange multipliers 𝝀 = −T+

deal with fracture networks including intersections
face-wise contact conditions
preserve the contact dissipative properties

multiplicateur

λ = −T+

σ
λσ

MD =
{
𝝀D ∈ L2 (Γ)d : 𝝀D (x) = 𝝀𝜎 ∀𝜎 ∈ FΓ,∀ x ∈ 𝜎

}
.

For 𝝀D ∈ MD , we define the discrete dual cone of admissible Lagrange multipliers:

CD
(
𝜆D,n

)
=

{
𝝁D =

(
𝜇D,n, 𝝁D,𝝉

)
∈ MD : 𝜇D,n ≥ 0, |𝝁D,𝝉 | ≤ F𝜆D,n

}
.
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Stabilization of the Lagrange multiplier

A stabilization is required to avoid spurious Lagrange multiplier modes

Enrichment of the displacement space
P1-bubble FEM [Renard et al 2003]
In this work: polytopal bubble stabilisation

VEM bulle

uKs nodal
uKσ bubble

σ

s
K

uKσ

uKs

Vector space of discrete displacement unknowns:

UD =

{
vD =

(
(vKs )Ks∈Ms ,s∈V , (vK𝜎)𝜎∈F+

Γ,K
, K ∈M

)
: vKs ∈ Rd , vK𝜎 ∈ Rd

}
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Interpolation operator

ID : C0 (Ω \ Γ)d → UD


(IDu)Ks = u |K (xs ),

(IDu)K𝜎 =
1

|𝜎 |

∫
𝜎
(𝛾K𝜎u − ΠK𝜎 (IDu)). !

u(x)

⊓!" (##$)

sS’

u(xs)

u(xs’)

𝛾K𝜎 is the trace operator on 𝜎 from the K side

ΠK𝜎 is the face linear reconstruction operator depending only on the nodal degrees
of freedom
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Reconstruction operators

Cell gradient and function reconstruction operators:

∇K : UD → (P 0 (K ))d×d

ΠK : UD → (P1 (K ))d

Fracture face mean displacement jump:

⟦ ⟧𝜎 : UD → P 0 (𝜎)d

Global piecewise reconstruction operators:

(εD (uD )) |K = 1
2 (∇

KuD + t∇KuD )

divD = tr(εD ), σD = 2𝜇 εD + 𝜆 divD I

(ΠDuD ) |K = ΠKuD

(⟦uD⟧D ) |𝜎 = ⟦uD⟧𝜎
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Discrete mixed variational formulation

Find (uD , 𝝀D ) ∈ U0
D × CD (𝜆D,n), such that:

∫
Ω

σD (uD ) : εD (vD ) + S𝜇,𝜆,D (uD , vD ) −
∫
Ω

b pm divDvD

+
∫
Γ

pf ⟦vD⟧D,n +
∫
Γ

𝝀D · ⟦vD⟧D =
∑︁

K ∈M

1

|K |

∫
K
f ·

∫
K
ΠDvD ,

∫
Γ

(𝜇D − 𝜆D ) · ⟦uD⟧D ≤ 0,

for all (vD , 𝝁D ) ∈ U0
D × CD (𝜆D,n).

The variational inequality can be reformulated by local to each fracture face equations:
𝜆𝜎,n =

[
𝜆𝜎,n + 𝛽𝜎,n⟦uD⟧𝜎,n

]
R+

𝜆𝜎,𝝉 =

[
𝜆𝜎,𝝉 + 𝛽𝜎,𝝉⟦uD⟧𝜎,𝝉

]
F𝜆𝜎,n

with [x]R+ = max{0, x} and [x]𝛼 =

{
x if |x| ≤ 𝛼,

𝛼
x

|x| otherwise, 𝛽D,n > 0, 𝛽D,𝝉 > 0.
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Jump reconstruction operator on a face 𝜎: ⟦ ⟧𝜎

Face mean value reconstruction:

vK𝜎 =
∑︁

s∈V𝜎

𝜔𝜎
s vKs

with the face center of mass x𝜎 =
∑︁

s∈V𝜎

𝜔𝜎
s xs .

Face average displacement jump operator:

⟦ ⟧𝜎 : UD → P 0 (𝜎)d

⟦vD⟧𝜎 = vK𝜎 − vL𝜎 + vK𝜎 .
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Discrete reconstruction operators in K : ∇K

The gradient reconstruction operator:

∇K : UD → (P 0 (K ))d×d

∇K vD =
1

|K |
∑︁

𝜎∈F+
Γ,K

|𝜎 |vK𝜎 ⊗ nK𝜎 + 1

|K |
∑︁

𝜎∈FK
|𝜎 |vK𝜎 ⊗ nK𝜎 .

Figure: Nodal and bubble unknowns in a cell K
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Discrete reconstruction operators in K : ΠK

Linear function reconstruction operator:

ΠK : UD → (P1 (K ))d

ΠK vD (x) = ∇K vD (x − xK ) + vK ,

with

vK =
∑︁

s∈VK

𝜔K
s vKs

and the cell center of mass xK =
∑︁

s∈VK

𝜔K
s xs .
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Stabilisation term (dofi-dofi approach)

S𝜇,𝜆,D is the scaled stabilisation bilinear form defined by:

S𝜇,𝜆,D (uD , vD ) =
∑︁

K ∈M
hd−2K (2𝜇K + 𝜆K )SK (uD , vD ),

with

SK (uD , vD ) =
∑︁

s∈VK

(uKs − ΠKuD (xs )) · (vKs − ΠK vD (xs )) +
∑︁

𝜎∈F+
Γ,K

uK𝜎 · vK𝜎 ,

such that

SK (IDq, vD ) = SK (uD ,IDq) = 0

for all q ∈ P1 (K ).
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Error estimate for Tresca friction

Let (u, 𝝀) be the exact solution and assume that u ∈ H2 (M) and 𝝀 ∈ H1 (FΓ).
Then the discrete solution (uD , 𝝀D ) satisfies the following error estimate:

∥∇DuD − ∇u∥L2 (Ω\Γ) + ∥𝝀D − 𝝀∥−1/2,Γ <∼ hD ( |𝝀 |H1 (FΓ ) + |u|H2 (M) ).

The proof is mainly based on the discrete inf-sup condition:

sup
vD ∈U0

D

∫
Γ
𝝀D · ⟦vD⟧D
∥vD ∥1,D

≳ ∥𝝀D ∥−1/2,Γ ∀𝝀D ∈ MD .

with ∥vD ∥1,D :=

( ∑︁
K ∈M

(∥∇K vD ∥2L2 (K ) + SK (vD , vD ))
)1/2

.

and the discrete Korn inequality:

∥vD ∥21,D <∼ ∥εD (vD )∥2
L2 (Ω\Γ) +

∑︁
K ∈M

SK (vD , vD ) ∀vD ∈ U0
D .
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Manufactured solution for a frictionless contact mechanical model

Frictionless contact mechanical model:



−divσ(u) = f on Ω\Γ
σ(u) = 2𝜇 ε(u) + 𝜆 divu I on Ω\Γ
T+ + T− = 0 on Γ

Tn ≤ 0, ⟦u⟧n ≤ 0, ⟦u⟧n Tn = 0 on Γ

T𝜏 = 0 on Γ.

Analytical solution:

u(x , y , z ) =



©­«
g (x , y )p (z )

p (z )
x2p (z )

ª®¬ if z ≥ 0,

©­«
h(x )p+ (z )

h(x )
(
p+ (z )

)′
−

∫x
0 h(𝜉 )d𝜉

(
p+ (z )

)′ ª®¬ if z < 0, x < 0,

©­«
h(x )p− (z )

h(x ) (p− (z ) ) ′
−

∫x
0 h(𝜉 )d𝜉 (p− (z ) ) ′

ª®¬ if z < 0, x ≥ 0,

with



g (x , y ) = − sin( 𝜋x2 ) cos( 𝜋y2 )

p (z ) = z2

h(x ) = cos( 𝜋x2 )

p+ (z ) = z4

p− (z ) = 2z4
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1st and 2nd order

(a)

2nd order

(b)

1st and 2nd order

(c)

Figure: Error and convergence rates obtained with the VEM P1-bubble method: Tetrahedral
mesh (a), cartesian mesh (b), polytopal mesh (c).
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Single crack under compression

X

Y

Z♦: ux = 0, ■: uy = 0

| ⟦ū⟧𝜏 (𝜏) | =
4(1 − 𝜈)

E
(𝜎̄ sin𝜓(cos𝜓 − F sin𝜓))

√︃
ℓ2 − (ℓ2 − 𝜏2),

𝜆n (𝜏) = 𝜎̄ sin2 𝜓, 0 ≤ 𝜏 ≤ 2ℓ
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Single crack under compression
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Coupling with a mixed-dimensional single phase Darcy flow



𝜕t𝜙m + divVm = hm on (0,T ) ×Ω\Γ,

Vm = −Km
𝜂 ∇pm on (0,T ) ×Ω\Γ,

𝜕tdf + div𝜏 Vf − ⟦Vm⟧n = hf on (0,T ) × Γ,

Vf =
Cf (df )

𝜂 ∇𝜏pf , on (0,T ) × Γ,

V±
m · n± = Tf (df ) (𝛾±pm − pf ) on (0,T ) × Γ,

pm

u
pf

Ω

−

Γ

+

n−
n+

with the following coupling laws{
𝜕t𝜙m = b div (𝜕tu) + 1

M 𝜕tpm on (0,T ) ×Ω\Γ,
df = dcf − ⟦u⟧n on (0,T ) × Γ,
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Hybrid Finite Volume (HFV) disctretization for the Darcy flow model
[Brenner et al 2016]

Figure: Pressure unknowns for the HFV scheme with discontinuous pressure
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Discrete energy estimate

Any solution
(
pnD , unD , 𝝀n

D
)
)
∈ X 0

D ×U0
D × CD (𝜆nD,n

) for n = 1, · · · ,N of the fully

coupled scheme satisfies the following discrete energy estimates:

𝛿nt

∫
Ω

1

2

(
σD (uD ) : εD (uD ) + S𝜇,𝜆,D (uD , uD ) + 1

M
|ΠDm

pDm
|2
)
+

∫
Γ

F𝜆nD,n |⟦𝛿
n
t uD⟧D,𝝉 |

+
∫
Ω

Km

𝜂
∇Dm

pnDm
· ∇Dm

pnDm
+

∫
Γ

Cn−1
f ,D
𝜂

|∇Df
pnDf

|2 +
∑︁

𝔞∈{+,−}

∫
Γ

Λn−1
f ,D (⟦pnD⟧𝔞D )2

≤
∫
Ω

hmΠDm
pnDm

+
∫
Γ

hf ∇Df
pnDf

+
∑︁

K ∈M

∫
K
fnK · ΠD𝛿nt uD .

Thanks to the dissipative property of the contact term:∫
Γ

𝝀nD · ⟦𝛿nt uD⟧D ≥
∫
Γ

F𝜆nD,n |⟦𝛿
n
t uD⟧D,𝝉 | ≥ 0.
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2D DFM poromechanical test case

Anisotropic permeability tensor:

Km = 10−15
(
ex ⊗ ex + 1

2
ey ⊗ ey

)
Fracture aperture in contact state:

dcf (x) = 10−4
√︁
arctan(aDi (x) )√︁
arctan(aℓi )

, i ∈ {1, . . . , 6}

F = 0.5, b = 0.5, E = 10 GPa, 𝜈 = 0.2

No analytical solution available

⇒ Compute reference solution on fine mesh

[Acknowledgement: E. Keilegavlen (Bergen)]

Initial conditions

Initial pressures p0m = p0
f
= 105 Pa

Boundary conditions

Mechanics

Top boundary:

u(t , x) =
{t [0.005m, −0.002m] 4t/T if t ≤ T/4
t [0.005m, −0.002m] otherwise

Bottom boundary: u(t , x) ≡ 0

Left and right boundaries: σT (t , x)n(x) ≡ 0

Flow

Left boundary: pm (t , x) ≡ p0m = 105 Pa

All other boundaries: impervious
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Matrix over pressures

End of Stage 1 at t = T
4

End of Stage 2 at t = T
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Contact state along the fractures

−Tn = −(σ(u) · n) · n − (1 − b)pf and |T𝜏 | ≤ −F Tn

End of Stage 1 at t = T
4

End of Stage 2 at t = T
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0 500 1000 1500 2000 0 500 1000 1500 2000

Figure: Mean aperture and mean pressure in fractures as a function of time.
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1.5th order

Figure: Relative L2 error between the current and reference solution
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orders 1 and 0.5

T
+ −

T
−

2

orders 1 and 0.5 orders 1 and 0.5

1.5th order

⟦u
⟧

1.5th order 1.5th order

Figure: Relative L2 error, as a function of the size of the largest fracture face, between the
current and reference solutions in terms of (T+ − T− ) /2 (top) and ⟦u⟧ (bottom) along fractures
1,2 and 3 from left to right: Mixed P1-bubble VEM - P0 vs Nitsche P1 FEM.
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3D DFM poromechanical test case

Isotropic permeability tensor:

Km = 10−14 I (m2 )

Fracture aperture in contact state:

dcf (x) = 10−3 m

F = 0.5, b = 0.5, E = 10 GPa, 𝜈 = 0.2

Initial conditions

Initial pressures p0m = p0
f
= 105 Pa

Boundary conditions

Mechanics

Top boundary:

u(t , x) =
{t [0.005m, 0.002m, −0.002m] 2t/T if t ≤ T/2
t [0.005m, 0.002m, −0.002m] otherwise

Bottom boundary: u(t , x) ≡ 0

Lateral boundaries: σT (t , x)n(x) ≡ 0

Flow

Boundary y = 0 and y = 1: pm (t , x) ≡ p0m = 105 Pa

All other boundaries: impervious

Roland Masson P1-bubble VEM method
Workshop on the mathematical and numerical modeling of CO2 storagejanuary 31- february 02 2024
33 / 38



3D DFM poromechanical test case: contact state

t = T/2 t = T
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Figure: The 𝝉2 component of the tangential jump with the 47k cells mesh (left) and the 127k
cells mesh (right), obtained at final time.
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Figure: Total number of semi-smooth Newton iterations for the contact-mechanical model as a
function of time, with both one-sided and two-sided bubbles and for both meshes with 47k cells
(left) and 127k cells (right).
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Conclusions and perspectives

Extension to polyhedral meshes of the mixed P1-bubble - P0 formulation for contact
mechanics

Numerical validation in terms of convergence and robustness on academic test cases

Perspectives:

More challenging test cases on CPG meshes for CO2 injection in a faulted reservoir

Higher order polytopal method

Nitsche’s formulation

Extension to non-matching meshes
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Thank you for your attention.
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